
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

Towards Developing Trusted Smart Contracts in
Simulink

Baoluo Meng*, Meng Li, Benjamin Beckmann, Yoshifumi Nishida, John Carbone,
Dan Yang and Michael Durling

GE Research, Niskayuna, NY 12309, USA
*baoluo.meng@ge.com

Abstract. Blockchain has emerged as a subject of intense interest in research
fields and beyond. One of key enabling technologies is smart contracts. Smart
contracts bring transparency, simplicity, and efficiency to blockchain applica-
tions. Several languages and tools have been developed for smart contracts over
the years but few are easily usable for domain experts in control systems as most
of them are Simulink users and learning a new language and tool could be a chal-
lenge for them. In this paper, we propose a trusted smart contract development
approach in Simulink Stateflow for blockchain applications. The approach in-
troduces a design environment and generates evidences of trust for smart con-
tracts via formal verification, simulation, automated test generation, and test ex-
ecution. Finally, the formally verified Stateflow models is automatically synthe-
sized into Solidity for deployment on blockchain platforms. This approach will
not only bring the assurance of smart contracts to the next level, but also will
make the blockchain technology accessible to the control experts, which could
inspire broader blockchain applications in industry. We implemented the frame-
work as a toolbox in Simulink, which has been used by GE Research. We will
demonstrate the capabilities and effectiveness of the toolbox using a real trans-
active energy example to show that valid issues are identified along the develop-
ment cycle.

Keywords: Block Chain, Smart Contracts, Formal Verification, Simulink, Au-
tomated Test Generation.

1 Introduction

Blockchain has emerged as a subject of intense interest in research fields and beyond.
It has been used to secure data in communication, transaction, computation etc. Block-
chain applications store data using sophisticated math and innovative software rules,
which are extremely difficult for attackers to compromise. One may build blockchain
applications to protect certain high integrity data, core communications, transactions
and computations. One of key enabling technologies in blockchain applications is smart
contracts. A smart contract is a computer script running on top of a distributed ledger
with a set of rules under which participants agree to interact with each other. Smart

35

contracts define the behavior of the blockchain application and are important to the
correctness and security of the blockchain. Moreover, it brings transparency, simplicity,
and efficiency to blockchain applications. However, development of smart contracts
suffers from the same software development issues such as design errors, implementa-
tion errors, security and safety issues, etc. These issues may lead to severe financial
loss or even safety concerns if they are not properly mitigated before the blockchain
applications are deployed. Several languages and tools have been developed for smart
contracts over the years but few are easily usable for domain experts in control systems
as most of them are mainly Simulink users. GE has been a long-time leader in the con-
trol and optimization industry, and many of control experts at GE are adept at using
Simulink and associated tools. To expand the realm of blockchain, we introduce a Sim-
ulink framework to facilitate blockchain applications in the control field, which is also
the key motivation for this work. We have partnered with various GE businesses to
build blockchain applications to protect our essential assets and to establish secure de-
centralized transaction systems. In this paper, we propose an approach for developing
trusted smart contract in Simulink for blockchain applications. The approach introduces
a design environment, a formal verification tool, an automated Solidity code generation
tool, an automated test generation tool, and a test execution environment. The key ob-
jective of the framework is to facilitate blockchain applications development in the
control field in industry. The main contributions of the paper are as follows:

• A novel approach in Simulink to develop trusted smart contracts for blockchain ap-
plications

• A toolbox that translates a fragment of Stateflow to Solidity
• A demonstration of the development approach on a real industrial application

The paper is organized as follows: Section 2 describes background and related work in
blockchain technology. Section 3 describes the development approach in Simulink,
which includes modeling smart contracts, performing simulation and formal verifica-
tion, synthesizing smart contracts from Stateflow models and tests execution. Section
4 demonstrates the development approach on a real transactive energy application used
at GE Research. Section 5 concludes the paper and proposes future work.

2 Background

2.1 Simulink

Simulink is a versatile graphical programming environment in Matlab, which is widely
used in industry for model-based design. It provides an environment for modeling, sim-
ulating and analyzing dynamic and embedded systems. Stateflow is a toolbox of Sim-
ulink, which is to model state machines and flow charts. Simulink Design Verifier [8]
provides the verification and validation capability to identify common design errors
such as integer overflow, division by zero and dead logic, check if the models satisfy
requirements and also generate test cases. In addition, Simulink also allows third-party

36

plugins. In our approach, we will mainly use Simulink Stateflow to model smart con-
tracts and use Simulink Design Verifier to perform verification on the models. We will
develop a toolbox plugin to Simulink to synthesize Solidity smart contracts. We will
briefly explain some major terminologies in Stateflow that are used in our approach
including state, transition, action and junction. State describes the internal status of a
system at any given time. Entry, during and exit actions are associated with states and
is executed to update variables upon entering, staying, and exiting a state respectively.
One may transition from a state to another if some events happen or certain conditions
are met. Junction is a way to encode conditional branches for transitions. Condition
actions may be executed after the condition is met.

