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Abstract. The current stage of development of information technologies is char-

acterized by the active introduction of the functions of many-valued logic. In 

particular, many-valued logic functions are used in cryptography to build high-

quality cryptographic primitives with a high level of nonlinearity. This circum-

stance determines the need for more detailed research of the nonlinearity of the 

complete codes of functions of many-valued logic. Because of the possibility of 

representing constructions of almost all modern ciphers by 4-functions, they oc-

cupy a special place among other q values in the research of the level of nonlin-

earity. This paper presents a universal method for calculating the possible abso-

lute values of the Vilenkin-Chrestenson transform coefficients of many-valued 

logic functions. This method is applied to 4-functions of length N = 4 and N = 16. 

As a result, 5 spectral classes of vectors of length N = 4, and 36 spectral classes 

of vectors of length N = 16 were discovered, each of which has a unique elemen-

tary structure, and, accordingly, the certain value of nonlinearity. Because of the 

dependence of such a fundamental concept of MC-CDMA technology as the 

Peak-to-Average Power Ratio of the applied signals and their spectral properties, 

the results obtained can also be used to calculate the maximum cardinality values 

of constant amplitude codes constructed based on many-valued logic functions. 
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1 Introduction and Statement of the Problem 

The current stage in the development of cryptography is characterized by the great at-

tention of researchers to the methods of many-valued logic [1]. Methods of many-val-

ued logic are used both to increase the security of quantum cryptographic algorithms 

[2, 3] as well as to create new cryptographic primitives [4, 5], and traditional crypto-

graphic algorithms [6], characterized by increased security [7]. There are also methods 

to estimate the cryptographic quality of existing cryptographic algorithms represented 

by the functions of many-valued logic. To estimate the cryptographic quality of many-

valued logic functions, a set of criteria [2] has been introduced, among which the most 

important is the criterion of nonlinearity. 
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This circumstance makes it especially important to research the nonlinear properties of 

many-valued logic functions, which, due to the interconnection between nonlinearity 

and the spectral properties of many-valued logic functions, is closely related to the issue 

of spectral classification of complete quaternary code. 

On the other hand, there is a direct relationship between the spectral properties of 

sequences and such a parameter as the Peak-to-Average Power Ratio (PAPR) of their 

spectrum, which plays a significant role in the case of their application in MC-CDMA 

technology [8]. That is, the problem of spectral classification of the complete code of 

quaternary sequences is also equivalent to the problem of determining the maximum 

cardinalities of actively used quaternary C-codes [9], which have a given level of the 

PAPR of the Vilenkin-Chrestenson spectrum. 

At the moment, in the literature the spectral classification of the complete codes of 

ternary sequences of lengths 3N   and 9N   is already performed [10], nevertheless, 

the spectral properties of quaternary sequences remain unknown. 

The purpose of this paper is to develop a method for the spectral classification of 

quaternary sequences, as well as to carry out the spectral classification of the full set of 

quaternary sequences of lengths 4N   and 16N  . 

2 Basic Definitions 

Let’s introduce the basic definitions. As an alphabet of sequences of 4-valued logic, it 

is convenient to consider the set of fourth roots of unity 

 
2π

4 , {0,1,2,3}
j k

kz e k  , (1) 

then the alphabet of the considered in this paper vectors will consist of the following 

values 

 
2π 2π 2π 2π

0 1 2 3
4 4 4 4

0 1 2 21; ; 1;
j j j j

z e z e j z e z e j          . (2) 

For each sequence of 4-logic, we define the vector of the Vilenkin-Chrestenson trans-

form [11] as the product of some sequence A  of 4-valued logic by the transposed 

Vilenkin-Chrestenson matrix 

 T

f f V   , (3) 

where the Vilenkin-Chrestenson matrix is defined by the following recurrent construc-

tion [4] 
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In expression (4) matrices V  are represented in symbolic form, i.e. the summation is 

performed relative to the indices 
iz . 

The quaternary sequence of length 4kN   can be considered as the truth table of 

the many-valued logic function of k  variables, which are used to estimate the quality 

of cryptographic algorithms as well as for the construction of perspective cryptographic 

primitives [4]. 

Today there is a known method for estimating the nonlinearity of many-valued logic 

functions [12] using the coefficients of the Vilenkin-Chrestenson transform 
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

 (5) 

where fW  are the Walsh-Hadamard transform coefficients which are used instead of 

Vilenkin-Chrestenson transform coefficients in the case of Boolean functions [13]. 

The formula (5) for calculating the nonlinearity of the many-valued logic functions 

is basic in cryptography and is used to estimate the level of confusion that can be pro-

vided by one or another many-valued logic functions used in cryptographic algorithms. 

