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Abstract  
The computational intelligence system that is a hybrid of probabilistic neural network and the 

neuro-fuzzy system is proposed for solving the medical diagnostic tasks. The distinctive 

feature of the proposed system is the ability to process data that are given in different scales: 

numerical, ordinal, nominal, and binary. Also, the tuning process of the system is a hybrid of 

lazy learning and selflearning, according to T. Kohonen. Moreover, it is characterized by 

high processing speed, comparing to deep neural networks which are learning with error 

backpropagation procedures. The diagnostic system that is under consideration is 

characterized by uncomplicated computational implementation. It is intended to work with 

both short and long datasets in conditions of overlapping classes of diagnosis, which is 

typical for medical applications. 
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1. Introduction 

Data mining methods are currently widely used in the analysis of medical information [1-3] and, 

first of all, in diagnosis problems based on the available data on the patient's state. As a rule, medical 

diagnostics problems from a data mining standpoint are considered either problem of pattern 

classification-recognition, clustering - recognition without a teacher, or forecasting-prediction of the 

disease course. Methods of computational intelligence [4-6] adapted for solving medical problems [7-

10] proved to be the best mathematical apparatus here. Artificial neural networks have proved to be 

efficient due to their ability to train parameters - synaptic weights (and sometimes architecture) to 

process a training dataset, which ultimately allows or restores distributing hypersurfaces between 

classes of diagnoses arbitrarily false shapes. Here deep neural networks have effectively demonstrated 

their capabilities [11, 12], which provide recognition accuracy entirely inaccessible for other 

approaches. 

Simultaneously, there is a broad class of situations when deep neural networks are either 

ineffective or generally inoperable. Here, notably the problems with a short training dataset, which 

often happens in real medical cases. Also, medical information is often presented not only in a 

numerical scale of intervals and relationships but also in a nominal, ordinal (rank) or binary scale. 

Probabilistic neural networks (PNNs) [13] are well suited for solving recognition-classification 

problems under conditions of a limited amount of training data [13], which, however, are crisp 

systems operating in conditions of non-overlapping classes and learning in a batch mode. In [14-18], 

fuzzy and online PNN modifications were introduced to solve recognition problems under 

overlapping classes and trained in sequential mode. The main disadvantages of these systems are their 
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cumbersomeness (the size of the training dataset determines the number of nodes in the pattern layer) 

and the ability to work only with numerical data. The ability to work with data in different scales is an 

advantage of neuro-fuzzy systems [19]. Here, for the problem under consideration ANFIS, Takagi-

Sugeno-Kang, Wang-Mendel and other systems can be noted. 

Unfortunately, training these systems (setting their synaptic weights, and some-times membership 

functions) may require relatively large amounts of training datasets [20]. In this regard, it seems 

expedient to develop a hybrid of a probabilistic neural network (PNN) and a neuro-fuzzy system for 

solving classification-diagnostics-recognition problems in the conditions of overlapping classes and 

training data in different scales, as well as the ability to instantaneous tuning based on lazy 

learning [21]. 

  

2. The architecture of the proposed system 

The proposed probabilistic neuro-fuzzy system contains four layers of information processing: the 

first hidden layer of fuzzification, formed by one-dimensional bell-shaped membership functions, the 

second hidden layer - aggregation one, formed by elementary multiplication blocks, the third hidden 

layer of adders, the number of which is determined by the number of classes plus one per which 

should be split the original data array, and, finally, the fourth - the output defuzzification layer, 

formed by division blocks, at the outputs of which signals appear that determine the levels of fuzzy 

membership of each observation to each of the possible classes. 

Unlike classical neuro-fuzzy systems, here is no layer of tuning weights parameters. As will be 

shown below, the proposed method's learning process is implemented in the first hidden layer by 

adjusting the membership functions' parameters. It is clear that this approach simplifies the numerical 

implementation of the system and improves its performance. 

The initial information for the system synthesis is a training dataset formed by a set of n-

dimensional images-vectors 1 2( ) ( ( ), ( ),..., ( ),... ( ))T

i nx k x k x k x k x k  each of which (here 1 k N   

observation number in the original array or the moment of the current discrete time in Data Stream 

Mining tasks) belongs to a specific class , 1,2,..., .jCl j m  It is convenient to rearrange the original 

training dataset so that the first 1N  observations belong to the first class 1Cl  following 2N observations 

to 
2Cl  and finally mN  latest observations to class mCl . Moreover, for each class, instead of the index 

number k, it is convenient to introduce an intraclass numbering so that for the first class 1Cl

1 11,2,...,k t N  ; for class 
2Cl  2 1 1 1 21, 2,...,k t N N N N     ; and, finally, for the last m-th class 

mCl  

1 2 1... 1,...,m mk t N N N       1 1 ...   mN N N N . 

