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Abstract
A novel way to use SMT (Satisfiability Modulo Theories) solvers to compute the tropical prevariety
(resp. equilibrium) of a polynomial system is presented. The new method is benchmarked against a
naive approach that uses purely polyhedral methods. It turns out that the SMT approach is faster than
the polyhedral approach for models that would otherwise take more than one minute to compute, in
many cases by a factor of 60 or more, and in the worst case is only slower by a factor of two. Furthermore,
the new approach is an anytime algorithm, thus offering a way to compute parts of the solution when
the polyhedral approach is infeasible.

1. Introduction

Tropical geometry [1] has been used to find the order of time scales of variables in chemical re-
action networks [2] and for model reduction. It has applications in economics and optimizations
like network flows and scheduling.

Satisfiability Modulo Theories (SMT) checking [3] is usually built on top of SAT (Boolean
satisfiability), which is the first problem that was proved, in the form of 3SAT, to be NP-complete.
SMT checking allows one to test a logical formula with unknowns and relations for satisfiability
and, if it is so, for an assignment of the unknowns that leads to the formula’s satisfiability. SMT
checking is used today in verification of computer hardware and software and has advanced
much in recent years due to advances in technology and industrial applications [4].

We present a novel approach to use SMT checking to compute the tropical equilibrium (resp.
prevariety). We believe this to be of use, since SMT is a very active field of research, yet problems
of tropical geometry have not been solved with SMT until now.

In the following, we describe the idea of tropical geometry and SMT in the remainder of this
section. In Sect. 2 we describe the exact problem and Sect. 3 describes the proposed solution
and several possible improvements. Section 4 has results of speed tests of our implementation
SMTcut for various SMT solvers and possible optimizations.
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1.1. Some Tropical Geometry

Given a system of polynomial equations with zero r.h.s., the basic idea is to express its indeter-
minates 𝑥𝑖 ∈ R+ and parameters 𝑘𝛼 ∈ R+ as powers of some 𝜀 ∈ (0, 1) times a value 𝑥̄𝑖 resp.
𝑘𝛼 that is roughly 1. That is, indeterminates become 𝑥𝑖 = 𝑥̄𝑖𝜀

𝑎𝑖 and parameters 𝑘𝛼 = 𝑘𝛼𝜀
𝛾𝛼 ,

with 𝑥̄𝑖 ≈ 1 ≈ 𝑘𝛼.
Let 𝑥 ∈ R𝑑

+ and 𝛼, 𝛽 ∈ N𝑚
0 be multi-indices with 𝑥𝛼 =

∏︀
𝑖 𝑥

𝛼𝑖
𝑖 . Furthermore, let 𝒫 and 𝒩

be index sets of the terms with positive resp. negative sign. We write the polynomial equation
system as ∑︁

𝛼∈𝒫
𝑘𝛼𝑥

𝛼 −
∑︁
𝛽∈𝒩

𝑘𝛽𝑥
𝛽 = 0. (1)

Next, we sort all terms with positive sign to one side and all terms with negative sign to the
other. Hence, the equation becomes∑︁

𝛼∈𝒫
𝑘𝛼𝑥

𝛼 =
∑︁
𝛽∈𝒩

𝑘𝛽𝑥
𝛽. (2)

The critical observation is now that on each side almost all of the time one term dominates all
others [5]. In tropical geometry we only look at this dominating term. A tropical root is found
when the dominating terms on both sides cancel each other out. Since 𝜀 < 1, the inequality
𝑥̄𝜀𝑎 > 𝑥̄′𝜀𝑎

′
is approximately equivalent to 𝑎 < 𝑎′. “Domination” thus means that 𝑎 is minimal.

With the above sketched idea of tropicalization, we transform equation (2) into its tropical
counterpart to look for tropical roots:

min
𝛼∈𝒫

(︁
log𝜀(𝑘𝛼) +

∑︁
𝑖

𝛼𝑖𝑥𝑖

)︁
= min

𝛽∈𝒩

(︁
log𝜀(𝑘𝛽) +

∑︁
𝑖

𝛽𝑖𝑥𝑖

)︁
.

In order for this equation to hold, the minimum has to be attained at least twice, one time on
each side. Observe that the equation consists now only of minima of linear functions and can
thus readily be expressed as a set of polyhedra.

One polyhedron is defined by each combination of 𝛼 ∈ 𝒫 and 𝛽 ∈ 𝒩 that yields a hyperplane
via

log𝜀(𝑘𝛼) +
∑︁
𝑖

𝛼𝑖𝑥𝑖 = log𝜀(𝑘𝛽) +
∑︁
𝑖

𝛽𝑖𝑥𝑖, (3)

while for all 𝜂 ∈ 𝒫 ∪𝒩 half-spaces are defined by

log𝜀(𝑘𝛼) +
∑︁
𝑖

𝛼𝑖𝑥𝑖 ≤ log𝜀(𝑘𝜂) +
∑︁
𝑖

𝜂𝑖𝑥𝑖. (4)

A set of polyhedra is defined by cycling over all possible choices for 𝛼 and 𝛽.
Since a polynomial system may consist of multiple equations, we get multiple sets of polyhedra.

