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Abstract. Due to the increase in smart contracts in Ethereum, a need
for proper classification has emerged. Although the smart contracts are
accessible due to the open nature of the Blockchain, readability is still an
issue with respect to the smart contract bytecode. We propose an auto-
mated approach for classifying smart contracts that utilize popular text
classification methods on the opcode translation of the smart contract
bytecode in order to overcome this limitation. Our experiments indicate
that the decision-tree-based techniques like Random Forest and Xgboost
outmatch the traditional classification tools like Näıve Bayes, Logistic
Regression, and SVM once the opcode input is presented as n-gram tf-
idf vectors.
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1 Introduction

Being one of the most famous platforms since 2015, Ethereum has enabled
many decentralized applications built on top of smart contracts and has been
home to roughly more than 20 million smart contracts and hundreds of millions
of transactions between the members[1]. This large amount of data has made it
hard to get an overview of this large amount of smart contracts and their services.
However, to be able to identify similar contracts, with other words to be able
to classify them properly, can ease this problem. Proper classification of smart
contracts might also enhance the comprehension of the smart contract applica-
tion trends by finding examples for different categories and therefore contribute
to the enhancement of the smart contract programming for which efficiency is
essentially needed, and work as a cross-validation tool by providing an overall
sense if the smart contract that a user interacts with actually accomplishes what
it ensures.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Classification of smart contracts is an interesting challange. The only accessi-
ble data with respect to smart contracts is the compiled contract bytecode since
the smart contracts stay anonymous if the source code is not made public by
the developers[18]. The number of open-source smart contracts remains consid-
erably low compared to the ones without published source code and using the
source code for classification gives only limited results for the entire network.
Therefore, we suggest the bytecode of the smart contracts to be exploited for the
classification instead.

With this work, we examine the probable use of text classification methods on
the opcode translation of smart contracts to determine if the analogy between
the instruction sequences in a smart contract opcode and word sequences in
texts can help to represent the bytecode in machine learning applications. In
that regard, we explain the pipeline of our approach and the results obtained by
the application of this pipeline for some predefined classes.

2 Related Work

2.1 Smart Contract Classification

Automated classification means have only been sparsely used for smart contract
analysis and comparison. Bartoletti and Pompianu[3] conducted one of the first
studies in that regard by analyzing the published source codes of the 811 smart
contracts from Ethereum and 23 from the Bitcoin network and creating five
categories that represent their data as Financial, Notary, Game, Wallet, and
Library. Closely related, Klein[14], and Wöhrer and Zdun[24] provide two studies
on smart contract design patterns based on detailed research on literary work.
While Klein identifies ten support and six application patterns, Wöhrer and
Zdun suggest 18 patterns that are classified into five categories as Action and
Control, Authorization, Lifecycle, Maintenance, and Security.

He et al.[11] present an analysis of the Ethereum network with a motivation to
take a deeper look at the code reuse in smart contracts. They apply a customized
fuzzy hashing logic to create smart contract fingerprints based on opcode and
utilize the edit distance between fingerprints to calculate a similarity score that
can be used for smart contract clustering. This process leads to four distinct
clusters as ERC-20 Clusters, Game Contracts, ICO and AirDrop Contracts, and
Other Contracts.

Tian et al.[23] offer a mixed approach based on Bi-LSTM model and Gaussian
LDA to classify smart contracts accurately. They make use of the information
extracted from smart contract source code like code comments in addition to the
source code itself, the application labels fetched from www.stateofthedapps.com,
and the account information. The proposed model is found to outperform alter-
native baseline models for the classification of smart contracts into one of the
predefined categories like Entertainment, Tools, Management, Finance, Lottery,
Internet of Things, and Others.

There have also been different inspirations that lead to other classification
approaches. Security vulnerabilities of smart contracts have motivated Tann et
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al.[22] into classifying contracts according to having a code vulnerability. They
translate the opcode of the smart contracts into one-hot vector sequences which
are then used in an LSTM model with some case-dependent modifications. This
approach has led to a tool with high detection accuracy that functions on the
smart contract bytecode and identifies the security vulnerabilities of a smart con-
tract. Another study led by Chen et al.[6] presented a comparison of different
approaches in addition to different feature extraction techniques for detecting
Ponzi schemes by using different characteristics of smart contracts coupled with
the tf-idf measures of the smart contract opcode. They conclude that the Ran-
dom Forest algorithm trained to solve a binary classification problem is found
optimal for the detection of Ponzi schemes.