Based on this training dataset, the first hidden fuzzification layer is formed by Gaussian 

membership functions 

  
2

2( , ) exp 0.5 ,    
i i il i l i lx w x w  (1) 

where 
il

w  - fixed or adjustable (more generally) centers of the corresponding membership functions, 

2  - parameter specifying the width of the corresponding function also fixed or tuned 

1,2,..., ; 1,2,..., .i il h i n   

 Note that in a standard probabilistic neural network, the first hidden layer of patterns is formed by 

multidimensional Gaussians, the number of which is determined by the training dataset size N. In the 

proposed system, the number of membership functions at each input can be different, for example, if a 

binary variable of type 1 or 0, "Yes" or "No," "there is a symptom," or "there is no symptom," is 

supplied to the input then two functions are enough at this input ( 2ih  ); if at the i-th input, the 

corresponding variable can take an arbitrary number of values, then 2 .ih N   The total number of 

one-dimensional functions in the system varies in the interval 

2  n h Nn  (2) 
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0

.
n

i

i

h h


   

At the input of the first hidden layer, h signal-values of the corresponding Gaussians appears 
[1] ( , ).
i il l i io x w  (3) 

Then they are fed to the second - aggregation hidden layer, which, similarly to standard neuro-

fuzzy systems, is formed by ordinary multiplication blocks, which is equal to N. 

In this layer from one-dimensional membership functions that multidimensional kernel activation 

functions are formed 
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the vector centers of which  
1
,..., ,...,

j i n

T

t l l lw w w w  are formed with the centers of one-dimensional 

membership functions. Moreover, for each j-th class, multidimensional activation functions jN  are 

formed. As a result, a signal is generated at the output of the second hidden layer 
[2] ( ( ), ).
j j j

j

t i t j to x t w  (5) 

The third hidden layer is formed from the blocks of summation, the number of which is 

determined by the value m + 1. The first m adders calculate the data density distribution for each class 
1 2
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and (m+1)-th one overall data density distribution 

[3] [3]

1 1

( ) ( ) .
 

   
m m

j j

j j

p x o p x o  (7) 

In the output layer of defuzzification, the probability level is calculated that the presented 

observation x belongs to the j-th class 
1
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It is obvious that  
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3. Combined training of probabilistic neuro-fuzzy system 

In general, the proposed system's settings can be implemented based on the so-called lazy learning 

[21] in the same way as a standard PNN is configured. Lazy learning is based on the principle 

"Neurons at data points", when the kernel activation functions' centers coincide with the observations 

from the training set. For each observation ( )jx t , a multidimensional bell-shaped activation function 

( , )
j j

j

t i tx w  (where ( )
jt iw x t ) is formed. It is clear that such a learning process is implemented 

rapidly. Still, if the amount of the training sample N is large enough, the PNN system becomes too 

cumbersome. 

Following this approach, N membership functions should be formed at each input in a neuro-fuzzy 

system in the fuzzification layer. However, suppose the training signals on different inputs are 

specified either in the nominal or binary or in the rank scales. In this case, the number of membership 

functions at the corresponding inputs decreases significantly. In addition, in medical applications, 

numerical variables, such as the patient's temperature, are often repeated, leading to the conjugation of 

the number of membership functions. Finally, the most straightforward case compensates when all 

input signals are specified in a binary scale: "there is a symptom" – "there is no symptom". Only two 

membership functions with center coordinates 0 and 1 are formed at each input. 



In the case when all the input variables are specified on a numerical scale, the number of one-

dimensional membership functions is determined by the value ; ih N h Nn  that, with larger 

volumes of the training dataset, we can make the system too cumbersome. It is possible to overcome 

this problem using the self-learning procedure of the centers of membership functions [22], while 

their number 
ih  at each input remains constant. 

Let’s set the maximum possible value of the number of membership functions at the i-th input *

ih  

and, before starting the learning process, place them evenly along the axis 
ix  on the interval [0, 1] so 

that the value determines the distance between the original centers (0)
il

w  and 1(0)il
w  determined by 

the value 
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When the first vector from the training dataset is fed to the system input 

   
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1(1),..., (1),...,1 (1)


 i nx x xx  (it does not matter which of the classes jCl  it belongs to), the center-

"winner" 
* (0)
il

w  is determined at the beginning, which is the nearest (1)ix  in the sense of distance 

(1) (0) , 
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i.e. 
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After this center-“winner” is pulled up to the input signal (1)ix  component according to the 

expression 
* *(1) (0) (1)( (1) (0)).

i i il l i i lw w x w    (13) 

where 0 (1) 1 i  - is the learning rate. It is clear that when (1) 1 i  
center-"winner" moves to a 

point (1)ix  using the principle of "neurons at data points". 