Because we are looking for solutions where all polynomials are zero at the same time, all
constraints (3) and (4) have to hold at the same time and hence the sets of polyhedra have to be
intersected. The resulting set of polyhedra is called a tropical equilibrium.

For computations, the parameter 𝜀 in the above construction has to be provided. Furthermore,
the log𝜀(𝑘𝛼) are rounded to rationals. Tropical geometry focuses on the dominant terms and
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hence yields only approximate results. The resulting coarse-graining can be helpful to find
broad areas where the dominant terms cancel each other out.

Equations like (1) can be used to model chemical reaction networks, where all quantities
(concentrations and reaction speeds) are positive values. The resulting matching of positively
and negatively signed terms in (2) is called opposite sign condition.

If no such distinction is made and all terms—regardless of their sign—can cancel each other
out, then a tropical prevariety is computed. In the above formalism this can be achieved by
defining both 𝒫 and 𝒩 to contain the indices of all terms. The tropical prevariety is a superset
of the tropical equilibrium.

We will continue to speak of equilibria, but the presented algorithm works for prevarieties as
well, since the difference is only in the input. In Sect. 4 we show run-times only for computations
of equilibria, since the inputs for these benchmarks come from chemical reaction networks.

1.2. Bringing SMT Into the Picture

The problem that we are solving is the intersection of several unions of polyhedra. That is, given
polyhedra 𝑃𝑖𝑗 and unions of (convex) polyhedra 𝐵𝑖 = 𝑃𝑖1 ∪ 𝑃𝑖2 ∪ . . . ∪ 𝑃𝑖𝑛𝑖 , we are interested
in the intersection

⋂︀
𝑖𝐵𝑖 = {𝑅1, 𝑅2, . . . , 𝑅ℓ}, where the 𝑅𝑖 are again (convex) polyhedra. In

this article we show how to use SMT checking to solve this problem.
Satisfiability Modulo Theories (SMT) checking allows us to decide if a logical formula, with

atoms that are themselves equations or inequalities, is satisfiable or not. For example, 𝑥 >
1 ∧ 𝑥 < 2 is such an SMT formula. One has to specify a theory of numbers that unknowns in
the formula can assume. In the above example, the problem is satisfiable in the theory of real
numbers, but not in the theory of integers. If an SMT problem is satisfiable, SMT can return a
model, which is an assignment for all unknowns in the formula.

SMT solvers may be used in incremental mode, where one can add additional assertions, i.e.,
clauses that are combined with AND, and continue to look for further models after one has found
a solution. This can save a lot of time and we will make use of it later.

2. The Problem

A (convex) polyhedron is defined as the intersection of finitely many hyperplanes and half-
spaces. Furthermore, each hyperplane can be expressed as two (closed) half-spaces, thus a
polyhedron can be described as a finite number of half-spaces [6].

Given the ambient space Q𝑑, a (closed) half-space 𝐻 is a set

𝐻 = {𝑥 ∈ Q𝑑 | 𝜆0 + 𝜆1𝑥1 + 𝜆2𝑥2 + . . .+ 𝜆𝑑𝑥𝑑 ≤ 0, 𝜆𝑖 ∈ Q}. (5)

Given half-spaces 𝐻𝑘, we define a polyhedron as

𝑃 =
⋂︁
𝑘

𝐻𝑘. (6)

A bag is what we call a union of polyhedra 𝑃𝑗 , i.e.,

𝐵 =
⋃︁
𝑗

𝑃𝑗 .
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Finally, we are looking for the intersection of said bags 𝐵𝑖, that is

𝑉 =
⋂︁
𝑖

𝐵𝑖 =
⋂︁
𝑖

⋃︁
𝑗

𝑃𝑖𝑗 =
⋃︁
𝑘

𝑅𝑘. (7)

The naive solution to the problem of computing the intersection is to cycle successively
through all combinations. To do that, pick two bags 𝐵𝑗 and 𝐵𝑗′ , 𝑗 ̸= 𝑗′, and intersect all
polyhedra from one with all polyhedra from the other to form a new bag 𝐵′. Then, remove
𝐵𝑗 and 𝐵𝑗′ from the set of bags and insert 𝐵′ instead. Continue this procedure until there is
only one bag left, which will then consist of the sought polyhedra 𝑅1, 𝑅2, . . . , 𝑅ℓ. This is the
solution that was used in [2] and, with some refinements, in PtCut [7].

The problem with this solution is that the complexity is exponential in the number of bags. In
practice, it often happens that the number of intermediate results, i.e., the number of polyhedra
in some 𝐵′, is very high, even if in the end there are only a few solution polyhedra. This
intermediate expression swell makes computing the intersection 𝑉 infeasible for some models.

