
Querying the Guarded Fragment via Resolution
(Extended Abstract)
Sen Zheng, Renate A. Schmidt

Department of Computer Science, University of Manchester, UK

Abstract
The problem of answering Boolean conjunctive queries over the guarded fragment is decidable, however,

as yet no practical decision procedure exists. In this paper, we present a resolution decision procedure to

address this problem. In particular, we show that using the top-variable inference system, the separation

rule and a form of dynamic renaming, one can derive a saturated set of query clauses and guarded

clauses. As far as we know, this provides the first practical decision procedure for answering Boolean

conjunctive queries over the guarded fragment.

Keywords
Resolution Decision Procedure, Guarded Fragment, Boolean Conjunctive Query Answering

1. introduction

Answering queries over knowledge bases is at the heart of knowledge representation research.

In this work, we are interested in the problem of answering Boolean conjunctive queries. A

Boolean conjunctive query (BCQ) is a first-order formula of the form 𝑞 = ∃𝑥𝜙(𝑥) where 𝜙 is a

conjunction of atoms, in which only constants and variables are arguments. Given a Boolean

conjunctive query 𝑞, a set of rules Σ and a database𝒟, our aim is to check Σ∪𝒟 |= 𝑞. Important

problems in many research areas, such as query evaluation, query entailment [1] and query

containment in database research [2], and constraint-satisfaction problem and homomorphism

problems in general AI research [3] can be recast as a BCQ answering problem.

In this work, we consider the case when the rules Σ are expressed in the guarded fragment [4].

Formulae in the guarded fragment (GF) are equlity-free first-order formulae without function

symbols, in which the quantification is restricted to the forms of ∀𝑥(𝐺→ 𝜙) and ∃𝑥(𝐺 ∧ 𝜙)
such that the atom 𝐺 contains all the free variables of 𝜙. Satisfiability in many decidable

propositional modal logics such as 𝒦, 𝒟, 𝒮5 and 𝒯 can be encoded as satisfiability of formulae

in GF (using the standard translation to first-order logic [5, Chapter 2]). GF inherits robust

decidability, captured by the tree model property [6], from modal logic [7, 8], hence, there

are intense investigation from a theoretical perspective for GF [9, 4, 7] and practical decision

procedures have been developed for it [10, 11, 12, 13].

In ontology-mediated query answering systems [14], the description logic 𝒜ℒ𝒞ℋ𝒪ℐ and its

fragments [15, 16, 17, 18], and guarded existential rules [19] are commonly used ontological

languages. A description logic axiom can easily map to a guarded formula in which the arities

PAAR 2020: Seventh Workshop on Practical Aspects of Automated Reasoning, June 29–30, 2020, Paris, France (virtual)
� 0000-0003-4415-811X (S. Zheng); 0000-0002-6673-3333 (R. A. Schmidt)

© 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

167

https://orcid.org/0000-0003-4415-811X
https://orcid.org/0000-0002-6673-3333
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Sen Zheng et al. CEUR Workshop Proceedings 167–177

of predicate symbols and the number of variables are limited. Also, guarded existential rules

can be seen as Horn guarded formulae. Querying GF is known to be 2ExpTime-complete [20],

however, as yet there has been insufficient effort to develop practical querying procedures. In

this work, we present a resolution decision procedure to solve BCQ answering problems in GF.

Resolution provides a powerful method for developing practical decision procedures as has

been shown in [11, 21, 12, 22, 23, 24, 25] for example.

One of the main challenges in this work is the handling of BCQs, since these formulae, e.g.,

∃𝑥𝑦𝑧(𝑅𝑥𝑦 ∧𝑅𝑦𝑧), are beyond GF. By simply negating a BCQ, one can obtain a query clause: a

clause containing only negative literals in which only variables and constants are arguments,

such as ¬𝑅𝑥𝑦 ∨ ¬𝑅𝑦𝑧. One can take query clauses as (hyper-)graphs where variables are

vertices and literals are edges. Then we use a separation rule Sep [26] (which is also referred to

as ‘binary splitting rule with naming’ [27]) and the splitting rule Split [28] to cut branches off

query clauses. Each ‘cut branch’ follows the guardedness pattern, namely is a guarded clause. In

general, we found that if a query clause 𝑄 is acyclic, one can transform 𝑄 into a set of guarded

clauses by exhaustively applying separation and splitting to 𝑄. That an acyclic BCQ can be

equivalently rewritten as a guarded formula is also reflected in other works [29, 30]. If a query

clause is cyclic, after cutting off its branches, one can obtain a query clause 𝑄 that only consists

of variable cycles, i.e., each variable in 𝑄 connects two distinct literals that share non-inclusive

variable sets. We use top variable resolution TRes to handle such query clauses, so that by

resolving multiple literals in 𝑄, the variable cycles are broken. Then we use a dynamic renaming

technique T-Trans, to transform a TRes-resolvent into a query clause and guarded clauses. We

show that only finitely many definers are introduced by Sep and T-Trans.

Top variable resolution TRes is inspired by the ‘MAXVAR’ technique in deciding the loosely

guarded fragment [11, 12], which later adjusted in [13] to solve BCQs answering problem over

the Horn loosely guarded fragment. Interestingly, we discovered that separation and splitting

in query rewriting behaves like GYO-reduction represented in [31], where cyclic queries [32]

are identified by recursively removing ‘ears’ in the hypergraph of the given cyclic queries.

