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Abstract. The aim of the work is to use the variational iterations method to 

study the three-dimensional equations of mathematical physics and visualize the 

solutions obtained on its basis and the 3DsMAX software package. An 

analytical solution of the three-dimensional Poisson equations is obtained for 

the first time. The method is based on the Fourier idea of variables separation 

with the subsequent application of the Bubnov-Galerkin method for reducing 

partial differential equations to ordinary differential equations, which in the 

Western scientific literature has become known as the generalized Kantorovich 

method, and in the Eastern European literature has known as the variational 

iterations method. This solution is compared with the numerical solution of the 

three-dimensional Poisson equation by the finite differences method of the 

second accuracy order and the finite element method for two finite element 

types: tetrahedra and cubic elements, which is a generalized Kantorovich 

method, based on the solution of the three-dimensional stationary differential 

heat equation. As the method study, a set of numerical methods was used. For 

the results reliability, the convergence of the solutions by the partition step is 

checked. The results comparison with a change in the geometric parameters of 

the heat equation is made and a conclusion is drawn on the solutions reliability 

obtained. Solutions visualization using the 3Ds max program is also 

implemented. 
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1 Introduction. The history of the issue  
 

In the work, to solve the three-dimensional equations of mathematical physics 

(Poisson equation), a method is used that is a generalization of the Fourier variables 

separation method and is known in the literature as the variational iterations method. 

This method is based on the idea of reducing partial differential equations to ordinary 

differential equations for elliptic equations - this is the Kantorovich method with the 

subsequent refinement of the function with respect to the desired variables - the 

variational iterations method. In Western European literature, this method is called the 

extended Kantorovich method, in Eastern European literature it is called the method 

of variational iterations (MVI). It allows you to get an analytically accurate solution at 

every step of the iterative procedure. 

This method was first proposed and used in 1933 by T.E. Shunk [1] for 

calculating the bending of cylindrical panels. Unfortunately, the work was not 

noticed, and the method was rediscovered again in 1964 E.E. Zhukov [2], who used it 

to calculate thin rectangular plates. In the future, MVI was widely used by many 

researchers in solving problems of the shells and plates theory (a bibliography on this 

subject is presented in [3]). The method justification for the class of equations 

described by positive definite operators is given in [4]. 

The variational iterations method (extended Kantorovich method) over the past 

half century has been used to solve problems of statics, stability, natural frequencies 

determination and dynamics. A fairly complete review of Western publications in this 

area can be found in [5, 6]. In the USSR and Russia, this method was mainly used in 

the works of V.A. Krysko and his students. For the first time, this scientific group 

used the approach in 1968 to study the bending of flexible orthotropic plates [7], and 

approach got its name the variational iterations method in the work [8] 1970, devoted 

to the numerical study of flexible plates and comparison with experimental data. 

Subsequently, scientists of this group used the variational iterations method to solve 

geometrically and physically nonlinear problems in the theory of shells and plates [9, 

10], in problems of designing optimal plates [11–12], and on other topics [13–16]. 

In this paper, this method is first used for the three-dimensional Poisson equation, 

which shows the relevance of this work. To implement these methods and obtain the 

final solution, the MATLAB application package is used. As a visualization of the 

obtained data, a software utility made for the Autodesk 3Ds Max platform is used. 

3Ds Max has extensive tools for creating a diverse in form and complexity of three-

dimensional computer models, real or fantastic objects of the surrounding world, 

using a variety of techniques and mechanisms. 

 

 

2 Variational iterations method 

 
We apply MVI to find an analytical solution for the differential equation. Consider 

the stationary differential heat equation for a three-dimensional body (1). 
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where T(x,y,z) – temperature field, f(x,y,z) – the internal heat source density, which is 

considered to be given,  - thermal diffusivity, 
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( ) ( )( , , ) (0, ) 0, 0,x y z a b c =    - temperature distribution area;   - border area. 
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where rq - is the given value of the heat flux on the surface. The notation n=-0 

emphasizes that the values are calculated inside the object infinitely close to its 

surface. 

Edge conditions of the 3rd kind 
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The proportionality coefficient α in (4) is called the heat transfer coefficient and is 

a measure of the convective heat transfer intensity between the surface and the heat 

carrier (for the sake of brevity, this is called heat transfer), tw – tf is the temperature 

thrust, the temperature difference between the wall (surface) and the environment. 

We apply the method of variational iterations in a first approximation to the heat 

equation taking into account the boundary conditions (2).  

In the variational iterations method, it is assumed that the function consists of the 

one-dimensional functions product with respect to each variable: 

( , , ) ( ) ( ) ( )T x y z A x B y C z=     (5) 

We introduce a three-dimensional bounded Hilbert space  (0,1) (0,1) (0,1)H     
where each space function has a continuous derivative of at least second order. 