2.2 Related Work

After a few cyberattacks on smart contracts, such as the DAO Attack [2], the security
of smart contract has increasingly drawn the attentions from the blockchain community.
Researchers have been investing efforts to ensure the trustworthiness of blockchain
smart contracts. Bigi et al. [3] described the validation of smart contracts using a com-
bination of game theory and formal methods. Bhargavan et al. [4] translated Solidity
smart contract program into F* to verify the runtime safety and functional correctness
of the smart contract. Mavridou and Laszka [5] presented FSolidM tool to apply finite
state machine to model smart contracts and automatically translated finite state machine
to Solidity code. They also developed some plugins to help implement security features
for preventing common vulnerabilities and common design patterns to facilitate correct
contracts. Sergey and Hobor [6] proposed contracts-as-concurrent-objects analogy to
enable formal verification especially on concurrency-related properties. Smart con-
tracts as computer programs may have bugs and security flaws. Smart contract failures
may lead to severe financial losses or even safety concerns. For example, the DAO
attack causes $70 million equivalent of Ethereum being stolen within a few hours. Cur-
rent manual review is error-prone and time-consuming. Since deployed smart contracts
are practically immutable and can be inspected by the public which eliminates security
from obscurity, it is preferred to build trust into development, as soon as the errors or
flaws are introduced.

3 Towards Trusted Smart Contract Development in
Simulink

A blockchain application typically includes blockchain platforms, smart contracts and
interactive edge devices transacting using smart contracts. One of key factors for pro-
tecting the security of blockchain applications is having trusted smart contracts. In this
section, we describe a novel approach for building trusted smart contracts in Simulink
Stateflow. The approach stages in four phases: design phase, verification and simula-
tion phase, synthesis and test case generation phase, and test execution phase. The
workflow of the process is illustrated in Fig. 1.

37

Fig. 1. The workflow of the proposed approach

The workflow starts with a design phase in Simulink Stateflow for modeling the
contract model. The contract model is then fed to Simulink Design Verifier for
verification and simulation. If any issues are found at this stage, the feedback from the
verification and simulation engine will be leveraged to improve the contract design.
Otherwise, the contract model will be synthesized into Solidity smart contract, and test
case will be generated based on user-defined testing objectives in Simulink. Test cases
will be executed against the synthesized smart contracts on popular platforms such as
Remix [9] and Truffle [10]. After passing all the tests, the smart contracts will be ready
for deployment. Failing tests will be investigated further to enhance the contract model
in Simulink. We will use a simple banking example to illustrate each phase in the
following sections. Consider a simple banking smart contract that deals with the
interactions between a user and a bank. The user can activate or deactivate an account in
the bank. Only after the account is activated, the user can deposit into or withdraw from
the account. When a user performs the deposit or withdraw action, the bank must validate
the action before the action can be executed, and subsequently the effect of the action
will be reflected in the account’s balance.

3.1 Design Phase

In the design phase, the smart contracts are captured in Simulink Stateflow. We choose
Stateflow because (i) it is a popular and user-friendly tool that has a large user base in
the control area; (ii) it is supported by Simulink Design Verifier that provides formal
verification and automated test generation capabilities; and (iii) it is a toolbox of Sim-
ulink that provides visualized simulation.

38

Fig. 2. A smart contract model for the banking example in Stateflow

The Stateflow representation of the simple banking example is shown in Fig. 5. The
contract model consists of four states: Inactivated, Activated, Deposit, and Withdraw.
The initial state of the smart contract model is the Inactivated state. As shown in Fig.
5, the state of the smart contract model can transition from Inactivated to Activated
through the activateAccount event. The smart contract model can go back to the
Inactivated state when deactivateAccount event is triggered from the Activated state. In
addition, when in the Activated state, the smart contract model can transition to Deposit
or Withdraw state with deposit or withdraw event being triggered. However, the model
can only transition back to the Activated state when the validate event is issued and the
account’s balance is updated when exiting the Deposit or Withdraw state.