A similar query rewriting procedure is ‘squid decomposition’ [33], aiming to rewrite BCQs

over Datalog
+/−

using the chase approach [34]. In a squid decomposition, a query is regarded

as a squid-like graph in which branches are ‘tentacles’ and variable cycles are ‘heads’. Squid

decomposition finds ground atoms that are complementary in the squid head, then uses ground

unit resolution to eliminate the heads. Our approach first uses Sep and Split to cut all ‘tentacles’,

and then uses TRes to break cycles in ‘heads’. Hence, grounding is not necessary.

Another task is building an inference system to reason with guarded clauses. Existing

inference systems for GF are either based on tableau (see [10, 35]) or resolution (see [11, 12, 13]).

Our aim is to develop an inference system in line with the framework in [28], as it provides a

powerful system unifying many different resolution refinement that exist in different forms of

standard resolution, hyper-resolution and selection-based resolution. We develop our system as

a variation of [12, 13], which are the only existing systems that decide GF, so that we can take

advantage of simplification rules and notions of redundancy elimination.

168



Sen Zheng et al. CEUR Workshop Proceedings 167–177

2. Preliminaries

Let C, F, P denote pairwise disjoint discrete sets of constant symbols 𝑐, function symbols 𝑓
and predicate symbols 𝑃 , respectively. A term is either a variable or a constant or an expres-

sion 𝑓(𝑡1, . . . , 𝑡𝑛) where 𝑓 is a 𝑛-ary function symbol and 𝑡1, ..., 𝑡𝑛 are terms. A compound
term is a term that is neither a variable nor a constant. A ground term is a term containing no

variables. An atom is an expression 𝑃 (𝑡1, . . . , 𝑡𝑛), where 𝑃 is an 𝑛-ary predicate symbol and

𝑡1, . . . , 𝑡𝑛 are terms. A literal is an atom 𝐴 (a positive literal) or a negated atom ¬𝐴 (a negative
literal). The terms 𝑡1, . . . , 𝑡𝑛 in literal 𝐿 = 𝑃 (𝑡1, . . . , 𝑡𝑛) are the arguments of 𝐿. A first-order
clause is a multiset of literals, presenting a disjunction of literals. An expression can be a term,

an atom, a literal, or a clause.

We use dep(𝑡) to denote the depth of a term 𝑡, formally defined as: if 𝑡 is a variable or

a constant, then dep(𝑡) = 0; and if 𝑡 is a compound term 𝑓(𝑢1, . . . , 𝑢𝑛), then dep(𝑡) =
1 +𝑚𝑎𝑥({dep(𝑢𝑖) | 1 ≤ 𝑖 ≤ 𝑛}). In a first-order clause 𝐶 , the length of 𝐶 means the number

of literals occurring in 𝐶 , denoted as len(𝐶), and the depth of 𝐶 means the deepest term depth

in 𝐶 , denoted as dep(𝐶). Let 𝑥, 𝒳 , 𝒜, 𝒞 denote a sequence of variables, a set of variables, a

set of atoms and a set of clauses, respectively. Let var(𝑡), var(𝐸) be a set of variables in a an

expression 𝐸.

The rule set Σ denotes a set of first-order formulae and the database 𝒟 denotes a set of

ground atoms. A Boolean conjunctive query (BCQ) 𝑞 is a first-order formula of the form ∃𝑥𝜙(𝑥)
where 𝜙 is a conjunction of atoms, in which arguments are only constants and variables. Thus

we can answer a Boolean conjunctive query Σ ∪ 𝐷 |= 𝑞 by checking the satisfiability of

Σ ∪𝐷 ∪ ¬𝑞. In this work, we particularly focus on the case when Σ is expressed in GF without

function symbols and equality.

3. From Logic Fragments to Clausal Sets

In this section, we provide the formal definitions of GF and define a structural transformation

so that guarded formulae and BCQs can be converted into suitable sets of clauses.

Definition 1 (Guarded Fragment). Without equality and function symbols, the guarded frag-

ment (GF) is a class of first-order formulae, inductively defined as follows:

1. ⊤ and ⊥ belong to 𝐺𝐹 .
2. If 𝐴 is an atom, then 𝐴 belongs to 𝐺𝐹 .
3. 𝐺𝐹 is closed under Boolean combinations.
4. Let 𝐹 belong to 𝐺𝐹 and 𝐺 an atom. Then ∀𝑥(𝐺 → 𝐹 ) and ∃𝑥(𝐺 ∧ 𝐹 ) belong to 𝐺𝐹 if

all free variables of 𝐹 are among variables of 𝐺. 𝐺 is referred to as guard.

Clausal Transformation. We now introduce the clausal transformation for GF and BCQs.

We use Q-Trans to denote our clausal transformation, which is a variation of the structural

transformation used in [11, 12, 13]. We explicitly assume that all free variables are existentially

quantified. Due to the page limit, we refer readers to [36] for detailed notions of clausal

transformation techniques.

169



Sen Zheng et al. CEUR Workshop Proceedings 167–177

If an input formula is a BCQ, then we simply negate the BCQ to obtain a query clause. Using

Q-Trans, a guarded formula 𝐹 can be transformed into a set of clauses as follows:

1. Add existential quantifiers for all free variables in 𝐹 and transform 𝐹 into negation

normal form, obtaining the formula 𝐹𝑛𝑛𝑓 .

