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Abstract
Computational Logic is "the calculus of Computer Science" and is an essential field of this area. Courses
on this subject are usually either too informal (only providing pseudo-code specifications) or overly
formal (merely presenting rigorous mathematical definitions) when describing algorithms. In either
case, there is an emphasis on paper-and-pencil definitions and proofs rather than on computational
approaches. It is seldom the case where these courses present executable code, even if the pedagogical
advantages of using tools are well known. In this paper, we present an approach to obtain formally
verified implementations of classical Computational Logic algorithms. The chosen tool for this approach
is the Why3 platform since it allows implementing functions very close to their mathematical definitions,
as well as it concedes a high degree of automation in the verification process. As proof of concept, we
implement and prove the conversion algorithms from propositional formulae to conjunctive normal
form. We apply our proposal on two variants of the algorithm: one in direct-style and another with an
explicit stack structure. Being both first-order, Why3 processes the proofs straightforwardly.

Keywords
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1. Introduction

Motivation. Foundational courses in Computer Science, like Computational Logic, aim at
presenting key basic subjects to the education of undergraduate students. To strengthen
the relation of the topics covered to sound programming practices, it is relevant to link the
mathematical content to clear and executable implementations, provably correct to stress the
importance of sound practices.

Herein we present work developed in the context of the FACTOR [1] project, which aims
to promote the use of OCaml [2] and correct code development practices in the Portuguese-
speaking academic community. Specifically, the objectives of the project are the functional
implementation of classical Computational Logic algorithms and Formal Languages, the de-
velopment of correctness proofs and the step-by-step execution to help understanding the
algorithm.
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The algorithm for converting propositional formulae to Conjunctive Normal Form (CNF)1 is
often presented formally, with rigorous mathematical definitions that are sometimes difficult to
read [3, 4, 5], or informally, intended for Computer Science but with textual definitions in non-
executable pseudo-code [6, 7]. The implementation of algorithms of this nature is a fundamental
piece for learning and understanding them. Languages such OCaml allow implementations
very close to the mathematical definitions, helping the study because they are executable. Also,
the correctness proof of a functional implementation is simpler than for the imperative one. We
chose this version of the algorithm instead of a more advanced version because it is the one
taught to students, thus having an important pedagogical character.

Lastly, we want second year students, more specifically in their first course of logic, to start
getting used to computer-assisted proofs by seeing some correctness proofs and think they
can do it. For that, the proofs need to be as automatic as possible with simple and intuitive
verification conditions that do not escape the context of the course.

Contributions. As proof of concept, we implement and prove correct the referred algorithm
in Why3 [8], a platform for deductive program verification. Why3 provides a first-order language
with polymorphic types, pattern matching and inductive predicates, called WhyML. Also, it
offers a certified OCaml code extraction mechanism and support for third-party provers.

To support the step-by-step execution of the algorithm, an important feature to help students
understanding the definitions, we also implemented a version in Continuation-Passing Style
(CPS) [9] and via defunctionalization got an evaluator, a version close to a first-order abstract
machine [10]. Because Why3 has limited support for reasoning about higher-order functions, it
was not possible to close the correctness proof for the CPS version. This limitation however
is not present in the defunctioned implementation that has an explicit stack structure, but
in first-order. This implementation resulted from a mechanical transformation from the CPS
version. This version has been naturally proven correct by Why3.

In short, this article presents pedagogical material to support the teaching of classical Compu-
tational Logic algorithms. We developed two implementations, formally verified in Why3, from
a presentation as a recursive function of conversion algorithm to CNF: the first in direct style and
the second with an explicit stack structure. Both were proved sound with small effort, basically
following from “natural” assertions associated with the code to prove it correct. The reposi-
tory url is https://gitlab.com/releaselab/factor/formally-verified-bug-free-implementations-of-
logical-algorithms.

2. Functional presentation of the algorithm

For simplicity let us call T the algorithm that converts any propositional logic formula to CNF.
A propositional logic formula 𝜑 is an element of the set 𝐺𝑝, defined as follows:

𝐺𝑝 ≜ 𝜑 ::= 𝜐 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | 𝜑→ 𝜑 (formula)
𝜐 ::= 𝑝 | ⊥ (atomic_formula),

1A formula is in CNF if it is a conjunction of clauses, where a clause is a disjunction of literals and a literal is a
propositional symbol or its negation.
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where 𝑝 ranges over a set of propositional variables. The function 𝑇 produces formulae in CNF,
where a formula in CNF is an element of the set 𝐽𝑝, defined as follows:

𝐽𝑝 ≜ 𝜒 ::= 𝜒 ∧ 𝜒 | 𝜏
𝜏 ::= 𝑙 | ¬𝑙 | 𝜏 ∨ 𝜏
𝜐 ::= 𝑝 | ⊥

The algorithm 𝑇 composes three functions: the impl_free function, responsible for elimi-
nating the implications; the nnfc function, responsible for converting to Negation Normal Form
(a formula is in NNF if the negation operator is only applied to sub-formulae that are literals);
and the cnfc function, responsible for converting from NNF to CNF. Thus, 𝑇 : 𝐺𝑝 → 𝐽𝑝, where