Table 2 contains BioModels from our survey and lists their number of resulting polyhedra
and maximum number of intermediate polyhedra. Details on the computation can be found in
Sect. 4.

3. The Procedure

First, we have to formulate our problem as an SMT problem. Fortunately, it is easy to convert a
polyhedron as defined in (6) into a logical formula. Set theory maps easily to logical formulas
with union mapping to logical OR and intersection to logical AND. In the following, 𝐻̃ denotes
the logical formula that defines the set 𝐻 . Thus, (7) expands to

𝑉 =
⋀︁
𝑖

⋁︁
𝑗

⋀︁
𝑘

𝐻̃ 𝑖𝑗𝑘

and definition (5) of 𝐻𝑖𝑗𝑘 employs a linear function that can be used as a formula in SMT. Call
the resulting SMT formula 𝑓 . We can use an SMT solver to decide the satisfiability of 𝑓 and,
what’s more important, get an 𝑥 ∈ Q𝑑 that satisfies the constraints, if there is one.

Next, we look for a matching polyhedron that includes 𝑥 and is included in the solution 𝑉 .
Since 𝑥 is contained in the intersection of the 𝐵𝑖, it must be contained in at least one polyhedron
𝑃𝑖𝑗 per bag 𝐵𝑖. Thus, we cycle through all 𝐵𝑖 to find a containing 𝑃𝑖𝑗 , call it 𝑃 ′

𝑖 . (There may be
more than one 𝑃𝑖𝑗 ∋ 𝑥, but any will do.)

Obviously, the intersection 𝑅′ =
⋂︀

𝑖 𝑃
′
𝑖 includes 𝑥, but most likely 𝑅′ has higher dimension

than that. Furthermore, since 𝑅′ is the intersection of exactly one polyhedron per bag it is
included in 𝑉 as well. Hence, we have found a polyhedron that includes 𝑥.

In the next step, we modify our initial formula 𝑓 to exclude the polyhedron 𝑅′, like this:

𝑓 ′ = 𝑓 ∧ ¬𝑅′.

Notice that we are only adding another assertion to the formula, so we can utilize the incremental
mode of SMT solvers to save (a lot of!) time for its next computation.

192



Christoph Lüders CEUR Workshop Proceedings 189–200

The important observation here is that we are expanding the original formula 𝑓—which
describes all solution points—to exclude what we already know to be a solution and continue
the search. Thus the procedure generates an ever growing subset of the solution 𝑉 , making it
an anytime algorithm [8]. We can iterate this process until formula 𝑓 ′ is unsatisfiable.

This is the algorithm in Python-style pseudocode:
1 # input: a list ’ll’ of sets of polyhedra.
2 # output: a list ’rr’ of polyhedra.
3 def compute_polyhedron_dnf(ll):
4 # set the solver to re-use its heuristics
5 solver = Solver(incremental=True)
6 f = convert_to_SMT_formula(ll)
7 rr = [] # results list
8 while True:
9 # add the formula to the (existing) assertions.

10 solver.add_assertion(f)
11 # get the model (a variable assignment) that fits the
12 # constraints, or None if ’f’ is unsatisfiable.
13 x = solver.get_model()
14 if x is None:
15 break # formula unsatisfiable
16 R = [] # resulting polyhedron
17 # cycle through all bags ’B’ and
18 # collect constraints of polyhedron containing ’x’.
19 for B in ll:
20 # cycle through all polyhedra ’P’ in bag ’B’.
21 for P in B:
22 if P.contains(x):
23 R.append(P.constraints())
24 break
25 # now ’R’ defines a polyhedron surely in the intersection.
26 # exclude ’R’ from further searches.
27 f = Not(R) # new assertion for next round
28 rr.append(R)
29 return rr # list of polyhedra.

The result of this function is a list of polyhedra. Mathematically, this union of polyhedra
describes the equilibrium (resp. prevariety) 𝑉 . Yet, there are some problems that we address in
the next section.

The logic used for SMT formulas is QF_LRA, that is, quantifier-free linear real arithmetic
(here “real” means rational). This allows Boolean propositional logic of equations/inequalities
consisting of linear functions over elements of Q [9].

3.1. Improvements to the Procedure

Non-Maximal Polyhedra

The main issue we experience with the procedure compute_polyhedron_dnf is that the poly-
hedron 𝑅 computed from point 𝑥 is often not maximal. That is, 𝑅 is only a lower dimensional
face of a higher-dimensional polyhedron. The full high-dimensional polyhedron will eventually
be found by the procedure, but earlier-found lower-dimensional faces would still remain in the
result list rr, albeit superfluous.

