
Directed Graph Networks for Logical Reasoning
(Extended Abstract)
Michael Rawsona, Giles Regera

aUniversity of Manchester, UK

Abstract
We introduce a neural model for approximate logical reasoning based upon learned bi-directional graph
convolutions on directed syntax graphs. The model avoids inflexible inductive bias found in some pre-
vious work on this domain, while still producing competitive results on a benchmark propositional
entailment dataset. We further demonstrate the generality of our work in a first-order context with a
premise selection task. Such models have applications for learned functions of logical data, such as in
guiding theorem provers.

1. Introduction

Neural networks are ubiquitous in tasks in which features are extracted from data with limited
structure, such as in computer vision or natural language processing. However, learning in a
similar way from data that are already highly-structured is only beginning to be studied, but
is sorely needed in fields such as program synthesis or automated reasoning. We approach
this area from guidance of automatic theorem provers for first-order logic: an undecidable
setting that nevertheless might benefit from heuristic guidance, as strategies for a subset of
“useful problems” can be learned this way. It should be noted that we do not aim to solve known
computationally-hard or undecidable problems with this approach, merely approximate these
functions for practical purposes. In this work we explore the use of neural models for heuristic
tasks on logical data, first in a propositional context, then progressing to a first-order setting.

Graph Neural Networks Graphs have historically proven difficult for learning algorithms
of various varieties, mostly due to a very rich structure. However, recent advances [1] have
produced a family of methods generally known as Graph Neural Networks, with graph convolu-
tions as a central technique. These are simple, efficient networks practically useful for many
tasks operating on graph data.

Propositional Task and Dataset Evans et al. [2] introduce a dataset for studying the ability
of neural networks to perform tasks which are “primarily or purely about sequence structure”.
The dataset consists of tuples of the form (𝐴,𝐵, 𝑦) where 𝐴 and 𝐵 are propositional formulae
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and 𝑦 is the binary output variable. The task is to predict logical entailment: whether or not
𝐴 |= 𝐵 holds in classical propositional logic. A and B use only propositional variables and the
connectives {¬,∧,∨,⇒} with the usual semantics. The dataset provides training, validation
and test sets, with the test set split into several categories: “easy”, “hard”, “big”, “massive” and
“exam”. The “massive” set is of particular interest to us as it contains larger entailment problems,
closer to the very large problems encountered by today’s systems.

PreviousWork PossibleWorldNet is introduced alongside the dataset [2] as a possible solution
to the task: an unusual neural network architecture making use of algorithmic assistance in
generating repeated random “worlds” to test the truth of the entailment in that world, in a
similar way to model-based heuristic SAT solving. This approach performs exceptionally well,
but does suffer from inflexible inductive bias: it is unclear how this model would perform on
harder tasks without a finite number of possible worlds, or tasks where model-based heuristics
don’t perform as well. Tending instead toward a purely-neural approach, Chvalovský introduces
TopDownNet [3], a recursively-evaluated neural network with impressive results on this dataset.
Graphical representations have been used with some success for logical tasks: Olšák et al.
introduce a model based on message-passing networks working on hypergraphs [4], while
Paliwal et al. [5] use undirected graph convolutions for a higher-order task. Crouse et al.
show that particular form of subgraph pooling [6] improves the state of the art on two logical
benchmarks for graph neural networks. An interesting effort related to the propositional task
is that of NeuroSAT [7], a neural network that learns to solve SAT problems presented in
conjunctive normal form. We are aware of other similar work [8] developed concurrently: the
work achieves good results by adding a fixed number of edge labels and edge convolutions to
the model, in exchange for additional complexity and artificially limiting e.g. function arity.

Contributions Our main contribution is a graph neural network model working directly
on logical syntax that performs well on benchmark datasets, while remaining subjectively
simple and flexible. Suitably-designed input representations retain all relevant information
required to reconstruct a logically-equivalent input. To achieve this we utilise a bi-directional
convolution operator working over directed graphs and experiment with different architectures
to accommodate this approach. Strong performance is shown on the propositional entailment
dataset discussed above. Progressing to first-order logic, we also demonstrate a lossless first-
order encoding method and investigate the performance of an identical network architecture.