In general, smart contracts consist of a method set with defined rules. In our Simulink
Stateflow modeling environment, we use an event to model a function-call in smart
contracts, and non-event-triggered transitions combined with junctions to model rules
within a call. An advantage of this design method over traditional hand-coded design
is that it enables users to intuitively define states and visualize transitions among states
without concerns for case statements or control logic.

3.2 Simulation and Verification Phase

To simulate Stateflow smart contract, the contract model is encapsulated in two parallel
states called “mainChart” and “events”, where “events” is an event-triggering state at
the top-level to broadcast to “mainChart” to trigger events inside the contract model.

Fig. 3. Event-triggering Stateflow contract model for Simulation

Fig. 3 shows the event-triggering Stateflow smart contract model for the simulation.
Each event used in the smart contract will have an associated external Boolean input

39

signal to trigger the event from the Simulink simulation environment. When the Bool-
ean input signal is set to true, the corresponding event will be broadcasted to the smart
contract model; otherwise, the event stays inactivated. Additional constraints are set
outside of the Stateflow chart to ensure that at most one of the Boolean input signals
for event-triggering state transition is set to true at any time. Simulation helps designers
identify the functional flaws of the smart contract model by exercising different use
cases. It can also localize issues when counterexamples from the formal verification are
leveraged to analyze the smart contract model.

Fig. 4. Simulink Stateflow model to perform formal verification for the contract

 Formal verification of the Stateflow smart contract model can be performed against
critical functional, security, and safety properties. In this phase, safety properties and
associated assumptions are captured in the Simulink environment. Properties and as-
sumptions for the banking contract model are provided in Fig. 4. The properties state
that 1) balance remains 0 before account is activated, and 2) balance shall only change
when deposit and validate are both performed. Two assumptions are made to ensure that
at most one event is triggered and the deposit or withdraw transaction value is always a
positive number.

3.3 Smart Contract Synthesis and Test Case Generation Phase

The Stateflow smart contract will be translated into Solidity contracts after the simula-
tion and verification phase. Solidity is a contract-oriented language for implementing
smart contracts. It is a statically typed high-level programming language highly influ-
enced by object-oriented languages like C++ and Python. Solidity has been widely used
by blockchain platforms such as Ethereum, Sawtooth, Tendermint, ErisDB, Counter-
party, etc. A contract consists of states and functions, where states are described by
variables, and functions are reusable code that may modify variables. Conceptually,
some smart contracts can be viewed as event-driven finite state machines, which is
motivation of our translation. In this section, we discuss the translation from a fragment

40

of Stateflow model to Solidity code per Stateflow features. The translation mappings
are summarized in Table 1.

Table 1. Translation mapping of state transitions between Stateflow and Solidity

Simulink Stateflow Solidity

State: S1, S2, …, Sn Enumerated Type: StateEnum { S1, S2, …, Sn }
State : StateEnum;

Junctions: J1, J2, …, Jn Enumerated Type: JunctionEnum { J1, J2, …, Jn }
Junction : JunctionEnum;

Initial State: Sinit
Entry Action: actioninit

Constructor:
 Constructor () public {actioninit; State = Sinit;}

Event-Driven State Transitions:
 Ssrc1 [event1] {action1} Sdest1;
 Ssrc2 [event2] {action2} Sdest2;
 …
Source State Actions:
 en_actionsrc1, du_actionsrc1, ex_actionsrc1
 en_actionsrc2, du_actionsrc2, ex_actionsrc2

 …
Destination State Actions:
 en_actiondest1, du_actiondest1, ex_actiondest1
 en_actiondest2, du_actiondest2, ex_actiondest2
 …

Public function:
function executeEvent () public return () {

if (State == Ssrc1) {
 executeStateExitAction(); State = Sdest1; action1;
 executeStateEntryAction();
} else if (State == Ssrc2) {
 executeStateExitAction(); State = Sdest2; action2;
 executeStateEntryAction();
} … {
} else {executeStateDuringAction();}}

function executeStateEntryAction() internal {
if (State == Ssrc1) {en_actionsrc1;}
else if (State == Ssrc2) {en_actionsrc2;}
…}

function executeStateExitAction() internal {
if (State == Ssrc1) {ex_actionsrc1;}
else if (State == Ssrc2) {ex_actionsrc2;}
…}

function executeStateDuringAction() internal {
if (State == Ssrc1) {du_actionsrc1;}
else if (State == Ssrc2) {du_actionsrc2;}
…}