To avoid this, we test if each newly found polyhedron 𝑅 is included in one of the already
computed polyhedra of result list rr. Unfortunately, this causes quadratic run-time in the
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number of resulting polyhedra. But there is an observation that can reduce the constant.
If the newly found polyhedron 𝑅 is included in some already found polyhedron 𝑅′, then

obviously, point 𝑥 ∈ 𝑅 is included in 𝑅′ as well. Testing if a point is included in a polyhedron
is simple and fast, so one can test this first. Only if this test succeeds one must perform the full
polyhedron inclusion test. Measurements show that with this heuristic, almost all polyhedron
inclusion tests can be avoided. See Sect. 4 for details.

In our procedure, we would have to modify function contains in line 22 and function
append in line 23 according to these observations.

Superfluous Constraints

Another issue is the redundancy of the constraints that are collected in line 23. Efficiency can
be increased by minimizing the set of constraints: the larger the number of constraints, the
larger the memory demand and, of course, SMT checking times.

One can simply cycle through all constraints, test if each of them is really required and if not,
drop it. The remaining set is not necessarily a minimal set, though.

Here’s how this can be done: Let 𝑐 be the constraint in consideration, 𝑔 the formula before
and 𝑔′ = 𝑔 ∧ 𝑐 after the addition. If 𝑔′ is more restrictive than 𝑔 (i.e., 𝑐 makes a difference), then
the following is unsatisfiable:

𝑔 ∧ ¬𝑔′ = 𝑔 ∧ ¬(𝑔 ∧ 𝑐)

= 𝑔 ∧ (¬𝑔 ∨ ¬𝑐)
= (𝑔 ∧ ¬𝑔) ∨ (𝑔 ∧ ¬𝑐)
= 𝑔 ∧ ¬𝑐.

We use SMT checking and apply this formula to all constraints to drop superfluous ones.

Preprocessing

We explored the possibility to improve the speed of the procedure by preprocessing the input,
i.e., the sets of polyhedra.

For one, one can collect all constraints from all bags with only one polyhedron each. Call the
resulting polyhedron 𝐶 . Because of distributivity these constraints hold for all polyhedra of the
solution. Hence, we can intersect all polyhedra in their bags with 𝐶 to test if the intersection is
empty, in which case we drop the polyhedron from its bag to reduce computation time.

A more powerful version of this technique can be used to test polyhedra in all bags on if
they are required for the definition of the solution in (7). Let 𝐵 be the polyhedron in question,
𝐴 the union of all other polyhedra in 𝐵’s bag and 𝐶 the intersection of all other bags. Then
the solution is (𝐴 ∪ 𝐵) ∩ 𝐶 . If 𝐵 is required, then 𝐴 ∩ 𝐶 ̸= (𝐴 ∪ 𝐵) ∩ 𝐶 and in particular
𝐴 ∩ 𝐶 ⊊ (𝐴 ∪𝐵) ∩ 𝐶 . Thus, the following set is non-empty:

((𝐴 ∪𝐵) ∩ 𝐶) ∖ (𝐴 ∩ 𝐶) = (𝐴 ∪𝐵) ∩ 𝐶 ∩𝐴 ∩ 𝐶

= (𝐴 ∪𝐵) ∩ 𝐶 ∩ (𝐴 ∪ 𝐶)

= (𝐴 ∪𝐵) ∩ 𝐶 ∩𝐴
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= 𝐵 ∩ 𝐶 ∩𝐴.

This can easily be tested with SMT checking for each polyhedron 𝐵 per bag and the superfluous
polyhedra are dropped, again reducing the computation time.

4. Benchmarks

To benchmark the procedure compute_polyhedron_dnf, we created input sets of polyhedra
of chemical reaction networks. The reaction networks were taken from the BioModels database
[10], which contains models formulated in SBML [11]. The SBML models were converted to ODE
systems with polynomial or rational functions using ODEparse [12]. The resulting ODE systems
can be downloaded from ODEbase [13] at http://odebase.cs.uni-bonn.de. If the ODE systems
contained rational functions, we multiplied each equation with its common denominator to get
a polynomial.

These polynomials were then tropicalized as sketched in Sect. 1.1. The parameter 𝜀 was set to
1/11 and the logarithms in (3) and (4) were rounded to integers. The sets of polyhedra created
by tropicalization were saved with polyhedra expressed as sets of equalities and inequalities.

The software used for polyhedral computation was PtCut 3.5.1 [7] and was run under
Windows 10 64-bit using Python 3.7.7. Polyhedral computation were done with the help
of the Parma Polyhedra Library (PPL) [14], version 1.2.

The procedure compute_polyhedron_dnf was implemented in Python as SMTcut and
SMTcut 4.6.4 was used for benchmarking. SMTcut is available under a free software license
from https://gitlab.com/cxxl/smtcut.

Neither PtCut nor SMTcut make active use of multithreading. All input and output files are
available from https://gitlab.com/cxxl/smtcut_data_2 in one large (≈ 42 MiB) repository.

