
Decentralized Byzantine Fault Tolerant Proof of Location

Dmitrijs Rjazanovs and Ernests Petersons

Department of Electronics and Telecommunications, Riga Technical University,
12 Azenes Street, LV-1048 Riga, Latvia

dmitrijs.rjazanovs@edu.rtu.lv

Abstract. The majority of modern location-based services rely on GPS to ver-
ify the location of different subjects. This approach is acceptable as long as the
user is not interested in location data corruption, for instance, the usage of navi-
gation utilities. On the other hand, when a service depends on the reliability of
location data, then GPS is not acceptable. One of the most interesting examples
of location data reliability dependent services is a smart contract, which needs
to verify the location of a certain subject. The only way to verify a location
within a smart contract is to rely on a third party. This fact breaks the decentral-
ization principle of smart contracts. This paper introduces a novel algorithm of
location proof within the smart contract by leveraging a p2p mesh network of
Wi-Fi access points and a distributed key generation algorithm.

Keywords: Location Proof; Smart Contracts; Decentralization; P2P;

1 Introduction

The location-based services like package delivery in urban areas is something that ev-
eryone is using today. Internet-based technologies, such as e-commerce, made the ac-
quisition of any goods almost flawless. A regular customer is not interested in the un-
derlying processes of buying something online and having it delivered at their
doorstep. This is because the customer has a payment card, a smartphone, and ten
minutes of their time, and there is almost nothing to worry about. However, from the
perspective of a business owner the organization of such service is complicated, te-
dious, expensive, and requires a lot of trust in other people. This includes at least, the
development of a website, signing a contract with the bank acquirer and signing a
contract with a logistics company. At least two of those three tasks are now obsolete,
which are the bank contracts and logistics company.

To support the above statements, a survey of existing technologies will be provided
here. In 2008, the probabilistic solution for “Byzantine Generals Problem” [1] for any

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

1

number of malicious nodes was published [2]. This allowed the implementation of a
decentralized payment system called Bitcoin [2]. The theme of cryptocurrencies is be-
yond the scope of this paper and there are already a lot of investigations in this area.
In 2013, the blockchain technology was extended [3] to support Turing-complete dis-
tributed code execution with one important property – unless the network is com-
pletely stopped, the code will be executed exactly as written and the state will be per -
sistent and unforgeable (with quite a high probability). This invention got an informal
name of “smart contracts'' and the first such network was Ethereum. There are a lot of
researches made on Ethereum and other related technologies, but we are not going to
discuss the pros and cons of current implementation because this is beyond the scope
of this paper.

One of the interesting cases of using smart contracts is robonomics. Robonomics is
an informal term used to describe how cyber-physical agents can co-exist within the
human economy. One of the projects in that area, called AIRA [10] implemented an
overlay p2p network that provided solutions for smart cities and industry. Some of the
possible use-cases in robonomics are goods acquisition and delivery services. This
business process can be fully automated without the need of any single centralized
third party like a bank or delivery service using existing technologies. In the follow-
ing chapters, theoretical models of such service will be discussed. To conclude this
chapter, it is important to mention that the way of building fully autonomous decen-
tralized selling/delivery service includes several questions to resolve, such as: autono-
mous vehicles organization (ITS system development and regulation problems); smart
contract and related ecosystem technology adoption; the problem of decentralized lo-
cation verification of cyber-physical entity. The last problem is what this paper is
about.