2. Apply the structural transformation: introduce fresh predicate symbols 𝑑𝑖∀ for universally

quantified subformulae, obtaining 𝐹𝑠𝑡𝑟 .

3. Transform 𝐹𝑠𝑡𝑟 into prenex normal form and then apply Skolemisation, obtaining 𝐹𝑠𝑘𝑜.

4. Drop all universal quantifiers and transform 𝐹𝑠𝑘𝑜 into conjunctive normal form, obtaining

a set of guarded clauses.

We use the following notions to formally define query clauses and guarded clauses. A literal

is flat if each argument in it is either a constant or a variable. A literal is simple [12] if each

argument in it is either a variable or a constant or a compound term 𝑓(𝑢1, . . . , 𝑢𝑛) where each

𝑢𝑖 is a variable or a constant. A clause 𝐶 is called simple (flat) if all literals in 𝐶 are simple (flat).

A clause 𝐶 is covering if each compound term 𝑡 in 𝐶 satisfies var(𝑡) = var(𝐶).

Definition 2. A query clause is a flat first-order clause containing only negative literals.

Definition 3. A guarded clause 𝐶 is a simple and covering first-order clause satisfying the fol-
lowing conditions:

1. 𝐶 is either ground, or
2. 𝐶 contains a negative flat literal¬𝐺 satisfying var(𝐶) = var(𝐺). 𝐺 is referred to as guard.

4. Top Variable Inference System

In this section, we present the top variable based inference system from [13], inspired by [11],

which is enhanced with the splitting rule. The system is defined in the spirit of [28] and provides

a decision procedure for the loosely guarded fragment and querying the Horn loosely guarded

fragment [13]. The loosely guarded fragment [37] strictly subsumes GF by allowing multiple

guards that enjoy variable co-occurrence property. Based on the system in [13], we build a

system for querying the whole of GF.

Let ≻ be a strict ordering, called a precedence, on the symbols in C, F and P. An ordering ≻
on expressions is liftable if 𝐸1 ≻ 𝐸2 implies 𝐸1𝜎 ≻ 𝐸2𝜎 for all expressions 𝐸1, 𝐸2 and all

substitutions 𝜎. An ordering ≻ on literals is admissible, if i) it is well-founded and total on

ground literals, and liftable, ii) ¬𝐴 ≻ 𝐴 for all ground atoms 𝐴, iii) if 𝐵 ≻ 𝐴, then 𝐵 ≻ ¬𝐴 for

all ground atoms 𝐴 and 𝐵. A ground literal 𝐿 is (strictly) ≻-maximal with respect to a ground
clause 𝐶 if for any 𝐿′

in 𝐶 , 𝐿 ⪰ 𝐿′
(𝐿 ≻ 𝐿′

). A non-ground literal 𝐿 is (strictly) maximal with
respect to a non-ground clause 𝐶 if and only if there is a ground substitution 𝜎 such that 𝐿𝜎 is

(strictly) maximal with respect to 𝐶𝜎, that is, for all 𝐿′
in 𝐶 , 𝐿𝜎 ⪰ 𝐿′𝜎 (𝐿𝜎 ≻ 𝐿′𝜎). A selection

function Select(𝐶) selects a possibly empty set of occurrences of negative literals in a clause 𝐶
with no other restriction imposed. Inferences are only performed on eligible literals. A literal 𝐿
is eligible in a clause 𝐶 if either nothing is selected by the selection function Select(𝐶) and 𝐿
is a ≻-maximal literal with respect to 𝐶 , or 𝐿 is selected by Select(𝐶).

170



Sen Zheng et al. CEUR Workshop Proceedings 167–177

The top variable based inference system T-Inf containing the rules: Deduct, Split, Fact, Res,

TRes using the refinement T-Refine, given as follows.

𝑁
Deduct:

if 𝐶 is a conclusion of either Res, or TRes, or Fact, derived

from clauses in 𝑁 .𝑁 ∪ {𝐶}

𝑁 ∪ {𝐶 ∨𝐷}
Split: if 𝐶 and 𝐷 are non-empty and variable disjoint.

𝑁 ∪ {𝐶} | 𝑁 ∪ {𝐷}
𝐶 ∨𝐴1 ∨𝐴2Fact:

if no literal is selected in 𝐶 , and 𝐴1 is maximal w.r.t.

𝐶 ∨𝐴1 ∨𝐴2. 𝜎 is an mgu of 𝐴1 and 𝐴2.(𝐶 ∨𝐴1)𝜎

𝐵 ∨𝐷1 ¬𝐴 ∨𝐷
Res:

(𝐷1 ∨𝐷)𝜎

if i) either 𝐴 is selected, or nothing is selected in ¬𝐴∨𝐷 and ¬𝐴 is the maximal literal, ii) 𝐵 is

strictly ≻-maximal w.r.t. 𝐷1. The premises are variable disjoint and 𝜎 is an mgu of 𝐴 and 𝐵.

𝐵1 ∨𝐷1, . . . , 𝐵𝑚 ∨𝐷𝑚, . . . , 𝐵𝑛 ∨𝐷𝑛 ¬𝐴1 ∨ . . . ∨ ¬𝐴𝑚 ∨ . . . ∨ ¬𝐴𝑛 ∨𝐷
TRes:

(𝐷1 ∨ . . . ∨𝐷𝑚 ∨ ¬𝐴𝑚+1 ∨ . . . ∨ ¬𝐴𝑛 ∨𝐷)𝜎

if i) there exists an mgu 𝜎′
such that 𝐵𝑖𝜎

′ = 𝐴𝑖𝜎
′

for each 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛, making

¬𝐴1 ∨ . . . ∨ ¬𝐴𝑚 top-variable literals and being selected, and 𝐷 is positive, iv) no literal is

selected in 𝐷1, . . . , 𝐷𝑛 and 𝐵1, . . . , 𝐵𝑛 are strictly ≻-maximal w.r.t. 𝐷1, . . . , 𝐷𝑛, respectively.