2. Input Encoding

Directed acyclic graphs (DAGs) are a natural, lossless representation for most types of logical
formulae the authors are aware of; including modal, first-order and higher-order logics, as well
as other structural data such as type systems or parsed natural language. A formula-graph is
formed by taking a syntax tree and merging common sub-trees, followed by mapping distinct
named nodes to nameless nodes that remain distinct: an example is shown in Figure 1. Note
that because distinct symbols and variables are represented by different nodes in the encoding,
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Figure 1: Producing a DAG representation of (¬𝑃 ∧𝑄) ∨ ¬¬𝑃 .

symbols and variables can be distinguished by their position in the graph, even though concrete
names such as 𝑓 or 𝑥 are discarded.

Such graphs have previously been used for problems such as premise selection [9] or search
guidance of automatic theorem provers [10]. It should be noted that the acyclic property of
these graphs does not seem to be particularly important — it just so happens that convenient
representations happen to be acyclic. This representation has several desirable properties:

Compact size. Sufficiently de-duplicated syntax DAGs have little to no redundancy, and in
pathological cases syntax trees are made exponentially smaller.

Shared processing of redundant terms. Common sub-trees are mapped to the same DAG
node, so models that work on the DAG can identify common sub-terms trivially.

Bounded number of node labels. By use of nameless nodes, a finite number of different
node labels are found in any DAG. This allows for simple node representations and does
not require a separate textual embedding network, although this can be employed.

Natural representation of bound variables. Representing bound variables such as those
found in first-order logic can be difficult [11] — this representation side-steps most, if not
all, of these issues and naturally encodes 𝛼-equivalence.

One drawback of such DAGs as a representation for logical formulae is that they lack ordering
among node children: with a naïve encoding, the representation for 𝐴 ⇒ 𝐵 is the same as
𝐵 ⇒ 𝐴, but the two are clearly not equivalent in general. The same problem also arises with
first-order terms: 𝑓(𝑐, 𝑥) is indistinguishable from 𝑓(𝑥, 𝑐) [9]. However, this problem can be
removed by use of auxiliary nodes and edges such that an ordering can be retrieved, as shown
in Section 5. For the propositional dataset, the classical equivalence 𝐴 ⇒ 𝐵 ≡ ¬𝐴 ∨𝐵 is used
to rewrite formulae, avoiding ordering issues. We also recast the entailment problem 𝐴 |= 𝐵 as
a satisfiability problem: is 𝐴 ∧ ¬𝐵 unsatisfiable? These methods reduce the total number of
node labels used (4 in total — one for propositional variables, and one for each of {¬,∧,∨}),
and allow the network to re-use learned embeddings and filters for the existing operators.
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Table 1
Encoding Statistics

valid easy hard big massive exam

mean node count 23.5 23.7 47.5 51.4 80.2 9.1
maximum node count 37 39 65 86 102 13
standard deviation 4.6 4.7 5.9 11.0 6.7 2.1

mean symbol count 5.2 5.3 5.8 5.2 18.5 2.4
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Figure 2: Information flow in a formula DAG representing 𝑃 ∧𝑄 ∨ 𝑃 .

3. Model

We introduce and motivate a novel neural architecture for learning based on DAG representa-
tions of logical formulae. Unusual neural structures were found to be useful, and are described
first, before these blocks are then combined into the model architecture.