𝑇 (𝜑) = cnfc(nnfc(impl_free(𝜑)))

Each of the functions produces propositional formulae from different sets. The cnfc function
produces formulae from the 𝐽𝑝 set previously defined. The impl_free function produces
formulae from the 𝐻𝑝 set and the nnfc function from the 𝐼𝑝 set:

𝐻𝑝 ≜ 𝜓 ::= 𝜐 | ¬𝜓 | 𝜓 ∧ 𝜓 | 𝜓 ∨ 𝜓
𝜐 ::= 𝑝 | ⊥

𝐼𝑝 ≜ 𝜖 ::= 𝜐 | ¬𝜐 | 𝜖 ∧ 𝜖 | 𝜖 ∨ 𝜖
𝜐 ::= 𝑝 | ⊥

3. Supporting Boolean Theory

To support our implementation, we implemented a Boolean theory. This allows us to have clear
proofs and increase the degree of automation. Since we want to have control and more in-depth
knowledge of the theory, we preferred to adopt a back-to-basics strategy and build ourselves
the Boolean theory.

Boolean Theory. In a Boolean Theory or Boolean Algebra, the values of the underlying set
are true and false. It is a formal way of describing logical operations in the same way that
elementary algebra describes numerical operations.

A Boolean Algebra consists of a set S, equipped with two binary operations (conjunction and
disjunction), one unary operation (negation) and two elements (bot and top). To implement this
set in Why3, we first define the type t with the bot and top constants:

type t
constant bot: t
constant top: t

For the operations, we implement them as functions, resorting the main ones to their respective
of the Why3 Boolean type. The / * ∖ function defines conjunction (using the conjunction
of Why3), the ∖ * / function defines disjunction (using the disjunction of Why3), then neg
function defines negation as a complement operation, and additionally, the ->* function defines

3
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Property Name Operation Boolean Property Why3 Lemma

Absorption
Conjunction 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 A.1 - Page 19

Disjunction 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 A.2 - Page 19

Identity
Conjunction 𝑎 ∧ ⊤ = 𝑎 A.3 - Page 19

Disjunction 𝑎 ∨ ⊥ = 𝑎 A.4 - Page 19

Associativity
Conjunction 𝑎 ∧ (𝑏 ∧ 𝑐) = (𝑎 ∧ 𝑏) ∧ 𝑐 A.5 - Page 19

Disjunction 𝑎 ∨ (𝑏 ∨ 𝑐) = (𝑎 ∨ 𝑏) ∨ 𝑐 A.6 - Page 19

Commutativity
Conjunction 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 A.7 - Page 19

Disjunction 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎 A.8 - Page 19

Distributivity
Conjunction 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) A.9 - Page 19

Disjunction 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) A.10 - Page 19

Complements
Conjunction 𝑎 ∧ ¬𝑎 = ⊥ A.11 - Page 19

Disjunction 𝑎 ∨ ¬𝑎 = ⊤ A.12 - Page 19

Table 1
Properties of Boolean Algebra and correspondent Why3 Lemma.

implication as an abbreviation, the composition of disjunction and complement operations, as
usual. The code follows.

let function (/*\) (x y : t) : t = if x = top ∧ y = top then top else bot

function (\*/) (x y : t) : t = if x = top ∨ y = top then top else bot

function neg (x : t) : t = if x = bot then top else bot

function (→*) (x y : t) : t = (neg x) \*/ y

The six properties in Table 1 define a Boolean Algebra. We refer for each the corresponding
Why3 Lemma.

If we define 𝑎+ 𝑏 := (𝑎∧¬𝑏)∨ (𝑏∧¬𝑎) = (𝑎∨ 𝑏)∧¬(𝑎∧ 𝑏) and 𝑎 . 𝑏 := 𝑎∧ 𝑏, the Boolean
Algebra induces a Boolean ring (a ring where the property 𝑎2 = 𝑎 holds). The zero element of
the ring coincides with the ⊥ of the Boolean Algebra, and the multiplicative identity element
with the ⊤ [11].

We also ensure the properties of the Table 2 hold the Boolean Algebra. The property that
ensures that bot differs from top could also be defined, but since that would not give more
information to the provers, we decide to omit it.

4. Algorithm Implementation

The first step in the implementation is to define the types of the formulae according to the
grammars presented in Section 2.

4
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Property Name Boolean Property Why3 Lemma
Top is equivalent to the negation of bot ⊤ = ¬⊥ A.13 - Pag.19

Double negation ¬¬𝑎 = 𝑎 A.14 - Pag.19

De Morgan’s Laws
Conjunction ¬(𝑎 ∧ 𝑏) = (¬𝑎 ∨ ¬𝑏) A.15 - Pag.19

Disjunction ¬(𝑎 ∨ 𝑏) = (¬𝑎 ∧ ¬𝑏) A.16 - Pag.19

Table 2
Additional properties of Boolean Algebra and correspondent Why3 Lemma.