2 The Problem

The Global Positioning System (GPS) was developed to help a human with naviga-
tion problems. Today, GPS is one of the most important features of a cell phone. It
makes possible navigation apps, but not the only. FourSquare entertainment app uses
GPS to “award” people for visiting different locations. SnapChat messaging app has
the feature that shows where your contacts are currently located. Most probably, these
popular applications are not a complete list of GPS use cases. Transportation compa-
nies use different GPS enabled proprietary devices that are tracking vehicles for dif-
ferent reasons. GPS is a mature and highly efficient technology, but it has only infor-
mational nature. GPS is ideal for personal use to assist yourself in different tasks, but
when it comes to using GPS to get another subject's location and verify it for different
reasons, then we are not protected from a scam. For example, the above-mentioned
transportation companies need to spend money on expensive proprietary devices that
track a location using GPS. Why do they need a separate device, while any smart-

2

phone has a GPS module? Because when the other subject is interested in not provid-
ing, at all, or providing a wrong location, it can be achieved relatively easily, unless
the device is tamper-proof. This is because the GPS location is just temporary binary
data stored in the device memory. For services where a location is economically im-
portant, we cannot simply rely on GPS data. For most nowadays services, centralized
proprietary location solutions are expensive, but an acceptable choice. But in the de-
velopment of decentralized autonomous solutions using smart contracts, it will not
work, and we will discuss why further.

We will assume the existence of the delivery service based on a smart contract.
Some customers want to order package delivery to some location. We will not con-
sider how the contract knows which package the customer wants to get for the sake of
problem model simplicity. So, the customer sends the order to the contract with loca-
tion and time, as well as the payment for the service, which will be deposited and will
go to the service provider, as a fee, if the package will be delivered correctly. The
contract’s role in this scenario is the third party auditor, that needs to hold money on
deposit and unlock it for the service provider if the job is done. We assume that the
service provider uses autonomous drones to deliver packages. It is necessary some-
how to formalize the definition of a completed job in the smart contract. In our case, a
completed job means that a specific package is at the specified location at some point
of time. Firstly, it seems like the customer can verify the job by himself, by roughly
speaking, pressing a button in the app when he took the package from the drone. But
such an approach will not satisfy the service provider, because the customer can mis-
use service by placing orders and not confirming delivery. If the contract cannot
check that the job was done, then the deposit will be returned to the customer. So, we
can use a GPS module that is attached to the drone to verify that the drone is at the
specified location. Then from the contract perspective, the definition of a complete
job will be defined as the following algorithm:

 Get the order from the customer with location data and payment
 Get the confirmation from the service provider that the order is accepted
 Wait for the input message with the courier location data from the courier
 Compare the arrived location data with the location data specified in the
 order
 If the data are the same, then unlock the deposit for the service provider.

Hence, right after the service provider confirms the order, it also sends the location
specified in the order and gets the customer’s money, by not even starting the drone.
Maybe, we can use a combination of both parties' confirmation as the definition of a
complete job? This will lead to the equivalent of the “only customer” confirmation
scheme which means that a customer can still misuse with a service provider. We now
understand that 2 parties alone cannot organize themselves without leaving one of the
parties vulnerable to “attacks”. Hence, without the secure algorithm for verification of

3

the complete delivery job, we cannot fully automate the location-based services using
smart contracts.

Another way to solve the location verification problem in smart contracts is to con-
vert this issue to the problem of trust between client and service and apply
blockchain-based reputation models. Such an approach does not provide the frame-
work for autonomous, decentralized robonomic chains, but either advocates service to
do everything to make their rating high enough. If the requirement is to build an end-
to-end delivery service using decentralized solutions, then such an approach will not
work.

3 Related Work

Here we conduct a historical literature review on the topic of the location proof. In
one of the first papers about location proof [4] the authors present the algorithm that
can securely prove that, assumed to be tamper-proof, device is within the area of a lo -
cal wireless network. The authors use three roles (location manager, verifier, and
prover) as well as the signal round trip time to check if the device is somewhere
around. There are several other researches on this topic [5],[6] which mainly focused
on the technical aspect of Wi-Fi signals and the methods of gaining the additional in-
formation from signals, but these solutions continue to be centralized which will not
work in a smart contract architecture. One of the researches [7] proposes a decentral-
ized solution using a graph of hardware-agnostic mobile devices, which can issue
“proof of location” to one another, by using short-range communication. The nodes
collect signed proofs and combine these into blocks. The solution considers a Proof-
of-Stack blockchain to be run by mobile nodes. Considering that this [7] might be the
only proposed decentralized solution to the problem of location proof, some of the
major drawbacks will be listed here:

 The protocol requires to check if the “prover” is from the “known contact
list” of the overlay network. This introduces more complexity and uncer-
tainty. For example, how the peer will know about such a list of the "known
contacts" of various location-based services

 The solution requires users run full blockchain nodes which is a hard task for
mobile devices in terms of resources

 In the “non-conservative mode”, the peer can verify the distance between
two claimed nodes. There are no details of this process. If this procedure is
going to be launched on blockchain, then it will be hard for the newcomers
to get their proof of location into the blockchain, because most blocks will be
mined in most dense areas only. If this is done by using neighbour polling,
then this is a resource hard task

 Authors do not provide information about how to use their protocol in smart
contracts despite this is the only use case for such a solution.

4

There are also a few ongoing projects [8], [9] that try to resolve the problem of
proof of location in a decentralized way. The Foam project is building an Ethereum
overlay network, which will use the specialized hardware to provide location proofs.

4 The Algorithm

In this chapter, we will describe the novel algorithm that solves the problem defined
in the second chapter.

4.1 General Flow

Suppose we have a straight street in the urban area. On both sides of the street, there
are multistory buildings. There are many private Wi-Fi access points in this area. We
will use those as an oracle mesh network to sign the location proofs of different sub-
jects. In Fig. 1, we see a potential topology of Wi-Fi access points where the edges
denote that two nodes can communicate with each other directly.

Point A refers to the customer of the delivery process introduced in chapter two. The
point B is a service that will deliver a good. There is also some delivery app (main-
tained by B) that the customer uses to place the delivery order.

In Fig. 3, we can see the UML sequence diagram of the algorithm. When the ser-
vice received an order from a new customer DeliveryRequest(A_pub) via the delivery
app - our algorithm starts. First, the service needs to know if the customer is some-
where within the network boundaries. The network has a public interface with a set of
commands. First command is RequestDKGContract(A_pub) (short DKGRequest).
DKG abbreviation in command's name stands for Distributed Key Generation [11]. It
will be described later in the paper. As long as the service is also a network peer, it
broadcasts DKGRequest using Wi-Fi probe request. This allows peers to communi-
cate without connecting to Wi-Fi SSID. Probably, Wi-Fi adhoc networks can be used
here as well, but to solve the problem defined in this paper, these details can be ig-
nored. The customer in parallel broadcasts his signed beacons to neighbor peers using

Fig. 1. Topology of Wi-Fi access points.

5

Wi-Fi beacon frames. DKGRequest is propagating through the network as long as
some peer will receive it together with receiving the customer's beacon frame.
DKGRequest also contains the GPS coordinates claimed by the customer. This is
needed to protect the service from the malicious customer misusing it. Also, if a node
receives a DKGRequest with GPS location that differs from the node’s location, it can
simply pass it further. All network peers that received DKGRequest together with the
customer's beacon start a DKG algorithm. For now, a particular implementation of
that algorithm is beyond the scope of this paper. The main goal of DKG is to generate
a threshold signature scheme with some DKG_Pubkey and a private key for each par-
ticipant.

To collectively sign something using private keys, peers will need to reach some
threshold number. For example, ten peers received the customer’s beacon. Each of
them received his unique private key after the DKG procedure. Now, to sign some-
thing, at least six from ten peers need to apply his private key, otherwise, it is "impos-

Fig. 3. The algorithm UML sequence diagram.

6

sible" to produce a valid signature of the current DKG_Pub key. The main property of
the DKG scheme is that the algorithm requires no third party to help generate keys.
 Peers send produced DKG_Pub to the customer. The customer generates a smart
contract with GPS coordinates and deposits the delivery service fee there. The con-
tract has a simple predicate in it: if decrypt(m, DKG_Pub) = true, then release the fee
to service. The customer sends this contract to the service. Service checks that the
contract is created by some standard interface and if everything is correct, it can start
delivery.