2.2 Text Analytics

One major application of machine learning has been text classification. The clas-
sification problem itself is defined by Aggarwal and Zhai[2] as the utilization of a
set of training entries D = {X1, ..., XN} with a label of a class picked from a set of
k distinct entries with indexes {1, ..., k} to build a classification model that maps
the descriptive features of each entry to a class label. In order to adapt this defi-
nition into texts, texts and documents need to be transformed into a structured
feature space to be able to profit from the mathematical components of a clas-
sifier model since texts and documents are originally unstructured datasets[15].
Many popular approaches like the bag-of-words model[13], TF-IDF[19] measure,
and word embeddings like Word2Vec[17] have been suggested for this purpose.

Deep learning and machine learning techniques have been the primary means
for traditional text classification tasks[23]. Logistic regression[12, 16] and the
Näıve Bayes classifier[20], some of the earliest and straightforward classification
tools, have been made use of to retrieve information. Some of the other methods
that were investigated and utilized for texts include non-parametric algorithms
like k-nearest neighbor[26], decision-tree-based classifiers such as Random For-
est[4, 25] and Xgboost[5], and Support Vector Machine (SVM)[8][15]. Further-
more, the use of the neural network models like LSTM for modeling the complex
relations with the data has also been motivated with the recent enhancements
on deep learning techniques[23].

While some of the studies mentioned target classifying different smart con-
tract applications, they do not make sense of the context through the smart
contract bytecode. Furthermore, the studies that utilize the bytecode are built
for a narrow use case and do not address different usage of smart contracts. In
our study,we carry the use of bytecode to a broader perspective with the help of
text analytics tools.

3 Methodology

The categories to be predicted in our study consist of the application patterns
suggested by Klein[14] as voting, auction, entity management, renting, trading,
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and track&trace because of the extensive research comprehensive research con-
ducted using the literature in addition to the descriptive and well-structured
definitions provided for the patterns. Since a smart contract can belong to mul-
tiple categories, we decide to apply binary relevance to our problem that enables
using separate data representations and algorithms for different categories and
allows for the extension of the number of categories in the future work. Finally,
our experiments are limited to five text classification algorithms, three of which
appear traditional and easy to understand methods namely Näıve Bayes, Lo-
gistic Regression, and Support Vector Machine(SVM) and the remaining are
decision-tree-based algorithms like Random Forest and Xgboost due to the re-
cent popularity they have. Because of the small number of examples in the
dataset, deep learning algorithms (e.g., LSTM) are excluded from the study.

3.1 Data Collection & Preprocessing

The public crypto ethereum dataset in Google BigQuery3, which gets updated
daily through a fully synced node, is utilized to collect bytecode of all the smart
contracts residing in Ethereum and the corresponding addresses. Out of 16 426
716 smart contracts deployed to Ethereum by the data collection day, 6th Jan-
uary 2020, only 283 898 of them have been found to have a unique bytecode.
While 84 909 contracts are found to have a published source code after querying
etherscan.io, a famous block explorer, the source code of 198 989 contracts re-
mained unknown. Finally, the opcode representation of each smart contract byte-
code is obtained using an evm bytecode disassembler based on Python named
evmdasm4 and the function names are extracted from the source code to ease
the dataset creation process.

3.2 Dataset Creation

The class-specific datasets which are later used for training and testing are cre-
ated using the smart contracts with the available source code. Because of the
timing constraints of the study and the high number of smart contracts for
labeling, a filtering process based on domain keywords is applied to the ex-
tracted function names to get potential positive and negative examples for a
class dataset. Due to their achievable size, we look at the source code of the
potential positives and label them manually according to the class descriptions.
However, the high number of potential negatives hinder us from getting a man-
ual investigation over the source code for labeling. Thus, the filter keywords for
potential negatives are extended via recursive analysis of the randomly sampled
function names and the filtering is kept as strict as possible to refrain from any
mislabeled examples in the dataset.

To illustrate the filtering keyword choices better, the Voting class can be
examined. The contracts that include directly use case related words vote or

3 https://cloud.google.com/bigquery
4 https://github.com/ethereum/evmdasm
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Fig. 1. Dataset creation sub-steps

ballot keywords in their function names are picked for potential positives. After
randomly sampling function names, they are extended to include the smart con-
tracts that have both or support and against at the same time. For the potential
negatives, first a set of negative filtering keywords are created with random func-
tion name sampling to find voting use case related words and the contracts that
do not have any of the keywords of vote, ballot, voting, proposal, support, and
against are chosen as potential negatives.

In the end, the positive and negative examples are merged to create a dataset
that represents the class well enough. A summary of this process can be seen
in Fig.1. Since there is a different dataset obtained for each class, it is possible
to find examples that are positive for one class but negative for another or even
positive for multiple classes, e.g. some gaming contracts which apply both entity
management and auctioning.