Analysing the sets, it is possible to observe that the grammar of atomic formulae (literals) is
present in all of them. So, we created a general type literal representing this grammar:

type pliteral = LBottom | LVar i

The set 𝐺𝑝 has literals, conjunctions, disjunctions, implications, and negations. It is represented
by the type formula:

type formula = L pliteral | Neg formula
| Or formula formula | And formula formula | Impl formula

formula

The set 𝐻𝑝 is the set 𝐺𝑝 without implications, and is represented by the type formula_wi:

type formula_wi = L_wi pliteral | FNeg_wi formula_wi
| FOr_wi formula_wi formula_wi | FAnd_wi formula_wi formula_wi

The set 𝐼𝑝 has (negated) literals, conjunctions, and disjunctions. It is represented by the type
formula_nnf:

type formula_nnf = L_nnf pliteral | FNeg_nnf pliteral
| FOr_nnf formula_nnf formula_nnf | FAnd_nnf formula_nnf

formula_nnf

The set 𝐽𝑝 has (negated) literals, disjunctions, and conjunctions at the outermost level (after a
disjunction there are no conjunctions). It is represented by the type formula_cnf:

type clause_cnf = DLiteral pliteral | DNeg_cnf pliteral | DOr_cnf clause_cnf
clause_cnf

type formula_cnf = FClause_cnf clause_cnf | FAnd_cnf formula_cnf formula_cnf

Functions. The function impl_free removes all implications. It is recursively defined as
homomorphic in all cases, except in the implication case where it takes advantage of the
propositional logic law A → B ≡ ¬A ∨ B. It converts the constructions of the type formula for
those of the type formula_wi and does recursive calls over the arguments

let rec impl_free (phi: formula) : formula_wi
= match phi with

| L phi → L_wi phi
| Neg phi1 → FNeg_wi (impl_free phi1)

5
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| Or phi1 phi2 → FOr_wi (impl_free phi1) (impl_free phi2)
| And phi1 phi2 → FAnd_wi (impl_free phi1) (impl_free phi2)
| Impl phi1 phi2 → FOr_wi (FNeg_wi (impl_free phi1)) (impl_free phi2)
end

The function nnfc converts formulae to NNF. It is recursively defined over a combination
of constructors: applying the propositional logic law ¬¬A ≡ A the double negations are
eliminated and using the De Morgan Laws, negations of conjunctions become disjunction of
negations and negations of disjunctions become conjunction of negations.

let rec nnfc (phi: formula_wi) : formula_nnf
= match phi with

| L_wi phi1 → L_nnf phi1
| FNeg_wi (L_wi phi1) → FNeg_nnf (phi1)
| FNeg_wi (FNeg_wi phi1) → nnfc phi1
| FNeg_wi (FOr_wi phi1 phi2) → FAnd_nnf (nnfc (FNeg_wi phi1)) (nnfc (
FNeg_wi phi2))

| FNeg_wi (FAnd_wi phi1 phi2) → FOr_nnf (nnfc (FNeg_wi phi1)) (nnfc (
FNeg_wi phi2))

| FOr_wi phi1 phi2 → FOr_nnf (nnfc phi1) (nnfc phi2)
| FAnd_wi phi1 phi2 → FAnd_nnf (nnfc phi1) (nnfc phi2)
end

The cnfc function converts formulae from NNF to CNF. It is straightforwardly defined
except in the disjunction case, where it distributes the disjunction by the conjunction calling
the auxiliary function distr.

let rec cnfc (phi: formula_nnf) : formula_cnf
= match phi with

| L_nnf literal → FClause_cnf (DLiteral literal)
| FNeg_nnf literal → FClause_cnf (DNeg_cnf literal)
| FOr_nnf phi1 phi2 → distr (cnfc phi1) (cnfc phi2)
| FAnd_nnf phi1 phi2 → FAnd_cnf (cnfc phi1) (cnfc phi2)
end

The distr function uses the propositional logic law A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C) .

let rec distr (phi1 phi2: formula_cnf) : formula_cnf
= match phi1, phi2 with

| FClause_cnf phi1, FClause_cnf phi2 → FClause_cnf (DOr_cnf phi1 phi2)
| FAnd_cnf phi11 phi12, phi2 → FAnd_cnf (distr phi11 phi2) (distr phi12
phi2)

| phi1, FAnd_cnf phi21 phi22 → FAnd_cnf (distr phi1 phi21) (distr phi1
phi22)

end

Lastly, the code of the function (T) composes all of these functions:

let t (phi: formula) : formula_cnf
= cnfc(nnfc(impl_free phi))

6
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5. How to obtain correctness

Since the algorithm 𝑇 is a composition of three functions, the correctness of the algorithm is
the result of the correctness criteria of each of these three functions.