3.1. Bi-directional Graph Convolutions

We assume the input DAG is a graph (X,A) where X is the node feature matrix and A is
the directed graph adjacency matrix. Various graph convolution operators [12] — denoted
conv(X,A) here as an arbitrary operator — have enjoyed recent success. These generalise the
trainable convolution operators found in image-processing networks to work on graphs, by
allowing each layer of the network to produce an output node per input node based on the input
node’s existing data and that of neighbouring nodes connected with incoming edges. This can be
seen as passing messages around the graph: with 𝑘 convolution layers, a conceptual “message”
may propagate 𝑘 hops across the graph. Here, we use the standard convolutional layer found
in Graph Convolutional Networks [1]. This operator suffers from a shortcoming (illustrated
in Figure 2) on DAGs such as those used here: information will only pass in one direction
through the DAG, as messages propagate only along incoming edges. Unidirectional messages
are not necessarily a problem: bottom-up schemes such as TreeRNNs [13] exist, Chvalovský
uses a top-down approach [3], and cyclic edges are another possible solution. However, to
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play to the strengths of the graphical approach the ideal would have messages passed in both
directions, with messages from incoming and outgoing edges dealt with separately. It is possible
to simply make the input graph undirected, but this approach discards much of the crucial
encoded structure and was not found to perform much better than chance on the propositional
task. Instead, a bi-directional convolution is one possible solution:

biconv(X,A) = conv(X,A)‖conv(X,AT)

where the ‖ operator denotes feature concatenation. By convolving in both edge directions
(with disjoint weights) and concatenating the node-level features produced, information may
flow through the graph in either direction while retaining edge direction information. Disjoint
weights at each convolutional layer for “forward” and “backward” messages allow the network
to learn different behaviours for each direction. A concern with the use of bi-directional
convolution in deep networks is that each convolutional layer must decrease output feature size
by a factor of at least 2 (e.g. by taking the sum of both directions) in order to avoid exponential
blowup in the size of feature vectors as the graph propagates through the network. Due to the
use of a DenseNet-style block with feature reduction built-in, this was not an issue here.

3.2. DenseNet-style blocks

Recent trends in deep learning for image processing suggest that including shorter “skip”
connections between earlier stages and later stages in a deep convolutional network can be
beneficial [14]. DenseNets [15] take this to a logical extreme, introducing direct connections
from any layer in a block to all subsequent layers. We found a graphical analogue of this style of
architecture very useful. Suppose that X𝑖−1 is the input of some convolutional layer 𝐻𝑖. Then,
by analogy with DenseNets, 𝐻𝑖 should also be given the outputs of previous layers as input:

X𝑖 = 𝐻𝑖 (X0‖X1‖ . . . ‖X𝑖−1,A)

However, in later layers this node-level input vector becomes very large for a computationally-
expensive convolutional layer such as 𝐻𝑖. DenseNets also include measures designed to reduce
the size of inputs to convolutional layers, such as 1× 1 convolutions. We include an analogous
“compression” fully-connected layer ℎ, which reduces the input size before convolution by
allowing the network to project relevant node features from previous layers:

X𝑖 = 𝐻𝑖 (ℎ (X0‖X1‖ . . . ‖X𝑖−1) ,A)

3.3. Graph Isomorphism Networks and Pooling

It has been shown that the standard graph convolution layer is incapable of distinguishing
some types of graph [12]. Since logical reasoning is almost entirely about graph structure and is
known to be computationally hard, it was expected that the more powerful Graph Isomorphism
Networks [12] would produce better results, but the isomorphism operator did not outperform
the baseline operator in experiments. Similarly, localised pooling is well-known to be useful
in image processing tasks, and its graphical analogues such as top-𝑘 pooling [16] and edge
contraction pooling [17] also perform well on some benchmark tasks. These also appear useful
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Table 2
Network and Training Hyper-Parameters

network training

input features 4 batch size 64
convolutional features 16 momentum 0.9
convolutional layers 48 weight decay 0.0001

initial min. learning rate 0.01
initial max. learning rate 0.1
learning rate decay factor 0.99995
learning rate cycle length 8000

here, perhaps corresponding to the human approach of simplifying sub-formulae. However,
these also did not improve performance, possibly due to the lack of redundancy in formula
graphs. Further investigations into integrating these powerful methods is left as future work.