The machine for tests was an Intel Core i7-5820K CPU with 48 GB of memory. We used the
solver-agnostic framework PySMT 0.9.0 [15] to access SMT solvers. Of the seven supported
solvers, the solvers CUDD, PicoSAT and Boolector could not be used, since they do not sup-
port the QF_LRA logic. This left us with the SMT solvers MathSAT 5.6.1 [16], Z3 4.8.7 [17],
CVC4 1.7-prerelease [18] and Yices 2.6.2 [19]. SMTcut was run on Ubuntu Linux 18.04 64-bit
with Python 3.7.6.

Table 1 shows a comparison of run-times for all BioModels that completed within two hours,
sorted by ascending run-time.

The lowest computation times were achieved with CVC4, if—with the exception of BioModel 183—
computation took more than 12 seconds. Below that time Yices was often faster. If we look at
run-time per round we see that Yices had always the lowest run-times per round for models that
took less than 12 seconds to compute. For unknown reasons, Yices often needs more rounds
than other solvers, especially CVC4.

The geometric means of run-times of completed computations for CVC4, Yices, MathSAT
and Z3 were 4.93, 5.37, 5.49 and 6.77 seconds, respectively. For that reason, we used CVC4 as
solver in further comparisons.

Table 2 shows a comparison of run-times between PtCut and SMTcut with CVC4 as solver.
We can make several observations from the data.
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Table 1
Comparison of run-times for different solvers sorted by ascending run-time. The minimal time is printed
in bold. Column “BM” contains the BioModel number; “Rounds” is the number of iterations needed to
complete the procedure.

Run-time [s] Rounds Run-time / round [s]
BM MSAT Z3 CVC4 Yices MSAT Z3 CVC4 Yices MSAT Z3 CVC4 Yices

397 0.1 0.1 0.1 0.1 1 1 1 1 0.128 0.108 0.147 0.092
26 0.1 0.1 0.1 0.1 7 8 8 8 0.016 0.017 0.016 0.012
41 0.2 0.2 0.2 0.1 7 10 7 8 0.025 0.022 0.030 0.017
30 0.2 0.2 0.2 0.2 8 8 7 8 0.026 0.028 0.029 0.020

492 0.3 0.2 0.3 0.2 2 2 2 2 0.141 0.120 0.158 0.083
491 0.3 0.2 0.3 0.2 2 2 2 2 0.146 0.118 0.130 0.084
48 0.8 0.7 0.8 0.4 12 13 8 8 0.068 0.054 0.096 0.044

482 0.5 0.8 0.6 0.4 19 25 21 20 0.028 0.032 0.027 0.020
28 0.6 0.9 0.4 0.5 25 35 20 32 0.022 0.025 0.022 0.017

637 0.6 0.7 0.6 0.5 21 27 19 24 0.026 0.027 0.031 0.020
221 0.7 0.8 0.7 0.6 55 58 53 68 0.012 0.014 0.013 0.009
21 0.7 0.9 0.7 0.6 56 65 61 67 0.012 0.015 0.011 0.009

315 0.8 1.0 0.8 0.8 25 30 19 36 0.031 0.033 0.041 0.022
328 2.0 2.9 1.7 1.5 93 105 89 90 0.022 0.027 0.019 0.017
200 2.0 1.9 2.2 1.6 38 41 34 45 0.053 0.048 0.063 0.035
599 2.1 2.3 1.6 1.7 48 48 36 52 0.043 0.048 0.045 0.033
22 2.2 3.5 1.8 2.3 199 235 165 259 0.011 0.015 0.011 0.009

666 2.7 3.0 2.2 2.6 93 85 85 111 0.029 0.038 0.026 0.023
222 3.2 4.0 3.1 2.3 246 257 228 230 0.013 0.016 0.014 0.010
638 2.6 2.9 3.2 2.4 37 46 29 51 0.071 0.062 0.109 0.047
489 4.3 4.9 3.0 2.5 72 82 49 54 0.059 0.060 0.061 0.046
365 4.6 5.1 4.3 3.6 80 82 74 82 0.058 0.062 0.059 0.044
396 3.9 4.8 4.2 5.0 75 82 86 121 0.053 0.059 0.049 0.041
147 4.1 6.0 4.4 4.0 84 125 90 117 0.049 0.048 0.049 0.035
230 5.5 7.0 5.1 5.3 115 143 99 139 0.048 0.049 0.052 0.038
498 6.5 9.1 6.1 6.9 231 285 242 333 0.028 0.032 0.025 0.021
431 7.7 9.7 6.6 7.4 199 224 183 243 0.039 0.043 0.036 0.030
105 9.6 9.4 9.7 6.7 141 153 143 152 0.068 0.061 0.068 0.044
102 14.8 19.1 12.2 11.8 399 538 395 497 0.037 0.036 0.031 0.024
32 22.0 23.1 12.8 23.5 418 388 282 504 0.053 0.060 0.046 0.047