Criteria. The defined types represent exactly the grammar, so the equivalence of the input
and output formula is the only criterion needed to ensure the verification. The evaluation
functions for each type ensures this criterion.

Semantics of formulae. Since the basic criterion of correctness is the logical equivalence
of formulae, we need a function to assign a semantic to them. For that, we created the eval
function:

type valuation = i → t

function eval_pliteral (l: pliteral) (f: valuation) : t
= match l with

| LBottom → bot
| LVar i → f i
end

function eval (phi: formula) (f: valuation) : t
= match phi with

| L e → eval_pliteral e f
| FNeg e → neg (eval e f)
| FOr e1 e2 → eval e1 f \*/ eval e2 f
| FAnd e1 e2 → eval e1 f /*\ eval e2 f
| FImpl e1 e2 → (eval e1 f →* eval e2 f)
end

This function takes an argument of type valuation assigning a value of type t2 to each
variable of the formula, receives the formula to evaluate and returns a value of type t. For the
base constructor, if L is a literal, the Boolean value of the variable or the value of the constant,
respectively, are returned. For the remaining constructor cases, the associated formulae are
recursively evaluated and the result translated into the corresponding operation of our Boolean
theory. The evaluation function for the remaining types are similar.

6. Proof of correctness

The proof of correctness consists in demonstrating that each function respects the correctness
criteria defined in the previous section. We show, herein, the WhyML code accepted by Why3
as correct.

Correctness of impl_free. The equivalence of the formulae is ensured using the formula
evaluation functions and we use the input formula as a measure to ensure termination.

2t is our Boolean type

7
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let rec impl_free (phi: formula) : formula_wi
variant { phi }
ensures { forall v. eval v phi = eval_wi v result }

= ...

Correctness of nnfc. In the proof of correctness it is not possible to use the formula itself as
a measure of termination, since in the case of the distribution of negation by conjunction or
disjunction, constructors are added to the head, making the structural inductive criterion not
applicable. Hence, we define a function that counts the number of constructors of each formula
and use it as termination measure:

function size (phi: formula_wi) : int
= match phi with

| FVar_wi _ | FConst_wi _ → 1
| FNeg_wi phi → 1 + size phi
| FOr_wi phi1 phi2 | FAnd_wi phi1 phi2 → 1 + size phi1 + size phi2

end

To ensure the number of constructors can never be negative, we use the size_nonneg auxiliary
lemma:

let rec lemma size_nonneg (phi: formula_wi)
variant { phi }
ensures { size phi ≥ 0 }

= match phi with
| FVar_wi _ | FConst_wi _ → ()
| FNeg_wi phi → size_nonneg phi
| FOr_wi phi1 phi2 | FAnd_wi phi1 phi2 → size_nonneg phi1; size_nonneg
phi2

end

Furthermore, with the termination measure defined, we can close the proof of correctness of
the nnfc function:

let rec nnfc (phi: formula_wi)
variant { size phi }
ensures { (forall v. eval_wi v phi = eval_nnf v result) }

= ...

Correctness of cnfc. This correctness proof is similar to the previous one:

let rec cnfc (phi: formula_wi)
ensures { (forall v. eval_nnf v phi = eval_cnf v result) }
variant { phi }

= ...

Since the cnfc function uses the auxiliary function distr, we also need to prove its correctness.
In this correctness proof we use a combination of evaluation functions to ensure the partial
proof and a sum of size functions applied to both arguments to ensure the total proof:

8
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let rec distr (phi1 phi2: formula_wi)
ensures { (forall v. ((eval_cnf v phi1 || eval_cnf v phi2) = eval_cnf v
result)) }

variant { size phi1 + size phi2 }
= ...

Correctness of t. With the proofs of correctness of each of the three functions performed,
we can now obtain the proof of correctness of the algorith T, implemented as the function t:

let t (phi: formula) : formula_cnf
ensures { (forall v. eval v phi = eval_cnf v result)}

= ...

Using the Why3 session shell command, one obtains a table with proof times for every
sub-goal. This exhaustive result is not very informative. However, adding all sub-goals times
represents a theoretical worst case scenario where tasks would be proved sequentially (the
real behaviour is in fact a parallel execution). Nevertheless, we will use this criterion when
presenting the proof time results, as it makes easier a comparison and allow us to present more
compact tables. Table 3 shows the time of aggregated proof obligation of the CNF conversion
algorithm. We present the results of CVC4, Alt-Ergo and Z3, however, the last one times out
trying to prove some verification conditions. For the next tables of proof times, we will only
show the results for the provers that validates most of the verification condition.

Proof obligations A
lt
-E
rg
o
2.
2.
0

C
V
C
4
1.
6

Z3
4.
8.
4

lemma VC for impl_free lemma variant decrease 0.21 0.16 0.14
lemma postcondition 4.42 0.26

lemma VC for nnfc lemma variant decrease 0.09 0.32 0.18
lemma postcondition 0.29 0.15

lemma VC for distr lemma variant decrease 0.06 0.37 0.15
lemma postcondition 0.38 0.24

lemma VC for cnfc lemma variant decrease 0.08 0.25 0.12
lemma postcondition 0.04 0.24

lemma VC for t 0.01 0.07 0.02

Table 3: Aggregated proof time of CNF proof obligations.

