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1 Introduction

In the last decades, the analysis of complex networks has received increasing
attention from several, heterogeneous fields of research.

One of the hottest topics in network science is Community Discovery (hence-
forth CD), the task of clustering network entities belonging to topological dense
regions of a graph.

Although many methods and algorithms have been proposed to cope with
this problem, and related issues such as their evaluation and comparison, few
of them are integrated into a common software framework, making hard and
time-consuming to use, study and compare them. Only a handful of the most
famous methods are available in generic libraries such as NetworkX and Igraph.

To cope with this issue, we introduce a novel library designed to easily selec-
t/apply community discovery methods on network datasets, evaluate/compare
the obtained clustering and visualize the results.

This extended abstract is a shorter version of the full paper of the
same name published in Applied Network Science in December 2019

[1]

2 CDlib: Community Discovery Library

We designed CDLIB - “(C)ommunity (D)iscovery Library” - to simplify the
definition/execution/evaluation of community discovery analysis. CDLIB is a
Python package built upon the network facilities offered by NetworkX and
Igraph. The library, available for Python 3.x, is currently hosted on GitHub?,
on pypi® and has its online documentation on ReadTheDocs®.

At the date of publication, CDLIB provides 37 implementations of CD algo-
rithms, including 14 overlapping, 1 fuzzy, and 2 edge partitions methods.

4 CDLB GitHub: https://goo.gl/Gu3VsV

® CDLIB pypi: https://goo.gl/FPtHHU
5 CDLIB docs: https://goo.gl/gglbUz
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2.1 Library Rationale

The library provides several community detection algorithms, implemented such
as (i) they take as input a unified graph topology representation (networkx or
igraph network object) (ii) they return a clustering using a unified representation.

The standardization of clustering representation - and the decoupling of in-
put/output w.r.t. algorithmic implementations - makes easy to extend CDLIB
with novel algorithms.

Once computed the desired network clustering, CDLIB allows its users to:
(1)evaluate it using several fitness scores (2) compare it with alternative parti-
tions (3) visualize it using predefined and standard graphic facilities.

Code snippet 1.1 shows an example of computing communities, evaluating
their quality, comparing partitions, and visualizing the result using CDLIB

from cdlib import algorithms, viz
import networkx as nx

# Network topology

5 g = nx.karate_club_graph ()
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# Models execution
louvain_coms = algorithms.louvain(g)
leiden_coms = algorithms.leiden (g)

# Modularity evaluation
louvain.mod = louvain_coms.erdos_renyi-modularity ()

3 leiden_-mod = leiden_coms.erdos_renyi_modularity ()

# Clustering comparisons
nmi = louvain_coms.normalized_-mutual_information (leiden_coms)

# Visualization
viz .plot_.community_graph (g, louvain_coms)

Code example 1.1. Code example.

2.2 Network Clustering

CDLIB implements 37 published CD algorithms, using authors’ implementations
when possible, and some re-implementations. Due to the limited space, the com-
plete list can be found in the original article [1] or in the documentations.

The library explicitly handles three different sub-types of clustering:

— Partitions (Crisp clustering): each node (edge) belongs to a unique cluster
(community);

— Owerlapping: each node (edge) is allowed to belong to more than one com-
munity at the same time;

— Fuzzy: each node (edge) belongs to multiple communities with different level
of involvement in each one of them.



Name

Description

average_internal degree
conductance

cut_ratio

edges_inside

expansion
fraction_over_median_degree
[2]

internal_edge.density
normalized_cut

max_odf

avg-odf

flake_odf

significance

size

surprise

triangle.participation rati

The average internal degree of the community set.
Fraction of total edge volume that points outside the algorithms.

Fraction of existing edges (out of all possible edges) leaving the community.
Number of edges internal to the community.

Number of edges per community node that point outside the cluster.

raction of community nodes having internal degree higher than the median degree value.

he internal density of the community set.
Normalized variant of the Cut-Ratio.

Maximum fraction of edges of a node of a community that point outside the community itself.

Average fraction of edges of a node of a community that point outside the community itself.

Fraction of nodes of the clustering that have fewer edges pointing inside than to the outside of their communities.
Estimate the likelihood that the identified partition appears in a random graph.

Number of community nodes.

Statistical approach that assumes that edges emerge randomly according to a hyper-geometric distribution: the higher
the surprise, the less likely the clustering is resulted from a random realization.

Fraction of community nodes that belong to a triad.

newman_girvanmodularity

erdos_renyimodularity
link modularity
modularity density

zmodularity

Difference of the fraction of intra community edges of a clustering with the expected number of such edges if distributed
according to a null model.

Variation of the Newman-Girvan modularity that assumes that nodes in a network connected randomly with a constant
probability p.

Variation of the Girvan-Newman modularity for directed graphs with overlapping communities.

Variation of the Erdos-Renyi modularity that includes information about community sizes into the expected density
coefficient so to avoid the negligence of small and dense communities.

Variant of the standard modularity proposed to avoid the resolution limit.

Table 1. Fitness functions implemented in CDLIB.Upper-part: community wise scores.

Lower part

: modularity-based quality scores.

Name Description

ami Adjusted Mutual Information is an adjustment of the Mutual Information score to account for chance.

et The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting
pairs that are assigned in the same or different clusters in the predicted and true clusterings.

£1 Average F1 score (harmonic mean of Precision and Recall) of the optimal matches among the partitions in input.
clustering.

et Normalized version of F1 that corrects the resemblance score taking into account degree of node overlap and clutering
coverage.

i Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results
between 0 (no mutual information) and 1 (perfect correlation)

onmi. Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions.

omega Resemblance index defined for overlapping, complete coverage, clusterings.

vi Variation of Information among two nodes partitions.

Table 2. Clustering comparison functions implemented in CDLIB.

2.3 Clustering Evaluation and Comparison

CDLIB allows not only to compute network clusterings applying several algo-
rithmic approaches but also enables the analyst to characterize and compare the
obtained results.

Clustering evaluation and comparison facilities are delegated to the cdlib.evaluation

submodule. It provides several fitness scores, listed in Table 1, as well as clus-
tering comparison measures, reported in Table 2.

2.4 Visualization Facilities

To allow the final user visualising clustering results, CDLIB exposes

predefined

a set of
visual facilities using Matplotlib. These facilities are exposed through

the visualization submodule cdlib.viz. Such submodule offers two different
classes of visualization:



Network Visualization, that allows plotting a graph with node color coding
for communities

Analytics plots, where community evaluation outputs can be easily used to
generate a visual representation of the main partition characteristics (Figure 1).
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Fig.1. Visual Analitycs. Comparing (1) several algorithms on several networks,
(2)properties of communities, (3)relation between properties, (4)Similarity between
clustering.

3 Conclusions and Future Works

CDLIB is an ongoing open project: we plan to further extend it by integrating
novel algorithms (contributions are welcome), by supporting alternative cluster-
ing definitions (i.e., multiplex, evolving,...) and by integrating evaluation/visu-
alization facilities.
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