407 20.7 30.2 15.7 55.0 307 389 261 881 0.067 0.078 0.060 0.062
477 42.0 72.0 33.8 49.3 793 940 745 1051 0.053 0.077 0.045 0.047
576 55.1 78.0 48.6 62.9 838 1064 881 1076 0.066 0.073 0.055 0.058
93 124.4 121.0 55.3 139.7 1390 1345 870 1865 0.090 0.090 0.064 0.075

183 69.8 132.0 77.7 115.1 29 194 14 284 2.408 0.681 5.551 0.405
501 116.1 192.2 102.8 352.5 1018 1516 1045 2819 0.114 0.127 0.098 0.125
430 209.8 196.2 128.2 405.5 2321 2448 2142 4798 0.090 0.080 0.060 0.085
103 231.0 449.2 224.9 337.2 2781 3072 2609 2923 0.083 0.146 0.086 0.115
74 1165.6 1118.5 941.5 1694.2 14227 13352 13352 23245 0.082 0.096 0.071 0.073
73 1087.1 1647.9 1067.7 1485.4 14977 16294 15522 21118 0.073 0.101 0.069 0.070
61 3045.7 4084.1 1661.3 4187.1 12564 16326 12915 24078 0.242 0.250 0.129 0.174

• BioModels 14, 151, 410, 560 and 730: each of them could not be computed with PtCut and
it is likely infeasible to do so. SMTcut was at least able to compute part of the solution,
even though it is unknown how large a part of the full solution this constitutes.

• BioModels 183 and 491, 492: Here SMTcut was able to play out its full potential: with
only one polyhedron in the solution, it took only some rounds until the maximal polyhe-
dron was found. On the other hand, the computation of BioModel 183 with PtCut was
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terminated after 20 hours of work with an intermediate number of 15000 polyhedra and
still only 5 of 65 iterations done.

• BioModel 397 does not have a solution at all. SMTcut find this in 0.1 s, whereas PtCut
takes almost 15 s.

• BioModels 73, 74, 93, 105, 183, 365, 397, 407, 491, and 501: computation time of SMTcut
was at least 60 times lower than with PtCut.

• BioModels 102, 328, 430 and 498: here PtCut was up to 2 times faster than SMTcut. The
reason is that for models of dimension less than 20 and with many polyhedra, PtCut can
be faster if the intermediate expression swell is not too large.

• In this overview, SMTcut was the better choice in all cases where PtCut needed more
than 58 s of computation time, and SMTcut never took more than twice the time as PtCut.

4.1. Benchmarks of Preprocessing

Table 3 shows a comparison of times with and without preprocessing the input. We make the
following observations:

• The computation for BioModel 183 took almost one hour to preprocess. This is due to the
extraordinary number of polyhedra in some input bags.

• Taking the time for preprocessing into account, models with more than 800 polyhedra
as solution—with the exception of BioModel 103—gained a moderate speed-up (4%–18%)
through preprocessing.

• Preprocessing increased the overall run-time for all models with less than 400 polyhedra
as solution, sometimes by a factor of 10 or more.

4.2. Profiling of the Different Parts

The relative time needed in different parts of the procedure to compute the whole solution
varies with the number of resulting polyhedra. Table 4 shows the relative time spent in three
different parts of the procedure:

• S: Searching for another point outside the already known polyhedra,
• M: Minimizing the found polyhedron,
• I: Inserting that polyhedron into the list of already known ones and testing for inclusion.

From the numbers it is obvious that the inclusion check time takes relatively more time as
the number of polyhedra grows.

In contrast, SMT checking for every next point needs relatively less time as the number of
polyhedra grows and the time needed for minimization is slowly getting less prominent as well.

It looks like the quadratic time inclusion check is the limiting factor for models with many
polyhedra.
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Some Profiling of Polyhedral Inclusion Testing

As was described in Sect. 3, the test for inclusion of a newly found polyhedron in the set of
already found ones can be sped up by testing containment of the included point 𝑥 which was
found by the SMT solver.

Some cursory investigation shows that the number of full checks that still have to be done
over the course of the whole computation is about 0.26–0.68 times the number of polyhedra in
the solution.

Yet, even though the constant is low, the run-time of the inclusion test is quadratic and it
becomes the most dominant part of the computation for large result lists.

5. Conclusion

We presented a novel method to compute tropical equilibria (resp. prevarieties) from an input
of sets of polyhedra. We sketched an algorithm for that purpose and discussed several possible
improvements. Furthermore, we ran extensive benchmarks with different SMT solvers to
compute equilibria of tropicalizations of 46 different BioModels.

The conclusion is that the novel method is working and its computation times compare
favorably with a known algorithm using purely polyhedral methods. The run-times were
always smaller for problems that would otherwise take more than 58 seconds to compute,
sometimes by a factor of 60 or more. The novel method has also the advantage to be an anytime
algorithm, hence it computes more parts of the solution given more time or computation power.
This is of importance if computation of the entirety of the solution is infeasible.