7. Towards Step-by-Step Execution

The ability to execute in step-by-step or even to rewind or step back computations is fundamental
for programmers, as it permits the inspection of the intermediate values of computations.

9
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Moreover, forward and backwards step-wise execution provides a better understanding of the
code under inspection. Previous work, also within the scope of the FACTOR project (“Rewinding
functions through CPS”), shows how to support tracing functionalities in continuation-passing
style programming [12]. To make use of the functionalities provide by the mentioned work,
we developed versions of our implementations with explicit stack structure. Henceforth, this
section presents the CPS and Defunctionalization transformations of the implementation listed
in Section 4.

Continuation-Passing Style. (CPS) is a programming style where the control is passed
explicitly in the form of a continuation. So, using the process to transform functions into CPS
[13, 14], we have the following code for the impl_free function:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a ) : ’a
= match phi with

| Prop t → if t = bot then k (L_wi (LBottom)) else k (FNeg_wi (L_wi
LBottom))

| Var i → k (L_wi (LVar i))
| Neg phi1 → impl_free_cps phi1 (fun processed_phi1 → k (FNeg_wi
processed_phi1))

| Or phi1 phi2 → impl_free_cps phi1 (fun impl_left →
impl_free_cps phi2 (fun impl_right → k (FOr_wi impl_left impl_right)))

| And phi1 phi2 → ...
| Impl phi1 phi2 → impl_free_cps phi1 (fun impl_left →

impl_free_cps phi2 (fun impl_right → k (FOr_wi (FNeg_wi impl_left)
impl_right)))

end

let impl_free_main (phi: formula) : formula_wi
= impl_free_cps phi (fun x → x)

The process is straightforward; we add an extra parameter to the original function, in this case,
(k: formula_wi → ’a). Henceforth, we need to use this k function instead of returning
the values. For the case where phi is Prop t or Var i, we just apply our k function to the
corresponding constructor. When phi is Neg phi1, we write a new continuation that applies k
to the already processed formulae (processed_phi1), which is then passed to the next function
iterations. For the remaining cases, since there are two formulae associated with the constructor
(binary constructor), we write two new continuations instead of just one. The left continuation
is a direct recursion with phi2 and the right continuation as arguments. Furthermore, the right
continuation applies the k function to the corresponding constructor with both continuations
as arguments. The complete code is in the repository. To better illustrate, Table 4 shows the
execution of impl_free_cps for P → Q, step-by-step.

Correctness criteria. One interesting aspect of the proof of correctness of the functions in
CPS is the use of the corresponding function in direct-style as specification, since these ones
are pure and total. Briefly, we simply assure that the result of the CPS functions is equivalent to
the result of the functions in direct style.

10
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Step # Result
Initial Call impl_free_cps (Impl (Var P) (Var Q)) (fun k → k)

impl_free_cps (Var P) (fun impl_left →
1st Step impl_free_cps (Var Q) (fun impl_right →

k (FOr_wi (FNeg_wi impl_left) impl_right)))
2nd Step impl_free_cps (Var Q) (fun impl_right →

k (FOr_wi (FNeg_wi (L_wi (LVar P))) impl_right)))
3rd Step k (FOr_wi (FNeg_wi (L_wi (LVar P))) (L_wi (LVar Q)))
4th Step (FOr_wi (FNeg_wi (L_wi (LVar P))) (L_wi (LVar Q)))

Table 4
Computation of impl_free_cps for P → Q.

For the impl_free function in CPS, it is enough to ensure that the result is equivalent to
the result of the direct-style impl_free function applied to the continuation:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a ) : ’a
variant { phi }
ensures { result = k (impl_free phi) }

= ...

The specification of the function in direct style is then also applied to the function main,
responsible for calling the CPS functions with the identity function as continuation:

let impl_free_main (phi: formula) : formula_wi
ensures { forall v. eval v phi = eval_wi v result }

= ...

The proof time for each generated proof obligation can be observed in the Table 5. Once again,
if they were executed sequentially.

Observations. This implementation, uses types that represent grammars but, as mentioned
in Section 8, undergraduates learn it only with two sets of formulae. Using these types, most
correctness criterion are “automatically” ensured, because the functions output is tailored
according to its properties. We only need to ensure the equivalence of the evaluation of the
domain and codomain. However, with two sets of formulae we need to introduce well-formed
predicates to ensure certain criteria. For example, the wf_negations_of_literals well-
formed predicate ensures that a formula is in NNF.

