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Abstract 
Nowadays, pneumonia remains a disease with one of the highest death rates around the 

world. The ailment’s pathogen instantly causes a large amount of fluid into the lungs, leading 

to acute exacerbation. Without preliminary examination and timely treatment, pneumonia can 

result in severe pulmonary complications. Consequently, early diagnosis of pneumonia 

becomes a decisive factor in treatment and monitoring the disease. Therefore, information 

systems that can identify early pneumonia on the Chest X-ray images are becoming more 

demanding nowadays. An individual approach to a person might be a promising way of early 

diagnosis. The presented study considers an approach to feature extraction of the early stage 

of pneumonia and identifying the disease using a relatively simple convolutional neural 

network. With only three convolutional and two linearization layers, the proposed 

architecture classifies radiographs with 90.87% accuracy, approaching the results of deep 

multilayer and resource-intensive architectures in classification accuracy and exceeding them 

in time efficiency. Our approach requires relatively fewer computing resources, confirming 

its efficiency in solving practical tasks on available computing devices. 
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1. Introduction 

For the past few years, pneumonia has been recognized as one of the most dangerous human 

diseases. Pneumonia, along with other lower respiratory infections, is the fourth leading cause of 

death worldwide. In 2017, roughly 2.17 million people died due to lower respiratory tract infections 

[1]. Furthermore, the sudden COVID-19 pandemic erupted worldwide in 2020, further increasing the 

fatal outcome of lung diseases. Many clinical studies have confirmed that the COVID-19 virus causes 

severe pneumonia in numerous people [2, 3, 4]. Besides, the quantitative difference between infection 

and death rates [5] confirms the vital importance of early lung disease diagnosis. 

Being an instantaneous inflammatory disease, pneumonia initially causes damage to alveoli in the 

lungs [6]. The disease’s early symptoms include a combination of dry cough, difficulty breathing, 

chest pain, and fever. Various viruses and bacteria commonly cause pneumonia; sometimes, 

microorganisms may lead the lung complications. As the pathogen reaches the lungs, the white blood 

cells counteract it, resulting in the lungs’ inflammation. Therefore, the pneumonic fluid fills the 

alveoli causing coughing, breathing problems, and fever. 

One of the most widely spread lung disease diagnostics methods is chest X-ray processing [7, 8]. 

A concentrated electron beam, called X-ray photons, passes through body tissues and creates a so-

called image on a metal surface (photographic film). While performing a diagnosis, healthcare 
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professionals compare white infiltrates on the image indicating the infection with white pneumonic 

fluid areas in the lungs. Fig. 1 illustrates the radiographs of a healthy person and a person suffering 

from severe pneumonia. 

 

  
Figure 1: Radiographs of lungs without (left) and with (with) detected pneumonia [8] 

 

It should be considered that chest X-ray images have a limited color scheme consisting of different 

shades of gray. Therefore, healthcare professionals regularly encounter severe difficulties identifying 

infected areas on X-rays [8, 9]. The issues arise from the high intensity of the film’s white wavelength 

when fluid in the lungs is difficult to treat as dense and hard tissue. Specifically, the features of 

pneumonia on X-ray can be clearly observed when the lung tissue becomes dense due to filling the 

lungs with much fluid. Under those circumstances, the color spectrum of the image will be shifted 

from dark shades corresponding to the lungs’ air to light shades signaling the pulmonary disease’s 

presence. Thus, early detection of pneumonia gets complicated by the limited color spectrum of the X-

ray image, and as a consequence, the low severity of the disease’s features in the image. 

Another problem with early diagnosis considers the human factor. Radiologists must have well-

prepared eyes to distinguish the various gray-scale color scheme of air from the so-called ground-

glass representing the disease. Such a scheme can be depicted on an X-ray image in diverse colors, 

yet not be a pneumonic fluid itself. So, a healthcare professional should be able to determine whether 

the white blurs on the radiograph correspond to the fluid. There are known cases when radiologists 

made a wrong diagnosis owing to the human eye’s mistake [7, 10]. Both false positive and false 

negative diagnoses can have a significant negative impact on the human body [4, 6, 11]. Hence, 

computational methods can considerably facilitate the correct diagnosis and increase the reliability of 

preventive measures or subsequent treatment. 

The presented work is devoted to analyzing individual features of the early stage of pneumonia on 

radiographs and developing an information system to classify the disease with a well-fitted model. 