The premises are variable disjoint and 𝜎 is an mgu such that 𝐵𝑖𝜎 = 𝐴𝑖𝜎 for all 𝑖 such that

1 ≤ 𝑖 ≤ 𝑚.

The top-variable literals are computed using ComputeTop(𝐶1, . . . , 𝐶𝑛, 𝐶) in three steps:

1. Without producing or adding the resolvent, compute an mgu 𝜎′
among 𝐶1 = 𝐵1 ∨

𝐷1, . . . , 𝐶𝑛 = 𝐵𝑛 ∨𝐷𝑛 and 𝐶 = ¬𝐴1 ∨ . . . ∨ ¬𝐴𝑛 ∨𝐷 such that 𝐵𝑖𝜎
′ = 𝐴𝑖𝜎

′
for each

𝑖 satisfying that 1 ≤ 𝑖 ≤ 𝑛.

2. Compute the variable order >𝑣 and =𝑣 over variables in ¬𝐴1 ∨ . . . ∨ ¬𝐴𝑛: 𝑥 >𝑣 𝑦 if

dep(𝑥𝜎′) > dep(𝑦𝜎′) and 𝑥 =𝑣 𝑦 if dep(𝑥𝜎′) = dep(𝑦𝜎′).

3. Based on >𝑣 and =𝑣 , identify the maximal variables in ¬𝐴1 ∨ . . . ∨ ¬𝐴𝑛, which we call

the top variables. The top-variable literals for an application of TRes to 𝐶 are literals in

𝐶 containing at least one top variable.

We use T-Refine to denote the following resolution refinement: i) a lexicographic path order-

ing ≻𝑙𝑝𝑜 [38] based on a precedence that any function symbol is larger than constant symbols,

and any constant symbol is larger than predicate symbols, ii) selection functions and iii) Algo-
rithm 1, which computes the eligible literals based on ≻𝑙𝑝𝑜 and selection functions. Given a

clause 𝐶 , eligible literals in it are either the (strictly)≻𝑙𝑝𝑜-maximal literals, denoted as Max(𝐶);
or selected literals, denoted as: Select(𝐶), SelectG(𝐶) and SelectT(𝐶). Select(𝐶) selects one

of negative compound literals in 𝐶 , SelectG(𝐶) selects one of guards in 𝐶 , and SelectT(𝐶) is

described in Lines 11–16 of Algorithm 1.

Theorem 1 ([28, 13, 12]). Let 𝑁 be a set of clauses that is saturated up to redundancy with
respect to T-Inf. Then, 𝑁 is unsatisfiable if and only if 𝑁 contains an empty clause.

171



Sen Zheng et al. CEUR Workshop Proceedings 167–177

Algorithm 1: Computing eligible literals in a clause 𝐶

1 if 𝐶 is ground then
2 return Max(𝐶) ◁ Negative or positive premise in Res or TRes
3 else if 𝐶 has negative compound terms then
4 return Select(𝐶) ◁ Negative premise in Res
5 else if 𝐶 has positive compound terms then
6 return Max(𝐶) ◁ Positive premise in Res or TRes
7 else if 𝐶 is a guarded clause then
8 return SelectG(𝐶) ◁ Negative premise in Res
9 else return SelectT(𝐶) ◁ Negative premise in TRes

10

11 Function SelectT(𝐶):
12 Select all negative literals ℒ in 𝐶
13 Find positive premises 𝐶1, . . . , 𝐶𝑛 of 𝐶
14 if 𝐶1, . . . , 𝐶𝑛 exist then return ComputeTop(𝐶1, . . . , 𝐶𝑛, 𝐶)
15 else return ℒ

5. Handling Query Clauses

We use the separation and splitting rules to ‘cut off’ branches of query clauses. A clause is

indecomposable if it cannot be partitioned into two non-empty variable-disjoint subclauses.

Using Split, a decomposable query clause can be transformed into a set of indecomposable

query clauses. Hence from now on, we assume all query clauses are indecomposable.

Given a query clause 𝑄, we use the notion of surface literal to divide variables in 𝑄 into

two kinds of variables, i.e., chained variables and isolated variables. We say 𝐿 is a surface literal
in a query clause 𝑄 if for any 𝐿′

in 𝑄 that is distinct from 𝐿, var(𝐿) ̸⊂ var(𝐿′). Let surface

literals in a query clause 𝑄 be 𝐿1, . . . , 𝐿𝑛 where 𝑛 ≥ 1. Then the chained variables in 𝑄 are

variables among

⋃︀
𝑖,𝑗∈𝑛

var(𝐿𝑖) ∩ var(𝐿𝑗) whenever var(𝐿𝑖) ̸= var(𝐿𝑗), i.e., variables that link

distinct surface literals containing non-inclusive variable sets, and isolated variables are the

other non-chained variables. Now we can present the separation rule:

𝑁 ∪ {𝐶 ∨𝐴 ∨𝐷}
Sep:

𝑁 ∪ {𝐶 ∨𝐴 ∨ 𝑑𝑠(𝑥),¬𝑑𝑠(𝑥) ∨𝐷}

if i) 𝐴 is negative surface literal containing both chained variables 𝑥 and isolated variables 𝑦, ii)

𝑥 ⊆ var(𝐷) and 𝑦 ̸⊆ var(𝐷), iii) var(𝐶) ⊆ var(𝐴), iv) 𝑑𝑠 is a definer.
Sep is a replacement rule in which the premise 𝐶 ∨ 𝐴 ∨𝐷 is immediately replaced by its

conclusions 𝐶 ∨𝐴 ∨ 𝑑𝑠(𝑥) and ¬𝑑𝑠(𝑥) ∨𝐷. We say a query clause containing only chained

variables is a chained-only query clause and a query clause containing only isolated variables

is an isolated-only query clause. E.g., ¬𝐴(𝑥1, 𝑥2) ∨ ¬𝐵(𝑥2, 𝑥3) ∨ ¬𝐶(𝑥3, 𝑥4) ∨ ¬𝐷(𝑥4, 𝑥1)
is a chained-only query clause where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are all chained variables, whereas

¬𝐴(𝑥1, 𝑥2, 𝑥3) ∨ ¬𝐵(𝑥2, 𝑥3) is an isolated-only query clause where 𝑥1, 𝑥2 and 𝑥3 are all

172



Sen Zheng et al. CEUR Workshop Proceedings 167–177

isolated variables. According to the definition of chained variables, if a query clause 𝑄 contains

no chained variables, then either 𝑄 contains only one surface literal, or all surface literals in 𝑄
share the same variables. Therefore

Lemma 1. An indecomposable isolated-only query clause is a guarded clause.

Now we look at how Sep handles indecomposable query clauses.

Lemma 2. Exhaustively applying Sep to an indecomposable query clause 𝑄 transforms it into

1. guarded clauses if 𝑄 is an acyclic query clause, or
2. guarded clauses and a chained-only query clause if 𝑄 is a cyclic query clause.

So far we have considered how Sep handles query clauses. However, Sep itself is not sufficient

to handle chained-only query clauses such as ¬𝐴1𝑥𝑦 ∨ ¬𝐴2𝑦𝑧 ∨ ¬𝐴3𝑥𝑧, where there exists a

so-called ‘variable cycle’ among 𝑥, 𝑦 and 𝑧. We employ the TRes rule to break such variable

cycles while avoiding term depth increase in derived clauses.

Example 1. Given a chained-only query clause 𝑄 and a set of guarded clauses 𝐶1, . . . , 𝐶6:

𝑄 = ¬𝐴1𝑥𝑦 ∨ ¬𝐴2𝑦𝑧 ∨ ¬𝐴3𝑧𝑥 ∨ ¬𝐵1𝑧𝑢 ∨ ¬𝐵2𝑢𝑤 ∨ ¬𝐵3𝑤𝑧

𝐶1 = 𝐴1(𝑓𝑥𝑦, 𝑥) ∨𝐷(𝑔𝑥𝑦) ∨ ¬𝐺1𝑥𝑦 𝐶2 = 𝐴2(𝑓𝑥𝑦, 𝑓𝑥𝑦) ∨ ¬𝐺2𝑥𝑦

𝐶3 = 𝐴3(𝑥, 𝑓𝑥𝑦) ∨ ¬𝐺3𝑥𝑦 𝐶4 = 𝐵1(𝑓𝑥𝑦, 𝑥) ∨ ¬𝐺4𝑥𝑦

𝐶5 = 𝐵2(𝑓𝑥𝑦, 𝑓𝑥𝑦) ∨ ¬𝐺5𝑥𝑦 𝐶6 = 𝐵3(𝑥, 𝑓𝑥𝑦) ∨ ¬𝐺6𝑥𝑦

ComputeTop(𝑄,𝐶1, . . . , 𝐶6) computes the mgu {𝑥/𝑓(𝑓(𝑓(𝑥1, 𝑦1), 𝑦′), 𝑦*), 𝑦/𝑓(𝑓(𝑥1, 𝑦1), 𝑦′),
𝑢/𝑓(𝑥1, 𝑦1), 𝑧/𝑓(𝑓(𝑥1, 𝑦1), 𝑦

′), 𝑤/𝑓(𝑥1, 𝑦1)} among 𝑄 and 𝐶1, . . . , 𝐶6. Hence 𝑥 is the only top
variable in 𝑄, so that TRes is performed on 𝑄, 𝐶1 and 𝐶3, deriving 𝑅 = ¬𝐺1𝑥𝑦 ∨ ¬𝐺3𝑥𝑦 ∨
𝐷(𝑔𝑥𝑦) ∨ ¬𝐴2𝑥𝑥 ∨ ¬𝐵1𝑥𝑢 ∨ ¬𝐵2𝑢𝑤 ∨ ¬𝐵3𝑤𝑥.