Event-Driven State Transitions via Junctions:
 Ssrc1 [event] Junc Sdest1;

Public function:
function executeEvent () internal return () {
 if (State = Ssrc1) {
 ex_actionsrc1; en_actiondest1;
 Junction = Junc; executeJunctions();}}

Condition-Driven Junctions:
Junction J1 branch: [C1]{A1} S1
Junction J2 branch: [C2]{A2} S2

…
Junction Jn branch: Sn

Internal function:
function executeJunctions() public return () {
 bool stateReached = false;
 while (stateReached) {

 if (Junction = “J1” && C1)
 {A1; State = S1; stateReached = true;}}
 else if (Junction = “J2” && C2)
 {A2; State = S2; stateReached = true;}
 …
 else {State = Sn; stateReached = true;}}

Data Types: Boolean, String, (u)int(8, 16, 32, 64) Data Types: bool, string, (u)int(8, 16, 32, 64)

Output Data: output1, output2, …, outputn State Variable: output1, output2, …, outputn

Local Data: loc1, loc2, …, locn Local Variable: loc1, loc1, …, locn

Boolean Operators: !, &&, ||, = Boolean Operators: !, &&, ||, =

Comparison Operators:<, <=, =, !=, >=, > Integer Operators: <, <=, =, !=, >=, >

Bit Operators: &, |, ^, ~ Bit Operators: &, |, ^, ~

Arithmetic Operators: +, –, *, /, %, <<, >> Arithmetic Operators: +, –, *, /, %, <<, >>

41

In Table 1, we use S to denote a state in Stateflow and use en_action, du_action and
ex_action to denote entry, during and exit actions of a state respectively. We use event
to denote an event, J or Junc to denote a junction, C to denote a condition on a junction
branch, and A or action to denote a condition action.

The translation focuses on a fragment of Stateflow language to model the control logic
of smart contracts, which is well-aligned with the semantics of Solidity. The fragment
mainly encompasses event-triggered state transitions and condition-driven junctions.
These restrictions on Stateflow language intend to simplify the engineers’ modeling ef-
forts as well as retain the semantics of smart contracts. For state transitions, all outgoing
transitions of a state must be event-driven without conditions. One may also specify en-
try, during and exit actions within states. Outgoing branches of junctions must be com-
plete and condition-driven without events. Branches may have condition and condition
actions. Note that the semantics of conditions of state transition can be equivalently en-
coded using condition of junctions. Loops are also allowed on junctions. However, just
as loop is the Achilles’ heel in program verification, Stateflow models with loops also
suffer from the same curse, but can still be simulated in Simulink.

Fig. 5. A portion of synthesized Solidity code for the banking example

Since operations on global variables of smart contracts are not critical to the correct-
ness of the control logic of contracts, they will be encapsulated in the printing function
disp in Stateflow, thus are not subject to verification and testing, and will be printed in
Solidity directly. States and junctions in Stateflow models are translated as an
enumerated type with values being the state and junction names respectively. The initial
state will be translated into a constructor populated with entry actions and the initial state
assignment. Each Stateflow event will be translated as a public function and the function
body is populated according to the rules specified in Table 1. Entry, during and exit
actions associated with states are encapsulated in three execution functions respectively.
Junctions are translated as an internal function named executeJunctions, which will be
invoked by the function executeEvent when the state transitions are made via junctions.
The semantics of junctions are translated by using a while loop guard until a destination
state is reached. If a junction is followed by nested junctions rather than a state, the State

pragma solidity ^0.4.0;
contract bankAccount {

enum StateEnum {Inactivated, Activated,
Deposit, Withdraw}

 StateEnum State;
 int32 transaction_input;
 int32 balance;
 constructor() public {

State = StateEnum.Inactivated;
executeStateEntryAction();

 }
 function activateAccount() public {

if (State == StateEnum.Inactivated) {
executeStateExitAction();
State = StateEnum.Activated;
executeStateEntryAction();

} else {
executeStateDuringAction();

}
}

 function deposit() public {
if (State == StateEnum.Activated) {

executeStateExitAction();
State = StateEnum.Deposit;
executeStateEntryAction();

} else {
executeStateDuringAction();

}
 }

 function executeStateEntryAction() internal {
if (State == StateEnum.Inactivated) {

balance = int32(0);
}

}
function executeStateDuringAction() internal {}
function executeActivatedEntryAction() internal
{

if (State == StateEnum.Inactivated) {
balance = int32(0);
State = Activated;