2. Related work 

The scientific community has addressed numerous studies in identifying pneumonia on 

radiographs using machine learning (ML). At Stanford University [11], the chest X-ray image’s 

breakdown into thermal maps was applied, each section of which displayed different infrared 

radiation. Thus, lung pathology was differentiated, and pneumonic areas were detected. In another 

study [12], the approach with thermal maps was used to recognize bacterial and viral pneumonia in 

pediatrics. The application of imaging strategies to detect pneumonia and explain signs’ choice 

proved to be a successful disease diagnostics method. 

Over the past few years, different types of artificial neural networks (ANN) have been widely 

utilized in medical screening. For example, in work [13], authors applied long short-term memory 

(LSTM) architecture to extract information about 14 different diseases. Using only one model, they 

could achieve 71.3% classification accuracy. However, to classify a single image, the LSTM model 



requires several additional models, which is a significant disadvantage in the limited medical data 

environment. 

In addition to using thermal maps in [11], the authors also presented an approach based on deep 

learning (DL). They built a 121-layer convolutional neural network (CNN) to extract characteristic 

maps and applied statistical methods (standard deviation and average calculation) to preprocessing 

images. In work [14], the authors applied different machine learning techniques to segment regions of 

interest of pneumonia on X-rays. Another recent study [15] aims at the early detection of COVID-19 

in X-ray and CT scans. This work presented a method to adjust the learning control parameters of 

CNN called hyperparameters and was devoted to optimizing ultra-precise cores, convolution layers, 

and a fully coherent layer. In [16], the authors investigated DL models’ application in early diagnosis 

of diseases caused by COVID-19. The study showed the practical benefits of state-of-the-art 

architectures, namely VGG16 [17] and Inception v4 [18] in classifying poorly presented lung diseases 

on chest X-ray images. 

The presented paper aims to address the issue of efficient early detection of pneumonia on 

radiographs. In addition to the various methods used in other studies, our study proposes a novel 

approach that allows designing the efficient CNN model individually for every person. The study 

considers an approach to selecting pneumonia symptoms in an X-ray image, which allows the early 

diagnosis of pneumonia. 

3. Implementation 
3.1. Model 

There is the CNN topology sharpened for pneumonia detection at the early stages. Each layer of 

feature extraction gets the result of the layer immediately preceding it, and its output is passed to the 

input of the subsequent layers. The employed in this study architecture comprises convolutional layers 

(ConvLs), activation function (ReLU), MaxPool layers (MPLs), two linearization layers (Dense), a 

flattening layer (Flatten), and a classification layer (SML). Fig. 2 shows the proposed CNN. 

 
Figure 2: The topology of a CNN designed for early diagnosis of pneumonia 

 

Wrapping layers of feature extraction contain: ConvL – 3 × 3, 16 layers; ConvL – 3 × 3; 32 layers; 

ConvL – 3 × 3, 64 layers; MPL – 2 × 2. The output of convolution and fully-coupled operations take 



place in a two-dimensional plane, called attribute cards. It should be noted that each layer plane in the 

network was obtained by combining one or more planes of the previous layers. 

The proposed classifier requires individual features of performing calculations. Therefore, the 

outer output part of feature extraction (the result of convolution operation) is smoothed into a one-

dimensional feature vector for further classification. The classification layer contains a smoothed 

layer, a 0.5 dropout layer, and a Soft-Max activation function that performs classification tasks. 

3.2. Feature extraction and data preprocessing 

The approach presented in this paper assumes a texture classification between conventional lung 

radiographs and pneumonia-infected lung radiographs. Fig. 3 demonstrates a sequence of steps to 

identify the infected lungs. 

 

 
Figure 3: Diagram of information system execution for identification of pneumonia 

 

First, the images prepared in the training dataset were resized to 512 × 512 in order to locate an 

appropriate region of interest (ROI). For the pneumonia classification task, ROI is represented as the 

pale mass of fluid in the infected lung. This pale area on a radiograph can be extracted by the co-

occurrence distribution, i.e., with a square gray-level co-occurrence matrix (GLCM) [18]. The co-

occurrence matrix is represented as 
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where ( ),I k k  stands for the gray-scale image of the central pixel ( ),c ci j , ( )cosxD D =   and 

( )sinyD D =  ,   represents the direction of the GLCM from the ( ),c ci j , and D is the distance 

from a current pixel to the ( ),c ci j . 