These well-formed predicates increased the complexity of the CPS proof, as proof obligations
are generated concerning the validity of pre-conditions whenever a recursive call is made within
a continuation. In order to prove such a proof obligation, we need to specify the nature of
the continuation arguments. Thus, we encapsulate the well-formed predicates into new types
(invariant types). The following code represents the invariant type with the wf_negations_-
of_literals well-formed predicated encapsulated:

type nnfc_type = { nnfc_formula : formula_wi }
invariant { wf_negations_of_literals nnfc_formula }
by { nnfc_formula = FConst_wi True }

11
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Proof obligations A
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lemma VC for impl_free_cps lemma variant decrease 0.21 0.50
lemma postcondition 0.16 0.41 0.15

lemma VC for impl_free_main 0.01 0.05 0.02
lemma VC for nnfc_cps 0.05 0.46
lemma VC for nnfc_main 0.01 0.04 0.03
lemma VC for distr_cps 0.21 0.15 0.22
lemma VC for distr_main 0.01 0.06 0.03
lemma VC for cnfc_cps 0.24 0.77 0.22
lemma VC for cnfc_main 0.01 0.05 0.02
lemma VC for t_main 0.01 0.05 0.02

Table 5
Aggregated proof time of CNF-CPS proof obligations.

With this, the return type of the functions has been changed to an invariant type rather than
a normal type. So, the post-conditions now involves the comparison of two invariant types,
which raises some interesting challenges.

Difficulties in completing the proof. Comparing two invariant types involves providing
them a witness, i.e., values with the concerned type; only then it is possible to prove that two
values of the same type respect the invariant. However, as the invariant type in Why3 is an
opaque type, having only access to its projections, it is not possible to construct an inhabitant
of this type in the logic, thus making it impossible to compare them. This lemma translates
such a behaviour:

lemma types: forall x y. x.nnfc_formula = y.nnfc_formula → x = y

It is not possible to prove this lemma because having only access to record projections can not
ensure that, in this case, the field nnfc_formula is the only field of this record type. Given
this limitation of Why3 [15], which in this case precludes the proof of the post-condition, we
have tried to compare the formula of each type with an extensional equality predicate (==) and
use this predicate as post-condition instead of polymorphic structural equality (=).

predicate (==) (t1 t2: nnfc_type) = t1.nnfc_formula = t2.nnfc_formula

Even with extensional equality, it was not possible to complete the proof. This is due to the
fact that for the base cases, given the application to the continuation, we always come across
with comparison of records and in the other cases it is not possible to specify the functions of
continuation in the recursive calls. This lack of success led to the search for other approaches
that would, eventually, achieve the same advantages as the CPS transformation.

What is the problem with CPS?. The transformation in CPS always adds a function as an
argument, thus passing to a higher-order function. Since Why3 is a platform that, for reasons

12
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of automation, operates on a first-order language, the solution is to “go back” to first-order. The
defunctionalization technique emerged as a possible approach.

Defunctionalization. Defunctionalization is a program transformation technique to convert
high-order programs into first-order ones. Originally, it was introduced by Reynolds as a
technique to transform a higher-order interpreter into a first-order one [16]. This technique
has been used to derive abstract machines for different strategies of evaluation of the lambda-
calculus from compositional interpreters [10]. It produces an evaluator, close to a first-order
abstract machine.

The approach we follow herein is tailored for Why3 [17, 18]3. In this work we extend the
initial explorations developed by Pereira with more ambitious use-cases, validating the approach.

Transformation process. The defunctionalization technique consists of a “mechanical”
transformation in two steps:

1. Get a first order representation of the function continuations, using algebraic data types,
and replace the continuations with this new representation.

2. Generate a new function (apply) which replaces the applications of functions in the
original program.

Applying this process to the impl_free function in CPS lead us to the following representation
for the function continuations:

type impl_kont = KImpl_Id | KImpl_Neg impl_kont
| KImpl_OrLeft impl_kont formula | KImpl_OrRight impl_kont formula_wi
| KImpl_AndLeft impl_kont formula | KImpl_AndRight impl_kont formula_wi
| KImpl_ImplLeft impl_kont formula | KImpl_ImplRight impl_kont formula_wi

The constructor KImpl_id represents the identity function, and the constructor KImpl_Neg
represents the continuation of the constructor FNeg_wi. The remaining cases contain two
continuation functions, so two constructors are created, one left and one right. We chose
to use the left and right nomenclatures because this represents the natural order of the
formula in the abstract syntax tree.

We now replace the continuations with this new representation of the function continuations:

let rec impl_free_defun (phi: formula) (k: impl_kont) : formula_wi
= match phi with

...
| Neg phi1 → impl_free_defun phi1 (KImpl_Neg k)
| Or phi1 phi2 → impl_free_defun phi1 (KImpl_OrLeft k phi2)

...
end

Then we introduce the apply function, which replaces the applications of the continuation.
This function is mutually recursive with the impl_free_defun. The identity constructor
simply returns the formula argument, where the KImpl_Neg constructor recursively calls

3References 13 and 14 are of the same article but in different languages: 13 is in French; 14 in Portuguese.
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the impl_apply function with its argument k and the formula already processed (without
implications) applied to the FNeg_wi constructor. For the remaining cases:

• if it is a Left “continuation” constructor, we call the impl_free_defun function with
phi2 (the right side formula of the corresponding head constructor); and the Right
“continuation” constructor, applied to k – the continuation argument of the left constructor
– and to impl_left – the left side already processed (without implications);

• if it is a Right “continuation” constructor, we recursively call the impl_apply function
with two arguments: the application k and the result of applying the corresponding
formula constructor to the impl_left and impl_right.

with impl_apply (k: impl_kont) (arg: formula_wi) : formula_wi = match k with
| KImpl_Id → let x = arg in x
| KImpl_Neg k → let processed_phi1 = arg in

impl_apply k (FNeg_wi processed_phi1)
| KImpl_OrLeft k phi2 → let impl_left = arg in

impl_free_defun phi2 (KImpl_OrRight k impl_left)
| KImpl_OrRight k impl_left → let impl_right = arg in

impl_apply k (FOr_wi impl_left impl_right)
...
end

Finally, we replace the applications of the continuation with the impl_apply function:

let rec impl_free_defun (phi: formula) (k: impl_kont) : formula_wi
= match phi with

| Prop t → if t = bot then impl_apply k (L_wi (LBottom))
else impl_apply k (FNeg_wi (L_wi LBottom))

| Var i → impl_apply k (L_wi (LVar i))
...
end

The impl_free_defun is the result of the defunctionalization transformation of the
impl_free_cps function.

Proof of correctness. In order to specify this version, we have to stipulate a contract to the
function impl_free_defun. The output value of this function is the result of applying the
continuation k to the formula without implications. Henceforth, similar to the CPS version, it
would be reasonable to set result = k (impl_free phi) as post-condition for this function.

However, since these functions can have effects, e.g., divergence, this specification could
quickly introduce logical inconsistencies. Accordingly, we define an abstraction barrier between
the logic and the program, restricting, therefore, the specification language. Moreover, we
abstract these functions in the form of a pair of predicates that represent their precondition and
post-condition [19].

So using this notation the post-condition for the function impl_free_defun is now:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a ) : ’a
ensures { post k (impl_free phi) result }

= ...

14
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This post-condition establishes a relationship between the value passed to the continuation k (a
formula without implications) and the output (result). Following this methodology, we can,
also, specify the anonymous functions used inside impl_free_cps function.

The defunctionalized program specification is the same as the original program. However,
given the existence of an additional function generated by the defunctionalization process
(the apply function), a specification must be provided. Since the apply function simulates
the application of a function to its argument, the only specification we can give it is that its
post-condition is the post-condition of the function k [17].

To be able to use the direct-style functions as a specification, we have created a post predicate
that gathers the post-conditions of the direct-style function. As for the apply function, such
predicate performs case analysis on the continuation type; and for each constructor, we copy
the post-condition present in the corresponding abstraction specification [17].

For a better understanding, we subdivide our function with the related abstraction and present
the specific case of the predicate. The signature of the predicate post is:

predicate impl_post (k: impl_kont) (arg result: formula_wi)

The base case is the identity continuation that returns the arg argument.

| KImpl_Id → let x = arg in x = result

The specification for the function used inside of the Neg case of our impl_free_cps function
is:

| Neg phi1 → impl_free_cps phi1 (fun processed_phi1 →
ensures { post k (KNeg_wi processed_phi1) result }

k (FNeg_wi processed_phi1))

Therefore, in the predicate post, we copy the post-condition of our abstraction to the corre-
sponding case (KImpl_Neg):

| KImpl_Neg k → let processed_phi1 = arg in
impl_post k (FNeg_wi processed_phi1) result

For the remaining cases, there are two continuations, and each has its anonymous specification.
Therefore, for these cases, our post predicate gathers the specific specification and applies it to
the corresponding continuation constructor. Let us consider the following abstraction for the
disjunction case of the impl_free_cps function:

| Or phi1 phi2 → impl_free_cps phi1 (fun impl_left →
ensures { post k (FOr_wi impl_left (impl_free phi2)) result }

impl_free_cps phi2 (fun impl_right →
ensures { post k (FOr_wi impl_left impl_right) result }

k (FOr_wi impl_left impl_right)))

So, applying the same methodology, each abstraction is copied to the corresponding case of the
predicate post. The post-condition of the function continuation impl_left is now the body of
the function for the case KImpl_OrLeft:

| KImpl_OrLeft k phi2 → let impl_left = arg in
impl_post k (FOr_wi impl_left (impl_free phi2)) result

Lastly, the impl_right post-condition is applied to the KImpl_OrRight constructor:

15
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| KImpl_OrRight k impl_left → let impl_right = arg in
impl_post k (FOr_wi impl_left impl_right) result

The complete abstraction specification (anonymous specification of each continuation) and the
full post predicate are in the project repository4.

Finally, we use the impl_post predicate to specify the impl_free defunctionalized function:

let rec impl_free_defun (phi: formula) (k: impl_kont) : formula_wi
ensures{impl_post k (impl_free phi) result}

= ...