}
 }
 function executeStateExitAction() internal {

if (State == StateEnum.Deposit) {
balance = balance + transaction_input;

} else if (State == StateEnum.Withdraw) {
balance = balance - transaction_input;

}
}
function displayData() constant
 returns (int32, int32) {

return (transaction_input, balance);
 }
}

42

and stateReach assignments will be omitted in the translation. Instead, they will be re-
placed by a corresponding junction assignment. In addition, the if-then-else statements
in Solidity may encode the execution orders of junctions imposed by Simulink models.
Stateflow and Solidity share a common set of data types as shown in Table 1 including
String, Boolean and integer of 8, 16, 32 and 64 bits and associated operators. They can
be easily mapped from Stateflow and Solidity.

A portion of the synthesized Solidity smart contract is shown in Fig. 5. Due to the space
limit, we only show 2 functions corresponding to activation and deposit events. Other
functions are similar.

Simulink Design Verifier supports auto-generation of test cases and procedures for the
Stateflow smart contract model. The generated tests will be executed on the synthesized
Solidity code to verify the conformance of the code against the model. One may specify
model coverage criteria and test conditions to autogenerate tests in Simulink.

3.4 Test Execution Phase

Remix [9] and Truffle [10] are two popular tools for testing Solidity smart contracts.
Remix is a web browser based integrated development environment that allows deploy-
ment and running of the smart contracts. Truffle provides automated smart contract
testing with Mocha and Chai so the generated tests from test generation phase in Sim-
ulink can be converted to test scripts, which can be executed against the synthesized
smart contract.

4 Case Study: A Transactive Energy Application

Fig. 6. A transactive energy system model in Stateflow

In this section, we demonstrate the trusted smart contract development approach on a
transactive energy application at GE Research. Consider a transactive energy system
where a consumer can request energy from a battery. If the battery charge level is less

43

than a certain safe level, then the request cannot be completed and consumer gets no
energy. If the consumer requests an amount of energy that would bring the battery
charge level below the safe level, the consumer only gets the amount of energy above
the safe level. If the consumer requests more energy than he/she can afford, the con-
sumer only gets the energy that he/she can afford; otherwise, the consumer gets the
energy that it requested. Meanwhile, the battery may update its address, energy unit
price, the safe level, and charge level.

4.1 Design Phase

Fig. 6 shows the Stateflow smart contract design for the application. Only one state was
put in the design since there were no dependencies among function-calls. Each event
represented a function-call in the smart contract that led to one or more transitions that
process a sequence of rules.

4.2 Simulation and Formal Verification Phase

We have encoded two safety-related properties for the Stateflow models: (i) user shall
not obtain energy when battery charge level is lower than safe level, and (ii) user shall
not obtain more energy than one can afford. We use Simulink Design Verifier to per-
form formal verification on the Stateflow models. Two valid issues are identified: (1)
divide by zero, and (2) property (ii) is disapproved due to overflow.

The issue (1) was uncovered in the detect-design-error mode of Simulink Design
Verifier. When the consumer has a balance 0 on the account and the energy unit price
“energyPrice” is set to be zero, the second transition after accepting “reqEnergy” event
will be activated and the division operation on the transition will be performed with
denominator “energyPrice” set as zero, which triggers the divided-by-zero error. We
fixed this error by changing comparison operator from “<=” to “<” in the transition
condition to ensure that all requested energy must be strictly less than the allowed
amount.

The issue (2) was identified by Simulink Design Verifier. The counterexample
shows that when the consumer has 4,294,967,295 balance on the account, it can suc-
cessfully obtain 70 unit of energy with unit price of 2,431,166,277 which is more than
the consumer can afford. By running the simulation with the counterexample, we lo-
calized the overflow error at the second junction transition after “reqEnergy” event is
accepted, where the result of “reqEnergy_param1 * energyPrice” overflows and is
evaluated to be maximum value of uint32 (unsigned 32-bit integer) in Simulink. The
overflow causes “msgValue” to less than “reqEnergy_param1 * energyPrice” (note that
we have changed the “<=” to “<” to fix the divided-by-zero error) and therefore by-
passes the rule that a consumer is only granted the amount of energy per consumer
balance. We further fix the issue (2) by adding an additional condition “reqEn-
ergy_param1 * energyPrice >= 4294967295” to accommodate the overflow case.