The formula (5) also shows a direct relationship between nonlinearity and spectral 

properties of many-valued logic sequences. Thus, more detailed research of the struc-

ture of the Vilenkin-Chrestenson spectrum of functions of many-valued logic will allow 

a better understanding of the possible values of their nonlinearity, as well as discovering 

the sets of sequences with a given level of nonlinearity. 

Note also that from the spectral properties of many-valued logic sequences follows 

such an important characteristic as the PAPR, which is decisive for their use as C-codes 

in MC-CDMA technology [7] 

  2
max 1

κ max f
t

ср

P

P N
    (6) 

where maxP  is the peak power of the signal f , 

avP  is the average power of the signal f , 

N  is the length of the sequence. 

So, such practically valuable properties of sequences of many-valued logic as non-

linearity and PAPR are the special cases of their spectral properties. This fact makes 

the task of spectral classification of the sequences of many-valued logic very important. 
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3 Spectral Classification of Quaternary Sequences of Length 

N = 4 

Each quaternary sequence of length 4N   can be represented in the following gener-

alized form 

  
2π

4
1 2 3 4 , , {0,1,2,3}

j k

i kA a a a a a z e k    . (7) 

For each such quaternary vector, the Vilenkin-Chrestenson transform can be found by 

multiplying it by the matrix complex conjugation of the Vilenkin-Chrestenson matrix 

4S A V  . In this case, in general form, the vector of the Vilenkin-Chrestenson trans-

form coefficients can be represented as follows 

  1 2 3S s s s , 
is  . (8) 

Each vector A  uniquely corresponds to its vector S . The converse is not true, i. e. not 

for every vector S , 
is  , there is such corresponding vector with such coordinates 

1 2 3{1, , , }ia z z z  that equality 
4S A V   is valid. 

In the general case, the problem of finding nonlinear sequences is the problem of 

finding sequences with given spectral properties, which implies research of the admis-

sible structures of vectors S , as well as values of their elements for which exists the 

corresponding vectors in the time domain. This problem is a problem of spectral clas-

sification of quaternary vectors of length N. 

We will perform the spectral classification by the approach [14], i.e. based on the 

definition of sets of absolute values of spectral vectors. 

Let us find out what values the elements 
is  can take in the example of the first Vilen-

kin-Chrestenson transform coefficient
1s . This coefficient is the result of the product of 

the sequence A  in the time domain by the first column of the Vilenkin-Chrestenson 

matrix. The elements of the sequence A  belong to the alphabet  0 1 2 3, , ,z z z z , which 

can be represented in the algebraic form of representing a complex number (2). 

Let us denote by 
0 1 2 3, , ,K K K K  the number of elements 

0 1 2, ,z z z  and 
3z  in the se-

quence A , respectively. Then the coefficient 
1s  will take the values 

    1 0 2 1 3s K K j K K    , (9) 

where 

 0 1 2 3

0 1 2 3

4,

, , , {0,1,2,3,4}.

K K K K

K K K K

   
 

 (10) 

It is easy to find that there are only 35 sets of numbers 0 1 2 3, , ,K K K K  that satisfy con-

dition (10) 
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. (11) 

To find the possible absolute values of the coefficient 
1s , we substitute solutions (11) 

into (9), after which, finding the absolute values of complex numbers, we obtain 

 
2 2

1 0 2 1 3( ) ( ) {0, 2, 2, 8, 10,4}.s K K K K      (12) 

Proposition 1. The set of values (12), and only them, are possible absolute values of 

the Vilenkin-Chrestenson transform coefficients of vectors of length 4N  . 

Let us express the value of the first Vilenkin-Chrestenson transform coefficient in 

terms of the elements of the original sequence 

  
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Similarly, consider the ith Vilenkin-Chrestenson transform coefficient 
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 (14) 

Since 
0 1 2 4β , γ { , , , }i i z z z z for each 

is , there is a sequence 
1 2 3 4[ ],A a a a a      the 

Vilenkin-Chrestenson transform of which has a coefficient 
1s  equal to the given .is  

Due to Parseval's equality, the minimum value of the Vilenkin-Chrestenson trans-

form coefficient cannot be lower than 

1

2 24 2
k

q   . So, the values of the Vilenkin-

Chrestenson transform coefficients of quaternary sequences 0is   and 2is   can-

not be the maximum absolute values in the Vilenkin-Chrestenson transform vector. 