Using GLCMs, we could measure the texture based on the gray-scale values or the image’s 

intensity. GLCMs were scattered throughout the image and, following the advice from [20], two 

identical matrices were rotated at angles 0 , 45 , 90 , and 135  to ensure the critical evaluation 



of different features. In this study, the considered pulmonary features were determined by the 

Haralick texture features and extracted from the altered target image size. Haralick features represent 

the relationship between neighboring pixels in terms of the influence of their intensity, which is 

essential for the detection of early pneumonia as the targeted radiographs are defined by the limited color 

spectrum. 

Haralick texture features [20] employed in this study are presented below. 

1. Image homogeneity is a similarity between pixels and is determined by the equation 
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where N is a dimension of GLCM, ( ),p i j  is the position of the matrix element ( ),i j  in the matrix, 

i.e., the probability that a pixel of i is adjacent to a pixel of j. 

2. Contrast is the difference between the maximum and minimum pixel values 
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3. Correlation is the dependencies of gray levels of a matrix element ( ),i j  
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where i , j , i , and j  represent a mean and standard deviation of probability density functions. 

4. The square deviation from the mean of an image is defined as 
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5. The inverse difference moment can be presented as follows 
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6. The sum of all average values in this image is set as 
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where a and b represent the rows and columns in the matching matrix, summed up to a b+ . 

7. The summarized variance is as 
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8. Sum entropy is the overall amount of information encoded for the image 
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9. Regular entropy can be represented as follows 
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10. The differenced variance of an image is as follows 
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11. The difference entropy based on (10) is as 
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After that, the obtained values of the Haralick texture features were compared between ordinary 

images and images of pneumonia, and their differences were evaluated. Three texture features, 

namely dispersion features 4F  (5), the sum of mean values 6F  (7), and the sum of dispersion 7F  (8), 



showed the most considerable difference in values between images of a healthy person and images 

with lung diseases [21]. Thus, these three evaluations were chosen to identify early pneumonia. 

3.3. Evaluation criteria and experiment setup 

For our experiments, we employed the small CheXpert benchmark dataset [22]. The whole dataset 

comprised 5,856 chest radiographs with a size of 320×320 pixels excluded from 524 patients. In this 

dataset, all images are labeled of two classes: normal and pneumonia. The whole dataset consists of 

training, test, and validation subsets, each of which comprises 70%, 20%, and 10% of all images, 

respectfully. In the training dataset, the image in Normal occupies only a quarter of all data. 

This study estimates the proposed architecture by two well-known statistical indicators, namely, 

accuracy (ACC) and area under the curve (AUC). According to recent studies [23, 24, 25], the 

classification accuracy can be set as 

TP TN
ACC

TP TN FP FN

+
=

+ + +
, (13) 

where TP stands for true positive cases in the initial dataset, TN – true negative cases, FN – false 

positive, and FN – false negative cases. 

The AUC for binary classification is as follows 
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For training, we utilized Adam’s optimization method with the following set of training 

hyperparameters: learning rate of 310− , weight decay of 30.5 10− , momentum of 0.9, and batch size 

of 512. Based on experimental results from [26], these values can provide excellent prediction and 

approximation of a model based on the feature ranking during training [27, 28, 29]. 

All experiments were performed on Python v3.7 using TensorFlow v.1.15 [30] as the back-end. 

The computational experiments were executed on an 8-core Ryzen 2700 and a single GPU with 8 GB 

of memory. We open-sourced the working code on GitHub at the following link [31]. 

4. Results and discussion 

Computational experiments were conducted to evaluate and compare three state-of-the-art 

architectures, namely CheXNet [11], VVG16 [17], Inception v4 [18], and the proposed one in Fig. 2. 

According to the preliminary evaluation, all models converged at 100 epochs and started overfitting at 

>100 epochs. Therefore, the final training was performed in precisely 100 epochs for each model. 

In Fig. 4, there are the training and testing results of the CheXNet model. 

 

  
 (a) (b)  



  
 (c) (d)  

Figure 4: Loss function (a), AUC score (b), confusion matrix (c) and ROC curve (d) obtained by 
CheXNet 

 

Although CheXNet achieved a high AUC score (96.32%) and good convergence on the training 

and testing (Fig. 4b – 4d), there are significant noises on the training loss function (Fig. 4a). Such an 

outcome may indicate substantive differences in the training and testing, leading to overfitting. 