44

4.3 Smart Contract Synthesis and Test Case Generation Phase

We synthesize the Solidity smart contract code leveraging our toolbox in Simulink. In
addition, we auto-generate three test cases to cover all reachable transitions of the smart
contract model with 32 test objectives.

4.4 Test Execution Phase

The test scripts are executed in Remix against the synthesized contract code with one
test failure. The failure further reveals an underflow error in the Solidity contract. This
is due to that Stateflow and Solidity handle underflow differently, where Simulink
would set the underflow expression to the minimum value of its type, whereas Solidity
would perform a unit wrap around for underflow expressions. For the underflow issue
in the contract, Solidity evaluates the third junction transition to be not activated, when
batteryChargeLevel = 90, energyUnit = 1073741822, and both variables are uint32,
since Solidity evaluated “batteryChargeLevel – energyUnit” to be maximum value of
uint32 minus the difference between 90 and 1073741822 which is a larger number than
“batterySafeLevel”. While Stateflow evaluates the transition to be activated, since it
evaluated “batteryChargeLevel – energyUnit” to be zero. By updating the code to be
“batteryChargeLevel < batterySafeLevel + energyUnit” instead of “batteryCharge-
Level - energyUnit < batterySafeLevel”, all tests pass.

4.5 Observations

The modified Solidity smart contract is deployed on a platform with Ethereum block-
chain platform. The transactive energy application is able to successfully perform the
energy trading from the consumer to the battery and supply the requested energy to the
consumer from the battery.

We also compare our development approach against the traditional development ap-
proach without the help of the Stateflow design environment. It took our developer one
month to design, program, and deploy the same smart contract. However, with the help
of the proposed development approach and toolbox, a developer with similar
knowledge of smart contract can get through to the deployment within a week. Further
and more importantly, with the traditional approach, it is harder to uncover the over-
flow, underflow or divided-by-zero issues that were identified by the proposed ap-
proach.

The proposed development approach and toolbox have also been applied to block-
chain application with multiple smart contracts interacting with each other at GE. This
kind of application demonstrates even bigger value of the proposed approach, as rea-
soning about the correctness of the smart contracts by human becomes even more chal-
lenging. With our approach, the challenges can be mitigated by performing simulation,
formal verification and testing.

45

5 Conclusion and Future Work

The paper presented a trusted smart contract development approach and a toolbox to
synthesize smart contracts from Simulink Stateflow models. The approach captures
Stateflow models, performs simulation and formal verification on the models, and auto-
synthesizes Solidity smart contracts and generates test cases to ensure the correctness
of the smart contract model. The smart contract synthesis process is also described. The
synthesized smart contract was trusted and highly assured with evidences of formal
proofs and test results. Furthermore, the development process enables the designers
focus on the contract design in an user-friendly interface, and automates the verification
and synthesis work, which helps to detect and fix issues to reduce the rework time. The
proposed development process and toolbox have been used extensively at GE Research
for blockchain smart contract development and have proven to be much more effective
and efficient than traditional development process.

Our future work will focus on improving the toolbox by supporting formal verifica-
tion that includes interacting devices, and optimizing the automated smart contract code
generation tool for example generating blockchain smart contract specific functions
such as payable functions.

References

1. N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts
(sok),” Principles of Security and Trust, vol. 10204, pp. 164-186, March, 2017.

2. Understanding the DAO attack, http://www.coindesk.com/understanding-daohack-journal-
ists/

3. G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto, “Validation of decentralised smart contracts
through game theory and formal methods,” Programming Languages with Applications to
Biology and Security, vol. 9465, pp. 142-161, 2015.

4. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N.
Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-Béguelin, “Formal verifi-
cation of smart contracts: Short paper,” Proceedings of the 2016 ACM Workshop on Pro-
gramming Languages and Analysis for Security, pp. 91-96, October, 2016.

5. A. Mavridou, and A. Laszka, “Designing secure Ethereum smart contracts: A finite state
machine based approach,” arXiv preprint arXiv:1711.09327, November, 2017.

6. I. Sergey, and A. Hobor, “A concurrent perspective on smart contracts,” International Con-
ference on Financial Cryptography and Data Security, pp. 478-493, April, 2017.

7. Stateflow, https://www.mathworks.com/products/stateflow.html.
8. SimulinkDesign Verifier, https://www.mathworks.com/products/sldesignverifier.html.
9. Remix, https://remix.ethereum.org.

10. Truffle, https://github.com/trufflesuite/truffle.

46