Thus, the set of possible values of nonlinearity by (5) is 

 4 {4, 10, 8,2} {0, 0.8377, 1.1716, 2}fN    . (15) 
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We can highlight the method for calculating the possible absolute values of the Vilen-

kin-Chrestenson transform coefficients, and, accordingly, the possible values of non-

linearity and PAPR, in the form of specific steps: 

Step 1. Present in general form the absolute value of the first Vilenkin-Chrestenson 

transform coefficient 
1s  in terms of the numbers 0 1 1, ,..., qK K K   of elements of the 

many-valued logic sequence alphabet. 

Step 2. Find possible values 0 1 1, ,..., qK K K   that satisfy the condition 

 0 1 1

0 1 1

... ,

, ,..., {0,1,.., }.
q

q

K K K N

K K K N




   
 

 (16) 

Step 3. Substitute the possible values 0 1 1, ,..., qK K K   into the expression obtained in 

Step 1 for the absolute value of the first Vilenkin-Chrestenson transform coefficient 
1s  

in terms of the numbers 0 1 1, ,..., qK K K   of the many-valued logic sequence alphabet. In 

this case, because of Statement 1, the resulting set of values will constitute the full set 

of possible values of all the coefficients of the Vilenkin-Chrestenson transform. 

Step 4. Calculate the possible values of nonlinearity and PAPR by formulas (5) and 

(6) for the complete set of possible values of all Vilenkin-Chrestenson transform coef-

ficients obtained at Step 3. 

The results of calculations showed that for vectors of length 4N   there are five 

spectral classes of vectors (Table 1), for each of which the cardinality of the class, the 

value of nonlinearity and PAPR as well as the representative sequence are provided. 

Table 1. Spectral classification of quaternary vectors of length N = 4 

No. 
Spectral class represented  

in the form of irrationalities 

Class  

cardinality 
Nonlinearity PAPR 

Representative 

sequence 

1 {4(1),0(3)}  16 0 4.0 0000 

2 { 10(1), 2(3)}  128 0.8377 2.5 0001 

3 { 8(1),2(2),0(1)}  64 1.1716 2.0 0011 

4 { 8(2),0(2)}  16 1.1716 2.0 0022 

5 {2(4)}  32 2.0000 1.0 0002 

 

Analysis of the data presented in Table 1 shows that the complete code of quaternary 

sequences of length 4N   can be classified into five spectral classes, among which 

there is a class of affine functions [15] of cardinality 
1 16J  , as well as the class of 

bent-functions [16] of cardinality 
5 32J  . 

In Fig. 1, a histogram of the distribution of nonlinearity of quaternary sequences of 

length 4N   is shown. 
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Fig. 1. Histogram of nonlinearity distribution of quaternary sequences of length N = 4. 

4 Spectral Classification of Quaternary Sequences of Length 

N = 16 

It should be noted that sequence length 16N   is very important in modern crypto-

graphic applications. So, the problem of spectral classification of the complete set of 

quaternary sequences of length 16N   is of special interest in the terms of their usage 

in cryptography. 

Expression (16) for the case of quaternary sequences of length 16N   takes the 

following form 

 0 1 2 3

0 1 2 3

16,

, , , {0,1,2,3,...,16},

K K K K

K K K K

   
 

 (17) 

while the total number of sets of numbers 
0 1 2 3, , ,K K K K  that satisfy condition (17) is 

969. 

Based on the set of suitable 
0 1 2 3, , ,K K K K  sets, and taking into account Statement 1, 

as well as the formula for the absolute value of a complex number, we can write down 

the set of possible absolute values of the Vilenkin-Chrestenson transform coefficients 

of quaternary sequences of length 16N   

 

{0, 2,2, 8, 10,4, 18, 20, 26, 32,

34,6, 40, 50, 52, 58,8, 68, 72, 74,

80, 82, 90, 98,10, 104, 106, 116,

122, 128, 130, 136,12, 146, 148,

160, 170, 178,14, 200, 226,16}.

is 

 (18) 

In the case of quaternary sequences of length 16N  , due to Parseval's equality, the 

minimum value of the coefficient of the Vilenkin-Chrestenson transform cannot be less 
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than 
2

2 24 4
k

q   . The values of the Vilenkin-Chrestenson transform coefficients 

0, 2, 2, 8, 10is   of quaternary sequences cannot be maximum in the Vilenkin-

Chrestenson transform to vector. The full class of possible values of the nonlinearity of 

quaternary sequences of length 16N   by the formula (5) is 

 

{252, 251.76, 251.53, 250.90, 250.34, 250.17, 250,

249.68, 248.93, 248.79, 248.38, 248, 247.75, 247.51,

247.40, 247.06, 246.94, 246.51, 246.10, 246.00,

245.80, 245.70, 245.23, 244.95, 244.69, 244.60,

244.34, 244.00, 243.92, 24

fN 

3.83, 243.35, 242.96,

242.66, 242, 241.86, 240.97, 240}.