3.4. Architecture

A simplistic neural architecture is described. Batch normalisation (BN) [18] is inserted before
convolutional and fully-connected layers, and rectified linear units (ReLU) [19] are used as
nonlinearities throughout, except for the embedding layer (no activation) and the output layer.

Embedding. An embedding layer maps one-hot input node features into node features of the
size used in convolutional layers.

Dense Block. DenseNet-style convolutional layers follow, including the fully-connected layer
(FC) so that each layer consists of ReLU-BN-FC-ReLU-BN-BiConv. Only one block is used,
with each layer using all previous layers’ outputs.

Global Average Pooling. At this point the graph is collapsed via whole-graph average pooling
into a single vector. Passing forward outputs from all layers in the dense block to be
pooled was found to stabilise and accelerate training significantly.

Output Layer. A fully-connected layer produces the final classification output.

A relatively large number of convolutional layers — 48 — are included in the dense block, for
both theoretical and practical reasons. Theoretically, if information from one part of the graph
must be passed to another some distance away in order to determine entailment or otherwise,
then a greater number of layers can prevent the network running out of “hops” to transmit this
information. Practically, more layers were found to perform better, particularly on the larger
test categories, confirming the theoretical intuition. In principle there is no limit to the number
of layers that might be gainfully included.
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Table 3
Propositional Entailment Accuracy

model valid easy hard big massive exam

PossibleWorldNet 98.7 98.6 96.7 93.9 73.4 96.0
TopDownNet 95.5 95.9 83.2 81.6 83.6 96.0

Contribution 99.4 99.3 91.2 88.3 89.2 97.0

4. Experimental Setup and Results

Source code for an implementation using the PyTorch Geometric [20] extension library for
PyTorch [21] is available1.

Training Training setup generally follows that suggested for DenseNets [15]: the network
is trained using stochastic gradient descent with Nesterov momentum [22] and weight decay,
with the suggested parameters. Parameter initialisation uses PyTorch’s defaults: “Xavier”
initialisation [23] for convolutional weights and “He” initialisation [24] for fully-connected
weights. A cyclic learning rate [25] was found to be useful for this model — we applied a learning
rate schedule (“exp_range” in PyTorch) in which the learning rate cycles between minimum
and maximum learning rates over a certain number of minibatches, while these extremes
themselves decay over time. Training continued until validation loss ceased to obviously
improve. See Table 2 for training parameter details.

Augmentation No data augmentation is used as the dataset is relatively large already, and
further it is unclear what augmentation would be applied: the “symbolic vocabulary permutation”
approach [2] is not applicable here due to the nameless representation, but randomly altering the
structure of the graph does not seem useful as it could well change the value of 𝑦 unintentionally.
One could imagine a semantic augmentation in which 𝐴 is made stronger or 𝐵 weaker — this
would produce data augmentation without invalidating the entailment value.

Reproducibility Results are reproducible, but with caveats. Training runs performed on a
CPU are fully deterministic, but tediously slow. Conversely, training runs performed on a GPU
are not fully deterministic2, but are significantly accelerated. The results reported here are
obtained with a GPU, but produce comparable results on repeated runs in practice. This is a
significant limitation of this work that we hope to address if and when a suitable deterministic
implementation becomes available.

Results Experimental results are shown in Table 3. Results reported from PossibleWorldNet
and TopDownNet (𝑑 = 1024) are also included verbatim, without reproduction, for comparison.
Test scores of the best-performing model on each data split are highlighted. Results show that

1https://github.com/MichaelRawson/gnn-entailment
2An unfortunate consequence of GPU-accelerated “scatter” operations. See https://pytorch.org/docs/stable/

notes/randomness.html
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our model is competitive on the test categories, both with algorithmically-assisted approaches
(PossibleWorldNet), and with the a pure neural approach (TopDownNet). The model significantly
outperforms on the “massive” test category.