The first two figures in Figure 1 illustrate the variable relations of the flat literals in query

clause 𝑄 and in TRes-resolvent 𝑅 of Example 1. A cycle among 𝑥, 𝑦 and 𝑧 in 𝑄 is broken by

TRes. The new challenge in this example is that 𝑅 is neither a guarded clause nor a query

clause. On such resolvents we use the following structural transformation: we introduce fresh

predicate symbols 𝑑𝑡, and use ¬𝑑𝑡𝑥𝑦 to replace the literals that are introduced to the query

x

y z

A1

u

w

A2

A3

B1

B2 B3

Q:

y x u

w

G1, G3 B1

B2 B3

R: A2

x u

w

dt B1

B2 B3

Q1: A2

x u

w

B1

B2 B3

y

Q2:

Figure 1: Variable relations of flat literals in 𝑄, 𝑅, 𝑄1 and 𝑄2. From 𝑄 to 𝑅, TRes breaks the variable
cycle among 𝑥, 𝑦 and 𝑧 in 𝑄. From 𝑅 to 𝑄1, T-Trans transforms 𝑅 into a query clause 𝑄1. From 𝑄1 to
𝑄2, Sep cut off branches containing 𝐴2 and 𝑑𝑡, from 𝑄1.

173



Sen Zheng et al. CEUR Workshop Proceedings 167–177

clause, so that 𝑅 is transformed into: ¬𝐺1𝑥𝑦∨¬𝐺3𝑥𝑦∨𝐷(𝑔𝑥𝑦)∨𝑑𝑡𝑥𝑦 and ¬𝑑𝑡𝑥𝑦∨¬𝐴2𝑥𝑥∨
¬𝐵1𝑥𝑢 ∨ ¬𝐵2𝑢𝑤 ∨ ¬𝐵3𝑤𝑥. The former is a guarded clause and the latter is a query clause.

We apply denote such structural transformation as T-Trans and apply it as the following

manner: Let TRes derive the resolvent (¬𝐴𝑚+1 ∨ . . . ∨ ¬𝐴𝑛 ∨𝐷1 ∨ . . . ∨𝐷𝑚 ∨𝐷)𝜎 using

guarded clauses 𝐴1 ∨𝐷1, . . . , 𝐴𝑛 ∨𝐷𝑛 as the positive premises, a chained-only query clause

𝑄 = ¬𝐴1 ∨ . . . ∨ ¬𝐴𝑛 as the negative premise and a substitution 𝜎 such that 𝐵𝑖𝜎 = 𝐴𝑖𝜎 for

all 𝑖 such that 1 ≤ 𝑖 ≤ 𝑚 as an mgu. Then T-Trans introduces fresh predicate symbols 𝑑𝑡 to

transform 𝑅 into a set of clauses, in the following manner: Let 𝑥1, . . . , 𝑥𝑡 be top variables in

𝑄. Then we partition 𝑥1, . . . , 𝑥𝑡 into sets 𝒮1, . . . ,𝒮𝑠 such that i) each pair of sets contain no

common variable, and ii) each pair of variables in a set co-occurs in a literal of 𝑄. Then for each

set in 𝒮1, . . . ,𝒮𝑠 containing variables 𝒳 , if 𝒳 occur in 𝒜, we introduce a definer 𝑑𝑡 for 𝒟𝜎.

Lemma 3. Let 𝑄 be a chained-only query clause and 𝒞 be a set of guarded clauses, T-Trans
transforms TRes-resolvents of 𝑄 and 𝒞 (if TRes is applicable) into a set of guarded clauses and a
query clause, of which the length is smaller than that of 𝑄.

Using T-Trans, 𝑅 in Example 1 produces a query clause 𝑄1 = ¬𝑑𝑡𝑥𝑦 ∨ ¬𝐴2𝑥𝑥 ∨ ¬𝐵1𝑥𝑢 ∨
¬𝐵2𝑢𝑤 ∨ ¬𝐵3𝑤𝑥 and a guarded clause 𝑑𝑡𝑥𝑦 ∨ ¬𝐺1𝑥𝑦 ∨ ¬𝐺3𝑥𝑦 ∨𝐷(𝑔𝑥𝑦) with a T-definer

𝑑𝑡. The newly derived query clause 𝑄1 has branches, hence one can use Sep to cut the branch

¬𝑑𝑡𝑥𝑦∨¬𝐴2𝑥𝑥 from 𝑄1 by introducing a definer 𝑑𝑠, obtaining a guarded clause 𝑑𝑠𝑥∨¬𝑑𝑡𝑥𝑦∨
¬𝐴2𝑥𝑥 and a query clause 𝑄2 = ¬𝑑𝑠𝑥 ∨ ¬𝐵1𝑥𝑢 ∨ ¬𝐵2𝑢𝑤 ∨ ¬𝐵3𝑤𝑥, which is a chained-only

query clause. Then one can break the cycle in 𝑄2 by TRes and derives a resolvent that can be

Algorithm 2: Saturation procedure of query clauses and guarded clauses Q-Saturate
Input: A query clause 𝑄, a set of guarded clauses 𝒮

1 𝒮𝑄, 𝑄← SepSplit(𝑄)
2 𝒮 ← 𝒮𝒬 ∪ 𝒮
3 if 𝑄 is a chained-only query clause then
4 return SaturateCOQC(𝒮, 𝑄)