Fig. 5 demonstrates the training and testing of model VGG16. 

 

  
 (a) (b)  

   
 (c) (d)  

Figure 5: Loss function (a), AUC score (b), confusion matrix (c) and ROC curve (d) obtained by VVG16 
 



The VGG16 model achieved relatively low false negative and high AUC scores (Fig. 5c – 5d). 

However, VGG16 showed too high a false positive rate (10.26%), which was an unsatisfactory 

indicator for the model’s practical employment. 

Fig. 6 presents the training and testing on model Inception v4. 

 

  
 (a) (b)  

  
 (c) (d)  

Figure 6: Loss function (a), AUC score (b), confusion matrix (c) and ROC curve (d) obtained by 
Inception v4 

 

From Fig. 6a – 6b, it seems that the Inception model suffered from the overfitting on the CheXNet 

dataset. 

Fig. 7 shows the final training and testing results of our architecture. 

 
 (a) (b)  



 
 (c) (d)  

Figure 7: Training and validation loss curves (a) and the convergence of training and validation AUC 
curves (b), confusion matrix (c), and the ROC curve (d) obtained by our architecture (Fig. 2) 

 

In Fig. 7a), as the number of epochs increases, the validation loss and training loss approach lines 

indicate that the model lacks overfitting or underfitting. In Fig. 7b), there is a graph of numerical 

experiments, where the line of training and validation AUC score converges to an almost equal point. 

The confusion matrix points out false positive cases of 8.85% and false negative cases of 1.28% 

(Fig. 7c). The ROC curve in Fig. 7d represents true (ordinate) and false (abscissa) positive rates. Our 

architecture achieves an AUC score of 96.82% on the validation dataset, indicating that the model 

shows satisfactory classification results in the validation stage. It is also an excellent point to optimize 

the AUC score while having a class imbalance to avoid overfitting to a single class. 

Overall, Table 1 summarizes our architecture’s performance compared to the state-of-the-art 

models in medical image analysis by evaluation criteria (13) and (14). The best scores for each 

criterion are highlighted in a bold color. 

 

Table 1 
A formal comparison of the proposed architecture with state-of-the-art models 

Architecture FP, % FN, % ACC, % AUC, % Time, h 

CheXNet [11] 8.49 1.76 89.74 96.32 4.92 

VVG16 [17] 10.26 0.64 89.10 97.29 2.4 

Inception v4 [18] 9.62 0.96 89.42 96.29 3.89 

Proposed architecture 7.85 1.28 90.87 96.82 1.18 

 

As it is seen in Table 1, our architecture exceeds the recognized architectures in classification 

accuracy (90.87%) and false type I error (7.85%). VGG16 architecture showed the best results in the 

second kind error (0.64%) and the ROC curve (97.29%). In general, the proposed architecture scored 

relatively small false positive and false negative rates, 7.85% and 1.28%, respectively. 

The classification issue was addressed with only three convolutional layers and a new approach to 

feature extraction. A small number of layers provided less time (1.18 hours) comparing to other 

considered models. In contrast, the recognized CheXNet architecture achieved the approximate 

accuracy based on a 121-layer CNN, yet more than three times longer. It should be noticed that the 

use of 121 layers may lead to excessive training, while the values of weights remain unchanged. 

However, the testing part varies due to changes in processing power. Overall, the presented approach 

of early diagnosis of pneumonia demonstrates competitive performance at lower computational costs 

and can be employed for further investigation. 

 



5. Conclusion 

The current work proposes a novel approach to detect early pneumonia on chest X-ray images, 

considering individuals’ particular features. According to our study, three Haralick features, namely 

dispersion features, the sum of mean values, and the sum of dispersion, indicate the most notable 

peculiarities of the early stages of pneumonia. We designed a new CNN architecture to obtain 

individual characteristics on the preprocessed chest X-ray images based on our findings. The model 

we built based on the architecture could classify the disease on radiographs with 90.87% accuracy, 

surpassing multilayer and resource-intensive models like CheXNet. Such an approach al-lows adding 

elements to the architecture, avoiding its complications in the future with the expansion of nosologies. 

Nevertheless, despite the high percentage of classification and reduction of computational complexity, 

our work’s main contribution is applying information systems to each person’s characteristics in the 

early diagnosis order of pneumonia. 

Our further investigation will focus on improving the algorithms of region localization on the 

radiographs with infected lungs. 
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