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Abstract. The paper considers the task of simulation quadcopter motion control 

in virtual environment systems. The proposed solution of this task is based on 

the application of a mathematical model of quadcopter dynamics, in which qua-

ternion and axis-angle representation of the attitude are used. In this work, a 

feedback linearization method for the equations of quadcopter and its electric 

motors dynamics is proposed to control the quadcopter. With the application of 

this approach, quadcopter motion is achieved by the obtained expressions for 

linear acceleration and the desired quaternion. The proposed methods and ap-

proaches for quadcopter simulation were implemented in the software package 

of virtual environment and tested using examples of the motion of a quadcopter 

model along a given path. 

Keywords: Quadcopter, Simulation, Quaternion, Axis-Angle Representation, 

Feedback Linearization Method, Virtual Environment System. 

1 Introduction 

Quadcopter is a special case of an unmanned aerial vehicle with four rotors. Due to 

the relative simplicity of the construction, such devices are widely used in various 

fields where it is necessary to carry out aerial photography and video, aerial recon-

naissance, cargo delivery, etc. The quadcopter control is performed by changing the 

rotation speed of the rotors, which allows to realize its vertical take-off, landing and 

maneuver in the horizontal plane. 

The current area of research is the use of virtual environment systems for quadcop-

ter dynamics simulation and control. In this paper, we consider the task of virtual 

quadcopter model motion along a given arbitrary trajectory. The complexity of this 
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task consists in the fact that the quadcopter is an under-actuated mechanical system 

(the control number is less than the number of degrees of freedom). This leads to the 

fact that the translational and rotational motion of the quadcopter are interconnected. 

At the same time, for the implementation of complex motions (such as flips), it is 

necessary to provide arbitrary orientation of the quadcopter. 

In recent years several strategies, such as [1-5], based on Euler angles are used to 

control the rotational motion of the quadcopter. However, this approach leads to the 

fact that it is impossible to uniquely restore the Euler angles (so-called "gimbal lock" 

problem) for certain orientations of the quadcopter. Therefore, an alternative solution 

is that the quaternion can be used to the quadcopter dynamics and control [6-8]. 

In this work, quadcopter simulation is realized in the virtual environment system 

with using an approach in which the quaternion and axis-angle representation of the 

quadcopter attitude are used. The quadcopter control is performed by the feedback 

linearization method for the equations of quadcopter and its electric motor dynamics. 

Within this method, simulation of quadcopter motion along a given trajectory is per-

formed by providing relationships in which linear acceleration is associated with the 

quaternion. Approbation of proposed solution was carried out in the virtual environ-

ment software package using the example when quadcopter moving along a complex 

acrobatic figure. 

2 Quadcopter Dynamics 

The quadcopter is an under-actuated system, since the number of actuators (four ro-

tors) is less than the number of its degrees of freedom (six degrees of freedom for a 

rigid body). Figure 1 shows a model of a quadcopter with a structure of type “X”, 

according to the arrangement of the rotors. To describe the motion of the quadcopter, 

we introduce the following coordinate systems: the inertial frame 
IE , the body-fixed 

frame 
BE , and the desired frame 

DE . The quadcopter's position is defined with radius 

vector ( )
T

, ,B x y z= =r OO , and the attitude is defined with unit quaternion 

( )
T

, , ,w x y zq q q q=q , where 2 2 2 2 1w x y zq q q q= + + + =q . 

To obtain a linear model of quadcopter motion, consider the logarithmic mapping 

[6] of a quaternion q:  
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where ( )
T

, ,v x y zq q q=q  is the vector part of quaternion. 

Then the vector 2ln( )=α q  defines the rotation of the quadcopter around the unit 

axis /α α  by an angle α . In this case, the kinematics of the quadcopter is defined 

using the linear equations 
=r v ;  =α ω ,                                                    (2) 
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where  ( )
T

, ,x y zv v v=v   denotes the quadcopter's linear velocity in the inertial frame 

IE , ( )
T

, ,x y z  =ω
 
the quadcopter's angular velocity in the body-fixed frame

BE . 

 

 Fig. 1. Virtual quadcopter model. 

Rotation of rotors create thrusts 
2

i iT k=  , 1,4i = , applied in the attachment points 

and are directed parallel to the axis 
B BO Z  of the body-fixed frame 

BE , where 
i  and 

k denotes, respectively, angular velocity of rotor i and the lift constant. Also, opposite 

the rotor rotation there are torques 
2

i ib =  , where b denotes the drag constant of 

rotor. Hence, the four rotors create total thrust iF T=  and torque ( )
T

, ,x y z  =τ , 

which are computed as 
2 2 2 2

1 2 3 4( )F k=  + + + ; 
2 2 2 2

1 2 3 4( )x ykl =  + − − ; 

2 2 2 2

1 2 3 4( )y xkl = − + + − ; 
2 2 2 2

1 2 3 4( )z b = − + − + ,               (3) 

where 
xl  and yl  are the rotor coordinate's positions in the body-fixed frame 

BE . 