5 else return SaturateGC(𝒮 ∪𝑄);
6

7 Function SaturateCOQC(𝒮, 𝑄):
8 if 𝑄 is a guarded clause then return SaturateGC(𝒮 ∪𝑄);
9 else if i) TRes is not applicable to 𝑄 and SaturateGC(𝒮) or ii) all inferences

between 𝑄 and SaturateGC(𝒮) are redundant then
10 return SaturateGC(𝒮) ∪𝑄

11 else
12 𝑅← TRes(𝐶1, . . . , 𝐶𝑛, 𝑄) ; ◁ 𝐶1, . . . , 𝐶𝑛 ∈ SaturateGC(𝒮)
13 𝒮𝑅, 𝑄′ ← T-Trans(𝑅)
14 𝒮 ′, 𝑄′ ← SepSplit(𝑄′)
15 𝒮 ← 𝒮𝑅 ∪ 𝒮 ′ ∪ 𝒮𝑠𝑎𝑡
16 return SaturateCOQC(𝒮, 𝑄) ∪ SaturateCOQC(𝒮, 𝑄′)

174



Sen Zheng et al. CEUR Workshop Proceedings 167–177

later renamed into guarded clauses using T-Trans. The last two figures in Figure 1 show the

variable relations in 𝑄1 and 𝑄2 (the unary ¬𝑑𝑠𝑥 is omitted). We can see how Sep cut off 𝑄1’s

branches.

Noticing that all the ‘byproducts’ of Sep, TRes and T-Trans are guarded clauses, we realise

that, given a query clause 𝑄, these rules only produce guarded clauses from 𝑄. In fact, we

found that the given query clause will eventually be reduced to either a guarded clause or

chained-only query clauses. Algorithm 2 formally describe the procedure to saturate query

clauses and guarded clause, namely Q-Saturate. SepSplit(𝑄) is a function that recursively

applies Sep and Split to a query clause 𝑄, outputting guarded clauses 𝒮𝑄, and either an

isolated-only query clause (a guarded clause, Lemma 1) or a chained-only query clause 𝑄.

SaturateCOQC(𝒮, 𝑄) is a function that saturates guarded clauses 𝒮 and a chained-only query

clause 𝑄. SaturateGC(𝒮) is a function that uses T-Inf system to saturate guarded clauses 𝒮 .

TRes(𝐶1, . . . , 𝐶𝑛, 𝑄) denotes a function that applies TRes to guarded clauses 𝐶1, . . . , 𝐶𝑛 and

a chained-only query clause 𝑄, and outputs the resolvent 𝑅. T-Trans(𝑅) is a function that

applies T-Trans to the TRes-resolvent 𝑅, deriving guarded clause 𝒮𝑅 and a query clause 𝑄′
.

6. Querying the Guarded Fragment

Since it is known that T-Inf decides guarded clauses [12, 11], we consider the new rules Sep
and T-Trans. The new rules preserve satisfiability equivalence:

Lemma 4. In any application of Sep and T-Trans, the premise is satisfiable if and only if its
conclusions are satisfiable.

Lemma 5. Sep and T-Trans only introduce a finitely bounded number of definers.

We can show that T-Inf combined with Q-Saturate is sound and refutationally complete.

Theorem 2. Let 𝑁 be a set of clauses that is saturated up to redundancy with respect to T-Inf

and Q-Saturate. Then, 𝑁 is unsatisfiable if and only if 𝑁 contains an empty clause.

Theorem 3. Q-Saturate decides guarded clauses and query clauses. Together with the clausal
transformation Q-Trans, Q-Saturate solves BCQ answering for GF.

7. Conclusion and Future Work

In this paper, we present, as far as we know, the first practical query answering procedure

Q-Saturate that solves BCQ answering for GF. During the investigation, we found it interesting

that the same resolution-based techniques in automated reasoning are connected to techniques

found in the database literature. Since the mainstream query answering procedure in database

research uses a tableau-like chase approach [34], it would be interesting to see how a resolution-

based approach performs in practice. We will implement the proposed procedure and conduct

empirical evaluations as future works.

175



Sen Zheng et al. CEUR Workshop Proceedings 167–177

Acknowledgments

We thank Uwe Waldmann and PAAR 2020 reviewers for the very useful comments. Sen Zheng’s

work is partially sponsored by the Great Britain-China Educational Trust.

References

[1] J.-F. Baget, M. Leclére, M.-L. Mugnier, E. Salvat, On rules with existential variables: Walking

the decidability line, Artif. Int. 175 (2011) 1620–1654.

[2] A. K. Chandra, P. M. Merlin, Optimal implementation of conjunctive queries in relational

data bases, in: Proc. SToC’77, ACM, 1977, pp. 77–90.

[3] M. Y. Vardi, Constraint satisfaction and database theory: A tutorial, in: Proc. PODS’00,

ACM, 2000, pp. 76–85.

[4] H. Andréka, I. Németi, J. van Benthem, Modal languages and bounded fragments of

predicate logic, J. Philos. Logic 27 (1998) 217–274.

[5] P. Blackburn, M. d. Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoretical

Computer Science, Cambridge Univ. Press, 2001.

[6] M. Y. Vardi, Why is modal logic so robustly decidable?, in: Proc. DIMACS Workshop’96,

DIMACS/AMS, 1996, pp. 149–183.

[7] E. Grädel, On the restraining power of guards, J. Symb. Logic 64 (1999) 1719–1742.

[8] I. Hodkinson, Loosely guarded fragment of first-order logic has the finite model property,

Studia Logica 70 (2002) 205–240.

[9] E. Grädel, Decision procedures for guarded logics, in: Proc. CADE’16, volume 1632 of

LNCS, Springer, 1999, pp. 31–51.

[10] J. Hladik, Implementation and optimisation of a tableau algorithm for the guarded fragment,

in: Proc. TABLEAUX’02, volume 2381 of LNCS, Springer, 2002, pp. 145–159.