3.3 Model Selection

Initially, the class dataset is split into a larger training&validation set that is
used for model training and a smaller test set to determine the generalization
ability of the final model. The opcodes of the smart contracts inside the train-
ing&validation set are transformed into a feature space using three different
vector representations including a count vector (e.g.[9]) which consists of the in-
struction frequencies inside an opcode, a tf-idf vector which indicates the tf-idf
weights of instructions inside an opcode, and an n-gram tf-idf vector (e.g. [27])
that displays the tf-idf (term frequency-inverse document frequency) weights of
n successive instructions inside an opcode. The default value for the n value
in initial experiments are set as (9-10) as we find it convenient through our
preliminary experiments. Afterward, experiments on the training&validation set
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Fig. 2. Model selection sub-steps

are conducted to obtain an average score using the k-fold cross-validation tech-
nique about one of the five chosen algorithms (Näıve Bayes, Logistic Regression,
SVM, Random Forest, and Xgboost) coupled with one of these vector represen-
tations. Although there are several evaluation metrics that suit highly imbal-
anced datasets, the comparison and final evaluation metric is chosen to be the
Matthews Correlation Coefficient (MCC) as it is not independent from the true
negatives[7] and in our case identifying both cases correctly is important. The
definition of MCC can be seen in Equation 1.

MCC =
TP × TN − FP × FN√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(1)

where TP, FP, TN, and FN indicate the number of true positive, false positive,
true negative, and false negative predictions on the test set, respectively. It takes
a value between −1 which indicates a complete disagreement between the real
values and predictions and 1 which corresponds to a perfect classifier. A random
classifier is expected to take a value around 0.

The highest scoring algorithm and data representation are then selected for
additional improvements. A summary of the model selection phase can be seen
in Fig. 2.
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3.4 Model Improvement

Two potential spots for enhancement have been identified with regard to the
selected algorithm and data representation. The first one is applicable if n-gram
tf-idf vector is found to be the highest-scoring data representation by trying out
different n-gram ranges. This is realized by following the same methodology as
in the model selection step by testing out different n-gram ranges depending on
how much it changes the average score obtained via the k-fold cross-validation
technique to increase or decrease the range. As higher n values cause drastically
increased computation power, the range is kept as small as possible if the increase
in the scores is not meaningful. A summary of this step can be seen in Fig. 3.

Fig. 3. Model improvement via n-gram modifications

The second enhancement addresses the imbalance problem. It tests different
resampling ratios for positive and negative examples within the training set and
compares the results obtained on the validation set once the training&validation
set is split into separate sets as a training set and validation set. For resampling,
either the positive examples are increased by adding copies of randomly chosen
positive examples, or the negative examples are decreased by the removal of
some random ones to make the ratio of positive and negative examples better
[10]. However, a drastic change is avoided to refrain from overfitting or loss of
information. At the end of this process, if the test scores obtained via applying
the model on the test set is compatible with the best validation scores, the
final model is applied to all the smart contracts to get the final predictions for
belonging to the trained class. A summary of this step can be seen in Fig. 4.
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Fig. 4. Model improvement via resampling

4 Results

The dataset creation step creates class datasets with different distributions which
are depicted in Table 1. The Track&Trace class is excluded from the study and
left for future work as there were not any representative filtering domain words
found. For the remaining classes, a high imbalance in favor of negative examples
can be observed.

Table 1. Distributions of the Class Datasets

Class Number of Positive Examples Number of Negative Examples

Voting 779 (1%) 73162 (99%)
Auction 290 (4%) 6655 (96%)
Entity Management 495 (3%) 19274 (97%)
Renting 33 (1%) 6052 (99%)
Trading 738 (12%) 5658 (88%)

The three highest scoring algorithms and data representations are depicted
in Table 2. While for some classes like Voting and Renting, the chosen method
and data representation outperforms other options by a large margin, the score
difference between the top models is not so large for the other classes. On the
other hand, the success of decision-tree-based algorithms compared to other
tested algorithms becomes apparent. Furthermore, n-gram tf-idf vector is found
to be the most successful data structure to represent the smart contract opcode.
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Table 2. Top Three Algorithms and Data Representations for Each Class

Class Algorithm Data Representation MCC Score

Voting
Random Forest n-gram tf-idf 0.745190
Random Forest count vector 0.626318
Random Forest tf-idf 0.584108

Auction
Xgboost n-gram tf-idf 0.828594
Random Forest n-gram tf-idf 0.781024
Xgboost tf-idf 0.766158

Entity Management
Xgboost n-gram tf-idf 0.792610
Random Forest count vector 0.763228
Xgboost count vector 0.749616