When the courier approaches the delivery zone, it starts to broadcast signed bea-
cons. All the nodes that participated in the DKG collect beacons from the courier.
When the courier stops, every node encrypts all the collected data with their private
keys. The nodes broadcast their encrypted data to each other. Each node needs to ver-
ify two facts: first, received signed beacons refers to the original node that called
DKGRequest; second, received beacons were not sent from a static position. The first
assertion is trivial and essential. The second assertion is an additional verification of
the delivery work because otherwise, it is much simpler to mimic the delivery fact by
just transmitting the right beacon. By encrypting every node's recorded data, we en-
sure the uniqueness of every version of the recorded trajectory of the delivery agent.
After that, nodes use Lamport’s algorithm to achieve consensus (will be described in
the next section).

After the consensus is achieved, nodes sign the verdict with their DKG private
keys and send it to the delivery service. If the consensus is not achieved, then the
message will not be signed. Considering that, the threshold also will not be reached,
then there is no chance to get decrypt(m, DKG_Pub) = true. Otherwise, if the thresh-
old is reached, the delivery service could withdraw the fee from the contract with the
signed message from the network.

4.2 Consensus Algorithm

We can use two approaches to achieve consensus on whether the delivery was done
correctly. The first is to achieve consensus only between nodes N1, N2, N3, and N4
(Fig. 1). This means DKGs will be triggered only between nodes that are located di-
rectly on the target location. The second is to try to achieve consensus in all zones
where there was a delivery path. This is a topic for separate research, but in the cur -
rent paper, we only describe the first approach. We consider our oracle network to be
Byzantine fault-tolerant (BFT) and can handle no more malicious/faulty nodes than in
Eq. (1), where m is the total number of nodes [1].

(m− 1)/3 (1)

7

Eq. (1) states that, if nodes N1, N2, N3, and N4 want to reach consensus on the fact of
delivery, then at least 3 nodes must be loyal. The fact that each node can be malicious,
it can try to break protocol in any possible direction, potentially stopping the network
to reach consensus. This implies that the only way to avoid this is to implement BFT
consensus. For now, we can assume that the network will use the BFT consensus al-
gorithm from Lamport’s paper [1].

4.3 Alternative Scenarios and Security

To ensure that the algorithm will work in a hostile environment we need to make sure
every node has at least 2/3 loyal neighbors. Let’s call it “condition 1”. This condition
will ensure the possibility of final consensus according to Lamport's algorithm. There
is one problem which is called “Sybil attack”. Theoretically, nothing prevents one
malicious node from acting as many nodes. This will break any consensus because
condition 1 will not be accomplished. In order to distinguish nodes, we can utilize in-
formation from Wi-Fi CSI (Channel State Information). This allows a node to calcu-
late signal location in space, which implies the identification of nodes based on public
key and CSI.

If the customer is malicious, it is relatively easy for him to fail condition 1 using a
set of real physical nodes in some area. For example, DKG occurred in such an area,
where more than 1/3 nodes are owned by a malicious customer. When service deliv-
ers a package in this area, malicious nodes simply will not sign the message for the
contract. This allows a malicious customer to misuse with a customer and waste his
time/money.