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi
ensures{impl_post k phi result}

= ...

Results. The proof of correctness of the defunctionalized version of the algorithm 𝑇 is
naturally processed by Why3, with each proof objective being proved in less than one second
as shown in Table 6.

Proof obligations A
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lemma VC for impl_free_defun 0.16 0.17
lemma VC for impl_apply 0.04 0.14
lemma VC for impl_defun_main 0.02 0.07
lemma VC for nnfc_defun 7.37 0.20
lemma VC for nnfc_apply 0.05 0.17
lemma VC for nnfc_defun_main 0.02 0.08
lemma VC for distr_defun 0.25 0.14
lemma VC for distr_apply 0.02 0.12
lemma VC for distr_defun_main 0.02 0.09
lemma VC for cnfc_defun 0.03 0.12
lemma VC for cnfc_apply 0.10 0.12
lemma VC for cnfc_defun_main 0.02 0.08
lemma VC for t 0.02 0.10

Table 6: Proof time of each defunctionalization proof obligation

4https://gitlab.com/releaselab/factor/formally-verified-bug-free-implementations-of-logical-algorithms
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8. Conclusions and Observations

Classical logical algorithms presented as recursive functions to undergraduates can have a very
close functional implementation that is easy to prove correct with a high degree of automa-
tion. We develop herein an exercise: a pure functional implementation of the conversion of
propositional formulae to normal conjunctive normal forms. The implementation was proved
sound with small effort, basically following from the assertions one naturally associates with
the code to prove it correct. We defined the theories before, with all the properties needed;
therefore, the proofs were clear and naturally processed. This reinforces the conclusion that it
is feasible to show to students correctness proofs of such implementations. This paper presents
thus a successful proof-of-concept of formally verified bug-free implementations of (logical)
algorithms.

The CPS and Defunctionalization techniques produce code with explicit stack structure since
each function call return a function (continuation). These techniques give full control over
program flow, allowing to, in the future, introduce a mechanism that can stop and resume the
execution. The CPS transformation adds a function (continuation) as an argument, thus turning
it a higher-order function. However, in Why3 it is not possible to specify the nature of the
continuation arguments, and Why3 also has limitations regarding the comparison of invariant
types, which hampers the verification process. The defunctionalization technique produces a
close version of a first-order abstract machine. Being this version and the direct-style first-order
implementations, Why3 naturally processes the proofs, as seen in Table 3 and 6 each proof
obligation have been proved in less than a second.

Notwithstanding the expansion possibilities of this proof-of-concept, in the short term, we
consider it is more relevant to implement the Horn algorithm and perform its correctness
(ongoing) and the step-by-step execution. Lastly, it is also important to continue applying this
approach to other algorithms of Computational Logic courses, like the resolution algorithm.
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A. Why3 Lemmas of our Boolean Algebra representation

The following lemmas defines the properties of our Boolean Algebra representation. The
full code can be accessed in https://gitlab.com/releaselab/factor/formally-verified-bug-free-
implementations-of-logical-algorithms/-/blob/master/booltheory.mlw.

(* Lemma A.1 *)
lemma and_abso_elem: forall x. x /*\ bot = bot

(* Lemma A.2 *)
lemma or_abso_elem: forall x. x \*/ top = top

(* Lemma A.3 *)
lemma and_neutral_elem: forall x. x /*\ top = x

(* Lemma A.4 *)
lemma or_neutral_elem: forall x. x \*/ bot = x

(* Lemma A.5 *)
lemma and_assoc: forall x y z. x /*\ (y /*\ z) = (x /*\ y) /*\ z

(* Lemma A.6 *)
lemma or_assoc: forall x y z. x \*/ (y \*/ z) = (x \*/ y) \*/ z

(* Lemma A.7 *)
lemma and_comm: forall x y : t. x /*\ y = y /*\ x

(* Lemma A.8 *)
lemma or_comm: forall x y : t. x \*/ y = y \*/ x

(* Lemma A.9 *)
lemma and_distr: forall x y z : t. x /*\ ( y \*/ z) = (x /*\ y ) \*/ (x /*\

z)

(* Lemma A.10 *)
lemma or_distr: forall x y z : t. x \*/ (y /*\ z) = (x \*/ y) /*\ (x \*/ z)

(* Lemma A.11 *)
lemma compl_bot: forall x : t. x /*\ neg x = bot

(* Lemma A.12 *)
lemma compl_top: forall x : t. x \*/ neg x = top

(* Lemma A.13 *)
lemma repr_of_top : (top) = (neg (bot))

(* Lemma A.14 *)
lemma doubleneg: forall b. neg (neg b) = b
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(* Lemma A.15 *)
lemma deMorgan_and: forall x1 x2. neg (x1 /*\ x2) = ((neg x1) \*/ (neg x2))

(* Lemma A.16 *)
lemma deMorgan_or: forall x1 x2. neg (x1 \*/ x2) = ((neg x1) /*\ (neg x2))
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