The CVC4 SMT solver was overall the fastest solver in this application, yet Yices outperformed
CVC4 for models that could be solved in less than 12 seconds.

Preprocessing the input yielded only moderate speed-ups and only on models that had more
than 800 polyhedra as solution. Conversely, preprocessing was always more costly for models
with less than 400 polyhedra.

5.1. Future Work

There is obvious potential for a parallel implementation of the procedure. We should expect an
almost linear speed-up.

The rising percentage of time spent checking for inclusion of already known polyhedra should
be addressed. If one could assign one-dimensional properties (like dimension) to polyhedra,
only parts of the list of already known polyhedra would have to be checked for inclusion.

The computation of non-maximal polyhedra should be avoided. Hence a good and fast
heuristic for choosing the 𝑃 ′

𝑖 to construct a polyhedron of high dimension would lower the
number of rounds needed to compute the solution.

Another avenue is to find better and faster preprocessing to minimize the problem.
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Table 2
Comparison of run-times for SMTcut and PtCut sorted by ascending SMTcut run-time. Minimal run-
times are set in bold. Columns “BM”, “Dim”, “Comb”, “PH”, and “IntMaxPH” contain the BioModel
number, dimension, theoretic number of combinations, number of polyhedra in the solution, and maxi-
mal intermediate polyhedra, respectively. A star in column “R” signifies a model with a rational vector
field.

BM R Dim Comb PH IntMaxPH SMTcut PtCut Speed-up

26 10 1014 6 32 0.1 0.1 1.0
397 * 10 108 0 — 0.1 14.9 101.6
30 16 1022 6 48 0.2 0.3 1.7
41 11 1010 4 924 0.2 1.4 6.8

491 36 106 1 1 0.3 17.2 66.6
492 18 109 1 1 0.3 2.9 9.1
28 22 1010 17 119 0.4 0.4 1.0

482 * 23 1026 17 495 0.6 2.3 4.1
637 16 1025 12 1140 0.6 4.2 7.1
221 * 19 1020 50 2573 0.7 2.1 3.1
21 * 33 1084 46 3408 0.7 3.0 4.3
48 * 10 1021 5 1160 0.8 29.2 38.1

315 13 1014 13 432 0.8 2.5 3.3
599 24 1023 24 456 1.6 5.8 3.6
328 17 1023 86 140 1.7 1.4 0.8
22 * 67 1038 147 1170 1.8 2.0 1.1

200 27 1018 20 4704 2.2 64.0 29.7
666 * 22 1016 64 464 2.2 5.6 2.6
489 24 1016 42 4824 3.0 57.5 19.4
222 * 8 1013 192 12516 3.1 11.0 3.5
638 8 1015 13 2124 3.2 32.3 10.2
396 * 18 109 54 972 4.2 21.7 5.2
365 19 109 70 15030 4.3 583.7 134.2
147 30 109 54 5069 4.4 18.7 4.2
230 36 1016 68 3330 5.1 24.6 4.8
498 * 50 1017 214 1750 6.1 3.3 0.5
431 47 1016 155 984 6.6 13.2 2.0
105 27 1028 130 21088 9.7 644.2 66.5
102 27 1021 322 4784 12.2 7.2 0.6
32 43 1011 244 1092 12.8 110.0 8.6

407 23 1016 212 15010 15.7 968.2 61.7
477 35 1024 467 23460 33.8 571.0 16.9
576 57 1010 756 10752 48.6 55.8 1.1
93 52 1025 596 47772 55.3 6113.4 110.5

183 19 109 1 — 77.7 > 72000.0 > 926.4
501 35 1025 916 — 102.8 > 72000.0 > 700.3
430 34 1018 1676 4683 128.2 58.0 0.5
103 30 1016 1938 111402 224.9 763.5 3.4
74 12 1012 9685 — 941.5 > 72000.0 > 76.5
73 21 1024 13449 — 1067.7 > 72000.0 > 67.4
61 34 1027 10084 1784868 1661.3 26408.6 15.9
14 86 1067 > 2663 — > 7200.0 > 72000.0 —

151 66 1044 > 7734 — > 7200.0 > 72000.0 —
410 53 1041 > 10612 — > 7200.0 > 72000.0 —
560 59 1029 > 12577 — > 7200.0 > 72000.0 —
730 * 45 1047 > 15310 — > 7200.0 > 72000.0 —
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Table 3
Run-times in seconds without and with preprocessing for different models using the CVC4 solver, sorted
ascending by number of polyhedra. Minimal times are in boldface. Column “PP time” contains the time
for preprocessing and column “after PP” the run-time minus the preprocessing time.