Discussion We conjecture that our model generalises to some degree the approach taken
with TopDownNet. In our model arbitrary message-passing schemes within the entire DAG
are permitted, rather than TopDownNet’s strict top-down/recurrent approach, which may
go some way to explaining the difference in performance. However, the relationship with
PossibleWorldNet is less clear-cut, and this is reflected in results: PossibleWorldNet remains
unbeaten on the “hard” and “big” categories, but is surpassed on all others.

5. First-Order Logic

We demonstrate the flexibility and generality of our approach by also applying the same model
without adaptation or tuning to a different dataset expressed in first-order logic.

Dataset We employ the Mizar/DeepMath premise-selection dataset [26] used in the evaluation
of the subgraph-pooling models of Crouse et al. and the hypergraph model of Olšák et al. The
task is to predict whether or not a given premise is required for a given conjecture, both
expressed in full first-order logic. The dataset asserts a baseline score of 71.75%, while the best
subgraph-pooling model achieves 79.9%. Olšák et al. report 80% but do not take a standard
evaluation approach, and further employ clausification. It is unclear to what extent clausification
helps or hinders machine learning approaches on this dataset.

Representation A similar input representation to that in the propositional case is used here.
However, argument order in function and predicate application must be preserved in order to
maintain a lossless representation. This is achieved by use of an auxiliary “argument node”
for each argument in an application, connected by edges indicating the order of arguments,
shown in Figure 3. Quantifier nodes have two children: the variable which they bind, and the
sub-formula in which the variable is bound. More space-efficient or otherwise performant graph
representations are a possibility left as future work. 17 node types are used in total.

Training and Results We used an identical configuration as with the propositional case: it
is possible that with some tuning better performance can be produced. We do however note
that using fewer layers (down to around 24 — half of the original number), did not seem to
hurt performance for this benchmark and significantly reduced computation requirements and
GPU memory usage. Data was split as suggested3 at the conjecture level into 29,144 training
conjectures and 3252 testing conjectures (we reserve a validation set of 128 conjectures). The
model achieves a classification accuracy of 79.8% on the unseen test set. On the test set the
model can classify premises for tens of conjectures per second4, so the network is unlikely to
be a bottleneck in classic premise-selection settings.

3https://github.com/JUrban/deepmath
4of course, this can vary dramatically with problem size, hardware and engineering approach
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Figure 3: First-order graph encodings, showing (a) argument ordering and (b) variable binding.

Discussion The network achieves performance significantly above the baseline, comparable
with Crouse et al. and Olšák et al. without modification from the propositional task. We
consider this a good result, suggesting that the network architecture is able to perform without
adaptation on more complex tasks expressed in different logics.

6. Conclusions and Future Work

We explore directed-graph representations and a new architecture for logical approximation
tasks and show that they have a number of advantages — notably simplicity — and good
performance characteristics. The approach can work over many different logics in principle, and
practical experiment suggests this is true in practice. Performance on other logics of interest,
such as higher-order or description logics, is left as future work. The network does not utilise
any algorithmic assistance as PossibleWorldNet does, yet achieves competitive performance
— this allows the network to process similar tasks which do not have a useful concept of
“possible worlds”. Combining our work with the best of other approaches, such as using the
densely-connected network architecture with hypergraph methods, is a promising direction.

In some applications, such as guiding automatic theorem provers, network prediction through-
put is crucial. High-performance automatic theorem prover internals typically use a graphical
representation [27], so graphs are a natural choice for these structures. Additionally, graph
neural networks parallelise [20] somewhat more naturally than previous approaches such as
TreeNets, suggesting that this style of network may be more applicable to these domains.

Much future work is possible. No systematic effort has been made to tune network hyper-
parameters or overall architecture yet. In particular, we suspect that multiple dense blocks
might use fewer parameters or perform better than one large block. A hybrid skip-connection
approach, such as connecting smaller dense blocks with residual connections, is of particular
interest to us as it may reduce computational cost significantly. Other convolution methods
and the conspicuous absence of local pooling may also be investigated. We aim to apply some
variation of this work to guidance scenarios for first-order provers in the medium-term.
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