[11] H. de Nivelle, M. de Rijke, Deciding the guarded fragments by resolution, J. Symb. Comput.

35 (2003) 21–58.

[12] H. Ganzinger, H. de Nivelle, A superposition decision procedure for the guarded fragment

with equality, in: Proc. LICS’99, IEEE, 1999, pp. 295–303.

[13] S. Zheng, R. A. Schmidt, Deciding the loosely guarded fragment and querying its Horn

fragment using resolution, in: Proc. AAAI’20, AAAI, 2020, pp. 3080–3087.

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, Ontology-based

database access, in: Proc. SEBD’07, SEBD, 2007, pp. 324–331.

[15] S. Kikot, R. Kontchakov, M. Zakharyaschev, Conjunctive query answering with OWL 2

QL, in: Proc. KR’12, AAAI, 2012, pp. 275–285.

[16] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and

efficient query answering in description logics: The DL-Lite family, J. Automat. Reasoning

39 (2007) 385–429.

[17] J. Mora, R. Rosati, O. Corcho, Kyrie2: Query rewriting under extensional constraints in

ℰℒℋ𝒪ℐ , in: Proc. ISWC’14, volume 8796 of LNCS, Springer, 2014, pp. 568–583.

[18] R. Rosati, A. Almatelli, Improving query answering over DL-Lite ontologies, in: Proc.

KR’10, AAAI, 2010, pp. 290–300.

176



Sen Zheng et al. CEUR Workshop Proceedings 167–177

[19] A. Calì, G. Gottlob, T. Lukasiewicz, Datalog+/-: A unified approach to ontologies and

integrity constraints, in: Proc. ICDT’09, ACM, 2009, pp. 14–30.

[20] V. Bárány, G. Gottlob, M. Otto, Querying the guarded fragment, in: Proc. LICS’10, IEEE,

2010, pp. 1–10.

[21] H. Ganzinger, U. Hustadt, C. Meyer, R. A. Schmidt, A resolution-based decision procedure

for extensions of K4, in: Proc. AiML’98, CSLI, 1998, pp. 225–246.

[22] C. Geissler, K. Konolige, A resolution method for quantified modal logics of knowledge

and belief, in: Proc. TARK’86, Morgan Kaufmann, 1986, pp. 309–324.

[23] U. Hustadt, Resolution Based Decision Procedures for Subclasses of First-order Logic, Ph.D.

thesis, Univ. Saarlandes, Saarbrücken, Germany, 1999.

[24] U. Hustadt, R. A. Schmidt, On evaluating decision procedures for modal logic, in: Proc.

IJCAI’97, Morgan Kaufmann, 1997, pp. 202–207.

[25] L. Bachmair, H. Ganzinger, U. Waldmann, Superposition with simplification as a decision

procedure for the monadic class with equality, in: In Proc. KGC’93, volume 713 of LNCS,

Springer, 1993, pp. 83–96.

[26] R. A. Schmidt, U. Hustadt, A resolution decision procedure for fluted logic, in: Proc.

CADE’00, volume 1831 of LNCS, Springer, 2000, pp. 433–448.

[27] A. Riazanov, A. Voronkov, Splitting Without Backtracking, Research Report CSPP-10, Univ.

Manchester, 2001.

[28] L. Bachmair, H. Ganzinger, Resolution theorem proving, in: A. Robinson, A. Voronkov

(Eds.), Handbook of Automated Reasoning, Elsevier and MIT Press, 2001, pp. 19–99.

[29] G. Gottlob, N. Leone, F. Scarcello, Robbers, marshals, and guards: Game theoretic and

logical characterizations of hypertree width, J. Comp. and Syst. Sci. 66 (2003) 775–808.

[30] V. Bárány, B. ten Cate, L. Segoufin, Guarded negation, J. ACM 62 (2015) 22:1–22:26.

[31] C. Yu, M. Ozsoyoglu, An algorithm for tree-query membership of a distributed query, in:

Proc. COMPSAC’79, IEEE, 1979, pp. 306–312.

[32] M. Yannakakis, Algorithms for acyclic database schemes, in: Proc. VLDB’81, VLDB

Endowment, 1981, pp. 82–94.

[33] A. Calì, G. Gottlob, M. Kifer, Taming the infinite chase: Query answering under expressive

relational constraints, J. Artif. Int. Res. 48 (2013) 115–174.

[34] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases: The Logical Level, Addison-

Wesley Longman Publishing Co., Inc., 1995.

[35] C. Hirsch, S. Tobies, A tableau algorithm for the clique guarded fragment, in: Proc.

AiML’00, World Scientific, 2000, pp. 257–277.

[36] M. Baaz, U. Egly, A. Leitsch, J. Goubault-Larrecq, D. A. Plaisted, Normal form transfor-

mations, in: J. A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning (in 2

volumes), Elsevier and MIT Press, 2001, pp. 273–333.

[37] J. van Benthem, Dynamic bits and pieces, Research Report LP-97-01, Univ. Amsterdam,

1997.

[38] N. Dershowitz, Orderings for term-rewriting systems, Theoretical Comp. Sci. 17 (1982)

279–301.

177


	1 introduction
	2 Preliminaries
	3 From Logic Fragments to Clausal Sets
	4 Top Variable Inference System
	5 Handling Query Clauses
	6 Querying the Guarded Fragment
	7 Conclusion and Future Work