We introduce a three-dimensional bounded Hilbert space - where each function of this 

space has a continuous derivative of at least second order. To find a solution, we use 

condition (3) so that: 
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Subsequently, from equation (7), the functions A(x), B(y), C(z) are found. Since 

the method implements an iterative process, it is required to set the initial 

approximation. For example, if you want to find the function C(z), then you need to 

specify any functions A(x) and B(y) satisfying the conditions of the Hilbert space H.  

The result is an inhomogeneous ordinary differential equation with constant 

coefficients with respect to the function C(z). 

32
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When solving an inhomogeneous differential equation, the boundary conditions 

(2) are taken into account. The result of the solution is the function C(z). The 

functions A(x) and B(y) are found in a similar way, but already using the found 

functions. After all the functions for each variable are found, we obtain an 

approximate analytical solution. Only the first iteration was carried out. Next you can 

carry out this procedure as many times as you like and get an increasingly accurate 

solution to equation (1). Further, this problem will be considered using the numerical 

method. 

 

3 Finite difference method   

 
To compare and analyze the results using the methods described above, the finite 

difference method with second-order approximation is used. We write the difference 

heat equation:  
( ) ( ) ( ) ( )

1, , 1, , , 1, , 1,( 1)

, , 2 2

( ) ( )

, , 1 , , 1

2 2 2 2

2 2 2
( , , ) /

s s s s

i j k i j k i j k i j ks

i j k

x y

s s

i j k i j k

z x y z

T T T T
T

h h

T T
f x y z

h h h h

 



+ − + −+

+ −

 + +
= + +



  +
+ + + +  

  
  

 (10) 

( 1) ( )

, , , ,max , где 0s s

i j k i j kT T  + −  

 

(11) 

We attach the boundary conditions of the 1st kind (2). When the iteration process 

starts, the array of the function T(0)
i,j,k is filled with zeros. After using formula (10) 

over the entire array, we obtain a new scalar field T(1)
i,j,k. We carry out this procedure 

while (11) is satisfied, where e is the maximum difference between the values of 
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adjacent iterations. A sufficiently small number is chosen as   in order to approach 

the exact solution. We apply MVI to find an analytical solution for the differential 

equation. 

 

4 Results analysis  

 
For the heat equation (1), taking into account the boundary conditions (2), we 

compare the solutions that were obtained by the numerical method (finite difference 

method) and the analytical method (variational iteration method in a first 

approximation). The results are presented in table 1. Three cases were considered: a = 

b = c = 1; a = 3, b = c = 1; a = 5, b = c = 1. As the results, the maximum values of 

the functions obtained in the solution process were taken. The difference between the 

results obtained by analytical and numerical methods is 5.34%. 

 

Table 1. Numerical experiment results. 

 

MVI  a = b = c = 1 a = 3, b = c = 1 a = 5, b = c = 1 

Maximum  { А(х) } 0.493542 0.595027 0.594314 

Maximum  { B(y) } 0.409915 0.396978 0.395888 

Maximum  { C(z) } 29.377056 3.536978 1.281865 

Maximum  

{T(x,y,z)=А(х)B(y)C

(z) } 

5.9432295 0.835481 0.301600 

 

Finite difference 

method 
21x21x21 21x21x21 21x21x21 

Maximum  

{T(x,y,z)=А(х)B(y)C

(z) } 

5.599181 0.814254 0.294009 

For MVI, table 1 presents a data set for each of the functions obtained by the 

method lying on its axis. The solution obtained by this method is shown in fig. 1, 2, 3. 

Here is shown the surface of the temperature distribution in the middle of the region 

relative to the Oz axis. To build the surface, we used a special program written on the 

3Ds Max platform.  
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Fig. 1. Visualization of the numerical solution for the median plane 

a = b = c = 1 

 

Fig. 2. Visualization of the numerical solution for the median plane 

a = 3; b = c = 1 

 

Fig. 3. Visualization of the numerical solution for the median plane 

a = 5;  b = c = 1 

 

Conclusion 

1. For the first time, to obtain an analytical solution of a three-dimensional partial 

differential equation, the variational iterations method is used, which is based on 

the Kantorovich method — reduction of partial differential equations to ordinary 

differential equations. 
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2. This method has high accuracy even in the first approximation, as evidenced by 

the solution of the same equations obtained by the finite differences method of the 

second accuracy order for a the first kind boundary value problem.   

3. The results of a numerical solution using the variational iteration method were 

visualized using a software package written on the 3Ds Max platform.  
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