Renting
Xgboost n-gram tf-idf 0.533938
Xgboost count vector 0.361356
Random Forest n-gram tf-idf 0.299207

Trading
Xgboost n-gram tf-idf 0.787698
Random Forest n-gram tf-idf 0.751675
Xgboost count vector 0.750335

Table 3 shows the algorithm, data representation, and corresponding aver-
age or final MCC score by the application of the model after each step of the
learning process for each class. Model Improvement I and Model Improvement
II correspond to the testing of different n-gram ranges and resampling ratios, re-
spectively. If there is no improvement observed for a step, no MCC score is given.
However, it can already be observed that the effect of the model improvement
phase is comparably small when the overall scores are considered. Finally, since
there were no prior studies based on the same dataset, we compare our results
to the results obtained by the application of a random predictor that randomly
assigns 0 or 1 for belonging to the class. The MCC score comparisons of the test
results of the final models and random model results show that the classifiers
trained on the opcode representations of the smart contract bytecode outperform
the random models for each class which is promising for further applications on
the smart contract bytecode. Even though almost all the classifiers seem to do
a decent job, further investigations are needed for the underperformance of the
Renting classifier even though the fairly lower amount of positive examples in
the dataset might be a factor. Further details about the methodology and results
can be found in [21].

Threats to Validity

There have been two important issues found that might pose a threat to the
validity of the test outcomes. While creating the class datasets, the filtering is
kept very strict to remove the possible examples with false labels. For example,
any smart contract with a buy function is discarded from the Trading class. This
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might cause the class dataset to be unrepresentative for all smart contracts with
various application results. Hence, the results obtained on the test set, which is
also derived from the class dataset, that shows how well the model generalizes
might be inadequate. Another possibly problematic issue can be related to the
disassembler used to get the opcode representations of the smart contracts. Some
of the commands in smart contract bytecode were unknown and were discarded
during the bytecode to opcode translation whose effects are not explored in our
study.

Table 3. Learning Process Results of Each Class

Class Step Algorithm Data Representation MCC

Voting

Model Selection Random Forest (9, 10)-gram tf-idf 0.745190
Model Improvement I Random Forest (9, 10)-gram tf-idf -
Model Improvement II Random Forest (9, 10)-gram tf-idf 0.749153
Test Results Random Forest (9, 10)-gram tf-idf 0.780024
Random Model Results - - -0.012987

Auction

Model Selection Xgboost (9, 10)-gram tf-idf 0.828594
Model Improvement I Xgboost (7, 12)-gram tf-idf 0.855746
Model Improvement II Xgboost (7, 12)-gram tf-idf -
Test Results Xgboost (7, 12)-gram tf-idf 0.746421
Random Model Results - - 0.038154

Entity
Management

Model Selection Xgboost (9, 10)-gram tf-idf 0.792610
Model Improvement I Xgboost (7, 15)-gram tf-idf 0.809968
Model Improvement II Xgboost (7, 15)-gram tf-idf 0.876016
Test Results Xgboost (7, 15)-gram tf-idf 0.768002
Random Model Results - - 0.003240

Renting

Model Selection Xgboost (9, 10)-gram tf-idf 0.533938
Model Improvement I Xgboost (7, 15)-gram tf-idf 0.567797
Model Improvement II Xgboost (7, 15)-gram tf-idf 0.567797
Test Results Xgboost (7, 15)-gram tf-idf 0.630497
Random Model Results - - -0.046200

Trading

Model Selection Xgboost (9, 10)-gram tf-idf 0.787698
Model Improvement I Xgboost (7, 15)-gram tf-idf 0.806156
Model Improvement II Xgboost (7, 15)-gram tf-idf -
Test Results Xgboost (7, 15)-gram tf-idf 0.782209
Random Model Results - - -0.022187

5 Conclusion & Future Work

So far, the classification of smart contracts with respect to application patterns
has been based on code analysis. We employed text analytics to analyze smart
contracts on the bytecode level. This analysis has allowed us to derive different
smart contract use cases. This approach is easy to implement due to its few
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processing stages and applicable to a larger amount of data since it is not source-
code dependent once it is trained. If there is enough data available for training,
the final test results show a good rate of classification and makes it promising
to treat the smart contract opcode like a text for future applications.

For future work, we plan to extend our approach with a better labeling
process of the smart contracts to be able to tackle the representativeness problem
of the class datasets. Furthermore, we intend to investigate the effect of the
earlier elaboration of resampling in the learning process as well as the effects of
other potential resampling techniques. Considering the final success of n-gram
tf-idf vectors, another interesting investigation can be realized on performances
of different algorithms with different n-gram ranges. Finally, improvements in the
feature extraction is aimed with the help of additional smart contract related
information.
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