The mathematical model of quadcopter's motion is described as the Newton-Euler 

equations, which, taking into account the kinematic relations (2), become 

0 0

( ) 0 0m R m

F g

   
   

= +   
   −   

r q ;                                           (4)  

= −  +Iα ω Iω τ ,                                                  (5) 

where m  is the quadcopter mass, I  the inertia matrix in the body-fixed frame
BE ,  

( )R q  the quaternion rotation matrix, g  the gravity acceleration. 
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Formulas (4) and (5) are supplemented by the rotor dynamics equations [5] based 

on their passport parameters:  

( ), 1, 4 ,i

m i S i

idle

I M U i


 = − =


                                      (6) 

where 
iU  denotes the voltage supplied to armature of the motor, 

mI  the motor iner-

tia, 
SM  the motor starting torque, 

idle  the motor idling speed. 

Equations (4), (5) and (6) define a mathematical model of quadcopter and rotor dy-

namics, where control variables F, 
x , y  and 

z  are given by formulas (3). 

3 Quadcopter Control 

To control the quadcopter, we apply the feedback linearization method for equations 

(4) - (6). This method consists in the fact that the control variables are selected in a 

such way that the closed-loop system of quadcopter motion equations will be linear 

with given characteristics. The control task is to compute the thrust force F and tor-

ques ( )
T

, ,x y z  =τ  in order to realize translational and rotational motion of the 

quadcopter. These control variables are used to solve the system of equations (3) with 

respect to 
i . The obtained solution is then used to calculate the voltages 

iU  sup-

plied to the rotor electric motors. 

3.1 Attitude Control 

Here we will consider a more convenient and intuitive approach in which the de-

sired attitude of the quadcopter is specified using Euler angles. Let the desired frame 

DE  be obtained relative to the inertial frame 
IE  by a sequence of rotations, where 

first performed around Z-axis on the jaw angle 
d , then around Y-axis on the roll 

angle 
d  and finally around X-axis on the pitch angle 

d . With this sequence of rota-

tions, the desired quaternion is derived through the Euler angles as follows [8]: 

cos( / 2)cos( / 2)cos( / 2) sin( / 2)sin( / 2)sin( / 2)

sin( / 2)cos( / 2)cos( / 2) cos( / 2)sin( / 2)sin( / 2)

cos( / 2)sin( / 2)cos( / 2) sin( / 2)cos( / 2)sin( / 2)

cos( / 2)cos( / 2)sin( / 2) sin(

d d d d d d

d d d d d d

d

d d d d d d

d d d

     

     

     

  

+

−
=

+

−

q

/ 2)sin( / 2)cos( / 2)d d d  

 
 
 
 
 
 

.     (7) 

Then the desired attitude is defined using the vector ln( )d d=α q , which is given 

by the formula (1). 

Let's transform equation (5) of quadcopter's rotation motion to the linear form. To 

do this, we select torque ( )
T

, ,x y z  =τ  as 

( ) ( )pr d vr dK K=  − − − −τ ω Iω α α ω ω ,                                (8) 

where 0prK   and 0vrK   are the diagonal matrices with positive linearization coef-
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ficients. 

The control law (8) leads to the fact that the system of equations (5) becomes linear 

and ( )tα  tends to ( )d tα  as t → . 

3.2 Trajectory Control 

This task is to ensure the motion of the quadcopter along a given path ( )d tr . To 

solve this problem, we apply the feedback linearization method for equations (4) so 

that linear accelerations ( )
T

, ,x y za a a= =a r  satisfy the following equation 

( ) ( )pt d vt dK K= − − − −a r r r r ,                                        (9) 

where 0ptK   and 0vtK   are the diagonal matrices with positive linearization coef-

ficients. 

Expression (9) is used to compute the thrust F and the desired angles 
d  and 

d , 

which are involved in the implementation of the horizontal motion of the quadcopter. 

After substituting (9) into (4), we obtain that the thrust F is expressed through accel-

erations a  as 

2 2 2( )x y zF m a a a g= + + + .                                        (10) 

In turn, the angles 
d  and 

d  are derived from (4) by expressing the matrix R in 

terms of Euler angles. Applying some transformations in (4), we can show [5] that the 

following relations are valid: 

2 2 2

sin( ) cos( )
arcsin

( )

x d y d

d

x y z

a a

a a a g

 


 −
 =
 + + +
 

;                               (11) 

cos( ) sin( )
arctan

x d y d

d

z

a a

a g

 


+ 
=  

+ 
.                                (12) 

Formulas (11) and (12) express the relationship of rotational and translational mo-

tion of the quadcopter. The angles 
d  and 

d  are provided using the torque are given 

by the formula (8). Thus, when selecting the thrust F and angles 
d  and 

d , we ob-

tain accelerations (9) that make equations (4) linear such that ( )tr  tends to ( )d tr  as 

t → . 