We still can make a dishonest customer’s life more uncomfortable. We need to in-
troduce the risk that attackers can lose deposited service fees. If that risk will be high
enough, it will respectively reduce the chance of someone misusing the service. There
is no way for the service to distinguish malicious contracts/nodes before the consen-
sus phase. This means that we should search for a probabilistic solution. For example,
we can let service deliver on adjacent sectors to a customer area. Let’s imagine that
the malicious area has more than 1/3 dishonest nodes, but probably there are still at
least a few loyal nodes. Now, each of them will set up DKG. There is a high probabil -
ity that at least one DKG area will be loyal. Ultimate contract might have the follow-
ing assertion: decrypt(m, DKG1_Pub) = true or decrypt(m, DKG2_Pub) = true or...
This means for service that it can choose in which area to deliver and if in some area
consensus will not be reached it can still try a few adjacent

The last problem we need to solve is how the service will know, which DKGn_Pub
must be in the ultimate contract that he receives from the customer? All loyal nodes
which received DKGRequest at the beginning will essentially send their DKGx_Pub
to service, so that service knows there are multiple areas that are ready to do loyal
consensus. Now, if the customer will not include some of the DKGs into the contract,

8

the service simply might ignore that contract and decline delivery. This means proto-
col protects, to some degree, service from malicious customers. What about malicious
services? The only attack which malicious service can do is to fully blockade the cus-
tomer’s area with malicious nodes. Probably this attack is too expensive to organize
compared to what malicious service could "earn" by stealing customers' service fees.

4.4 Future Research

There are several directions for further research on this topic. First of all, the analysis
of CSI-based solutions that can calculate signal source location in space. In the algo-
rithm described in the current paper, those solutions are vital for node identification
and delivery verification. Secondly, analysis of existing synchronous and asynchro-
nous DKG protocols implementations. And of course analysis of existing BFT con-
sensus algorithms.

5 Conclusions

A novel theoretical algorithm that solves proof of the location problem in smart con-
tracts was introduced. This algorithm assumes the decentralized p2p network of Wi-Fi
nodes that forms a mesh network. The network by itself does not store any history of
the location proof and works only on demand. The use of the distributed key genera-
tion algorithm allowed to establish a smart contract between two parties. The network
monitors subject beacons and uses byzantine fault-tolerant algorithm to achieve con-
sensus on the location proof of the subject.

References

1. Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3), 382–401.
doi:10.1145/357172.357176

2. Nakamoto, S. Bitcoin: a peer-to-peer electronic cash system. 2008. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

3. V. Buterin, “A next-generation smart contract and decentralized application platform”.
2014.

4. B. Waters, E. Felten, “Secure, private proofs of location”. 2003. [Online]. Available:
https://www.cs.princeton.edu/research/techreps/TR-667-03

5. Javali, C. et al., 2016. I Am Alice, I Was in Wonderland: Secure Location Proof Genera-
tion and Verification Protocol. 2016 IEEE 41st Conference on Local Computer Networks
(LCN). Available at: http://dx.doi.org/10.1109/lcn.2016.126.

6. Luo, W. & Hengartner, U., 2010. VeriPlace. Proceedings of the 18th SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems - GIS ’10. Avail-
able at: http://dx.doi.org/10.1145/1869790.1869797.

9

7. Amoretti, M. et al., 2018. Blockchain-Based Proof of Location. 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C). Available
at: http://dx.doi.org/10.1109/qrs-c.2018.00038.

8. Foamspace Corp, “FOAM Whitepaper”. 2018. [Online]. Available: https://foam.space/
publicAssets/FOAM_Whitepaper.pdf

9. A. Trouw, M. Levin, S. Scheper, “The XY Oracle Network: The Proof-of-Origin Based
Cryptographic Location Network”. 2018. [Online]. Available: https://docs.xyo.network/
XYO-White-Paper.pdf

10. S. Lonshakov, A. Krupenkin, A. Kapitonov, E. Radchenko, A. Khassanov, A. Starostin,
"Robonomics: platform for integration of cyber physical systems into human economy".
2018.

11. Torben Pedersen. A threshold cryptosystem without a trusted party. In Eurocrypt ’91,
pages 522–526, 1991. LNCS No. 547.

10

	1 Introduction
	2 The Problem
	3 Related Work
	4 The Algorithm
	4.1 General Flow
	4.2 Consensus Algorithm
	4.3 Alternative Scenarios and Security
	4.4 Future Research

	5 Conclusions
	References