BM Dim Comb PH No PP With PP PP time After PP Speed-up

397 10 108 0 0.1 0.5 0.5 0.0 0.29
183 19 109 1 77.7 2988.7 2988.7 0.0 0.03
491 36 106 1 0.3 3.4 3.4 0.0 0.08
492 18 109 1 0.3 3.4 3.4 0.0 0.09
41 11 1010 4 0.2 2.6 2.6 0.1 0.08
48 10 1021 5 0.8 29.8 29.6 0.2 0.03
26 10 1014 6 0.1 0.9 0.8 0.1 0.14
30 16 1022 6 0.2 2.7 2.6 0.1 0.07

637 16 1025 12 0.6 5.3 5.0 0.3 0.11
315 13 1014 13 0.8 9.3 8.9 0.4 0.08
638 8 1015 13 3.2 54.9 54.2 0.8 0.06
28 22 1010 17 0.4 2.5 2.0 0.4 0.18

482 23 1026 17 0.6 2.8 2.5 0.4 0.20
200 27 1018 20 2.2 29.2 28.3 0.9 0.07
599 24 1023 24 1.6 9.7 8.4 1.2 0.17
489 24 1016 42 3.0 59.9 57.6 2.3 0.05
21 33 1084 46 0.7 2.2 1.6 0.6 0.31

221 19 1020 50 0.7 2.9 2.3 0.6 0.24
147 30 109 54 4.4 20.8 18.1 2.7 0.21
396 18 109 54 4.2 20.6 18.3 2.3 0.20
666 22 1016 64 2.2 4.8 2.7 2.1 0.45
230 36 1016 68 5.1 49.6 44.4 5.2 0.10
365 19 109 70 4.3 13.6 10.8 2.8 0.32
328 17 1023 86 1.7 3.5 1.8 1.7 0.49
105 27 1028 130 9.7 93.1 85.6 7.5 0.10
22 67 1038 147 1.8 3.7 1.8 2.0 0.48

431 47 1016 155 6.6 18.2 11.8 6.4 0.36
222 8 1013 192 3.1 6.7 3.7 3.0 0.47
407 23 1016 212 15.7 27.4 10.9 16.5 0.57
498 50 1017 214 6.1 8.6 3.2 5.4 0.71
32 43 1011 244 12.8 17.4 5.8 11.6 0.74

102 27 1021 322 12.2 25.7 15.7 10.0 0.48
477 35 1024 467 33.8 26.5 5.6 20.8 1.28
93 52 1025 596 55.3 86.2 39.0 47.2 0.64

576 57 1010 756 48.6 62.0 20.0 42.0 0.78
501 35 1025 916 102.8 87.0 13.2 73.9 1.18
430 34 1018 1676 128.2 119.1 7.7 111.4 1.08
103 30 1016 1938 224.9 589.2 422.2 167.0 0.38
74 12 1012 9685 941.5 861.7 4.6 857.1 1.09
61 34 1027 10084 1661.3 1579.5 139.5 1439.9 1.05
73 21 1024 13449 1067.7 1024.0 5.0 1018.9 1.04
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Table 4
Relative run-time used for Searching another point, Minimizing a polyhedron and Inclusion checking
for models that took more than one second to compute, sorted by ascending number of polytopes. The
second part of the models did not finish and the numbers signify only the times until the process was
terminated. The largest portion of time is set in boldface.

BM PH Time % in S % in M % in I

183 1 77.7 91.7 4.3 0.1
638 13 3.2 63.6 27.1 1.3
200 20 2.2 52.8 35.9 1.5
599 24 1.6 28.0 56.2 3.0
489 42 3.0 31.6 55.2 2.9
147 54 4.4 34.2 53.3 2.9
396 54 4.2 19.1 62.5 6.3
666 64 2.2 16.9 60.2 6.8
230 68 5.1 33.5 53.3 4.4
365 70 4.3 31.3 55.0 3.5
328 86 1.7 16.9 56.8 5.7
105 130 9.7 43.7 45.8 3.1
22 147 1.8 19.1 45.4 5.8

431 155 6.6 22.3 60.2 6.0
222 192 3.1 27.6 40.6 7.2
407 212 15.7 13.8 67.2 11.9
498 214 6.1 19.4 53.2 12.1
32 244 12.8 11.6 62.2 17.2

102 322 12.2 26.9 51.9 8.9
477 467 33.8 9.0 51.9 30.5
93 596 55.3 15.7 64.3 13.3

576 756 48.6 12.7 60.1 19.7
501 916 102.8 11.5 68.2 15.5
430 1676 128.2 10.2 50.8 32.1
103 1938 224.9 27.5 54.5 12.6
74 9685 941.5 4.5 17.8 71.6
61 10084 1661.3 7.9 31.5 56.4
73 13449 1067.7 4.2 15.9 73.4
14 > 2663 > 7200.0 11.9 73.1 14.5

151 > 7734 > 7200.0 1.9 22.5 74.8
410 > 10612 > 7200.0 5.6 40.5 52.6
560 > 12577 > 7200.0 1.9 29.3 67.5
730 > 15310 > 7200.0 4.3 36.2 57.5
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