 (19) 

We present Table 2, which represents the number of quaternary sequences of length 

N = 16 having a given maximum absolute value of the Vilenkin-Chrestenson transform 

coefficients and, accordingly, the given value of nonlinearity and PAPR. 

Table 2. Spectral classification of quaternary vectors of length N = 16 

No. Value Nonlinearity 
Cardinality 

of the class 
PAPR 

Representative 

sequence 

1 16 0 64 16.00 0000000000000000 

2 226  0.97 2048 14.13 0000000000000001 

3 200  1.86 15360 12.50 0000000000000011 

4 14  2.00 16384 12.25 0000000000000002 

5 178  2.66 71680 11.13 0000000000000111 

6 170  2.96 245760 10.63 0000000000000012 

7 160  3.35 232960 10.00 0000000000001111 

8 148  3.83 1146880 9.25 0000000000000112 

9 146  3.92 559104 9.13 0000000000011111 

10 12  4.00 921600 9.00 0000000000000022 

11 136  4.34 1025024 8.50 0000000000111111 

12 130  4.60 5191680 8.13 0000000000001112 
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Table 3. Spectral classification of quaternary vectors of length N = 16 (continuation) 

No. Value Nonlinearity 
Cardinality 

of the class 
PAPR 

Representative 

sequence 

13 128  4.69 823488 8.00 0000000011111111 

14 122  4.95 8601600 7.63 0000000000000122 

15 116  5.23 8945664 7.25 0000000000011112 

16 106  5.70 16400384 6.63 0000000000111112 

17 104  5.80 27955200 6.50 0000000000001122 

18 10  6.00 43450368 6.25 0000000000000222 

19 98  6.10 13172736 6.13 0000000001113333 

20 90  6.51 67092480 5.63 0000000000011122 

21 82  6.94 130433024 5.13 0000000000001222 

22 80  7.06 122179584 5.00 0000000000111122 

23 74  7.40 172720128 4.63 0000000000122233 

24 72  7.51 95625216 4.50 0000000000122333 

25 68  7.75 300613632 4.25 0000000000011222 

26 8  8.00 195660800 4.00 0000000000002222 

27 58  8.38 510885888 3.63 0000000000021222 

28 52  8.79 586743808 3.25 0000000000220222 

29 50  8.93 885211136 3.13 0000000000220122 

30 40  9.68 628068352 2.50 0000000100021222 

31 6  10.00 109428736 2.25 0000000200020222 

32 34  10.17 324706304 2.13 0000000200120222 

33 32  10.34 22414592 2.00 0000000200220222 

34 26  10.90 12189696 1.63 0000001200222310 

35 20  11.53 2015232 1.25 0000001201323211 

36 4 12.00 200704 1.00 0000002202020220 
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Fig. 2. Histogram of nonlinearity distribution of quaternary sequences of length N = 16. 

The performed spectral classification of quaternary sequences of length N = 16 is a the-

oretical basis for the synthesis of sets of 4-functions with a given level of nonlinearity. 

These sets are the initial material for the construction of cryptographically strong gen-

erators of pseudo-random key sequences, as well as cryptographic primitives of block 

symmetric ciphers and hash functions. Table 2 and Fig. 2 also specifies the maximum 

cardinalities of the C-code classes for MC-CDMA technology. 

5 Conclusion 

In conclusion, we note the main results of the research: 

1. A method for calculating the possible values of the Vilenkin-Chrestenson trans-

form coefficients is proposed. Because of the dependence of the spectral properties of 

the sequences and the determination of nonlinearity and PAPR, the proposed method 

can be applied to estimate the possible values of nonlinearity and PAPR of sequences 

of many-valued logic. The proposed method is suitable for arbitrary values of q  and 

N, however, in this work, it was applied for the case of quaternary sequences of lengths 

N = 4 and N = 16. 

2. A spectral classification of the full quaternary code of the lengths N = 4 and 

N = 16 was performed, as a result of which 5 spectral classes of sequences of length 

N = 4 was distinguished as well as 36 spectral classes of sequences of length N = 16, 

each of which has a unique elementary structure, and, accordingly, a value of nonline-

arity and PAPR. 

3. The resulting spectral classification is a theoretical basis for constructing sets of 

many-valued logic functions with a given level of nonlinearity used in cryptography, 

as well as for constructing C-codes used to reduce the PAPR in MC-CDMA technology. 
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