At the k-th iteration, the tuning procedure can be written in the form 
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It is easy to see that the last expression implements the self-learning principle of T.Kohonen [23] 

“Winner Takes All” (WTA). 

Thus, the combination of lazy learning and self-learning can significantly simplify both the 

architecture and the process of tuning the probabilistic neuro-fuzzy system. 

4. Results of the experiment 

The proposed probabilistic neuro-fuzzy system is designed to work with different data types such 

as numerical and binary data that are presented in long and short datasets. Therefore, two datasets 

with different data types were taken from the UCI repository for the experimental evaluation.  

The first dataset, "Heart Disease," contains 303 instances. Each of them includes detailed 

information about the patient, his or her physiological parameters, and symptoms of a disease. This 

dataset is a mix of numerical and binary data. Physiological parameters have numerical form, and 

symptoms typically have a binary form. 

The second dataset, "Diabetes 130-US hospitals for years 1999-2008", is a long dataset that 

contains 100000 instances. It includes features that represent outcomes of treatment for patients: the 

length of stay at the hospital, information about the laboratory tests, and medications administered 

when patients were at the hospital. This dataset also contains numerical and binary data.  

The first experiment was carried out with a short set of medical data. This small set has been 

further subdivided into subsets in order to determine the minimum number of data items to obtain 

practical classification results. The classification accuracies for machine learning method KNN – K-



nearest neighbour, EFPNN – evolving fuzzy-probabilistic neural network [24], and the proposed one 

were compared. The experimental evaluation results are represented in Table 1. 

 

Table 1 
The algorithms’ accuracy comparison for small datasets 

Algorithms for comparison Classification accuracies Max time, sec 

100 150 200 250 

KNN 50.24 51.63 50.7 49.03 0.03 
EFPNN 56.07  61.9 71.83 79.02 0.1 
PNFSL 51.14 57.7 69.34 77.52 0.79 

 
The experiment results show that the KNN algorithm is fast, but an accuracy of it is close to 50%. 

Thus, the algorithm is not intended for classification of very short samples. Unlike KNN, the 

proposed network's classification accuracy increases as the number of elements in the sample 

increases. Even on very small samples, it achieves an accuracy of 77%. EFPNN also allows for 

greater accuracy as the sample size increases. However, it is significantly, more than 20% slower than 

the proposed network. The fastest method is KNN, but it should take into account that neural 

networks are implemented on Python and run on the central processor, and not on the GPU like KNN. 

It means that with the same hardware implementation, the time costs for all methods will be 

comparable. But the accuracy of the proposed network is higher. 

 

 

 
Figure 1: The dependency of dataset size and the increase of classification time 

 

 

The second experiment was performed on the long dataset, which is called "Diabetes 130-US 

hospitals for years 1999-2008". From the initial dataset, a number of subsets that have different sizes, 

from 3000 to 30 000 instances were formed. The experiment is intended to compare the increase of 

the classification time with the dataset size grows because the absolute time consumption depends on 

the computer platform and used processor (CPU, GPU). Based on the results of the first experiment, 

for the second one, two PNFS and EFPNN neural networks, which provide a higher classification 

accuracy, were selected. The experiment showed that the proposed approach requires less 

computational cost than EFPNN. The increase in time required for larger subsets increases 

significantly compared to small subsets. This trend apparently exposes the influence of the software 



on the classification time. Smaller datasets are usually allocated in RAM, while long datasets require 

swapping of data from external memory. 

In general, according to the results of two experiments, the proposed approach in comparison with 

EFPNN provides slightly lower classification accuracy for small datasets but requires significantly 

lower computational costs when the dataset size grows. 

5. Conclusion 

The probabilistic neuro-fuzzy system is proposed for solving problems of classification-medical 

diagnostics in terms when information about the patient's condition is set simultaneously in 

numerical, rank (ordinal), nominal and binary scales. A feature of the system that is under 

consideration is the ability to work in the conditions of both short and growing long training sets 

when further they are sequentially fed into the system in online mode. The system configuration 

process is based on both lazy learning and self-learning, which significantly simplifies the system's 

computational implementation. The proposed method is characterized by high speed (just-in-time 

learning) and simplicity of numerical implementation, confirmed by the experiment results. 
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