3.3 Actuator Control 

Solving the system of equations (3), we obtain the values ,i d  of rotor speeds. To 

ensure these speeds, we apply the feedback linearization method for equations (6). 

Selecting voltage 
iU  in the following form 

( ), , ,

1
(1 )i c m i i c m i i d

idle

U t k t k= −  + 


,                                (13) 
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we get that equations (6) become linear such that 
i  tends to ,i d  as t → . When 

deriving (13), the relation /m s c idleI M t=   was used, where 
ct  is the motor time con-

stant. 

 

Fig. 2. Structure of the quadcopter control scheme. 

4 Simulation Results 

The quadcopter simulation was carried out in the virtual environment system, which 

was developed at the SRISA RAS. This software package includes parts for control, 

dynamics and visualization of virtual objects. The quadcopter control algorithm is 

defined by constructing a block diagram scheme. In the control subsystem, this 

scheme is computed and at the output of which we obtain new values of the voltages 

supplied to the rotor motors. These voltages are sent to the dynamics subsystem, 

which computes the new coordinates of the quadcopter and the sensors readings. The 

resulting coordinates are sent to the visualization subsystem that renders the virtual 

scene. 

The coefficients of the feedback linearization method used were the following: 

, 100pr iK = , , 20vr iK = , , 0.2pt iK = , , 0.75vt iK = , 1,3i = . The quadcopter control 

scheme is conventionally shown in Figure 2. The scheme inputs are the desired path 

( )d tr , the yaw angle ( )d t , as well as the virtual sensors readings (position, orienta-

tion and angular velocities). According to this scheme, in order to implement the 

quadcopter trajectory control, linear accelerations are first computed by formula (9). 

These accelerations are used to compute the thrust F, the roll 
d  and pitch 

d  angles 
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by formulas (10)-(12). The angles are sent to the block, which implements control of 

the quadcopter attitude with the computation of the output torque τ . The obtained 

thrust F and torque τ  are used to compute the rotor speeds ,i d  and the voltages 
iU  

supplied to the quadcopter actuators. 

 

Fig. 3. Quadcopter motion around the robot. 

Two examples were considered for simulation of the quadcopter motion. In the 

first example (see Fig. 3), a task is realized in a virtual scene in which the quadcopter 

flies around an object (MF-4 robot) from different sides.  

The path ( )d tr  of the quadcopter motion is defined as 

2
( ) cosd x

t
x t C R

T

 
= +  

 
; 

2
( ) sind y

t
y t C R

T

 
= +  

 
; ( )dz t H const= = , 

where [0, ]t T , 
xC  and yC  are the object coordinates,  H the flight altitude, T the 

total flight time. At the same time, the yaw angle changes according to the 

( ) 2 /d t t T =  so that the virtual camera is directed towards the robot. 

Figure 3 shows the different positions of the quadcopter during its motion, where 

the position with number 1 corresponds to a point in time 0t = , with number 2 corre-

sponds to / 6t T= , etc. 

In the second example (see Fig. 4), quadcopter performs a complex aerobatics fig-

ure in the form of a closed loop (corkscrew loop). The quadcopter motion is per-

formed in its longitudinal plane and includes two stages. At the first stage, the quad-

copter is accelerated to the required velocity along the Y axis of its body-fixed frame. 

At the second stage, the quadcopter performs a total rotation around the pitch axis. To 

implement this motion, the desired pitch angle is defined as 
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1

2 1 1 2

/ 9, 0
( )

2 / ( ),
d

t T
t

t T T T t T






−  
= 

−  
, 

where 
2[0, ]t T , 

1T  is the time of acceleration, 
2T  the time of the flip. 

 

Fig. 4. Quadcopter motion along a complex path.  

Figure 4 shows the different positions of the quadcopter when performing a cork-

screw loop. The numbers indicate the sequential positions of the quadcopter, where 

numbers 1 and 2 corresponds to the quadcopter positions during acceleration, and 

numbers from 3 to 8 corresponds to the positions when the quadcopter performs a 

flip. Note that the position with number 4 corresponds to the quadcopter rotation on 

the pitch angle about of 90 degrees around the X axis. With such a rotation, it is im-

possible to uniquely restore the quadcopter attitude, if Euler angles are used. 

5 Conclusion 

In this paper, methods and approaches for quadcopter dynamics simulation and con-

trol in virtual environment systems were developed. The proposed solution is based 

on a mathematical model of the quadcopter's dynamics, in which the quaternion and 

the axis-angle representation are used to define the quadcopter attitude. Testing the 

examples of a virtual model showed that the proposed methods and approaches make 

it possible to realize the trajectory motion of a quadcopter with any angle of rotation. 

It is assumed that the obtained results can be used to control a real quadcopter model. 

For this in the future, it is planned to improve the developed methods and approaches 

for quadcopter simulation taking into account external disturbances, wind and noise in 

the virtual sensors readings. 
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