
Measuring the impact of library dependency on

maintenance

Núria Bruch Tàrrega
University of Amsterdam

nuria.bruchtarrega@student.uva.nl

Miroslav Živković
Software Improvement Group

m.zivkovic@sig.eu
Ana Oprescu

PCS, SNE, Informatics Institute
University of Amsterdam

a.m.oprescu@uva.nl

Abstract

Reusing code from open-source libraries is a
useful practice for developers to avoid im-
plementing the same functionalities multiple
times. However, when a library is used in
another software product, it creates a depen-
dency that may spread the security vulnera-
bilities of the library to the product. Most
package managers have dependency managers
which only perform a binary evaluation of the
dependencies. Thus, developers have no infor-
mation about how much products depend on
a library or how much effort would be needed
to replace a dependency.

In this research, we propose a way to measure
the degree of library dependency, as well as
how much effort would be required to replace
the usage of a library with another one. We
leverage existing coupling metrics and revisit
them in the context of library dependencies.

We present two metrics to measure the cou-
pling generated by dependencies: method in-
vocation and aggregation coupling, and briefly
discuss the next steps.

Copyright c© by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: Proceedings of the Seminar Series on Advanced Techniques
& Tools for Software Evolution, Virtual conference (originally
in Amsterdam, the Netherlands), 01-02 July 2020, published at
http://ceur-ws.org

1 Introduction

There are many open-source software (OSS) libraries
available for the developers to reuse the features that
these libraries implement [KGDP17]. This practice al-
lows the reuse of previously developed code and, there-
fore, helps developers to avoid implementing the same
functionalities multiple times.

When an open-source library is used in a software
product (e.g. another library or an application), a
dependency between the product and the library is
created. This adds the task of managing these depen-
dencies to the maintenance tasks of the product, and
this task is not a trivial one.

Open-source libraries can have security vulnerabili-
ties that may affect the products that depend on these
libraries. For example, some security vulnerabilities
can have a negative impact in terms of integrity, pri-
vacy, or availability.

Currently, developers have package managers at
their disposal, to ease the task of managing the de-
pendencies of their products. However, these package
managers only evaluate whether a dependency exists
or not and a more detailed risk evaluation is missing
[HBG18]. There is no way to evaluate how much a
product depends on a library.

Furthermore, the developers of a project may decide
to replace one of the dependencies of the product with
another one. This could happen when a library has
vulnerabilities or is deprecated. However, replacing a
dependency could be a costly process. For example,
it may involve identifying which parts of the project
are affected by the dependency, and which parts of the
library are being used and need replacement.

This research has the goal of measuring the degree
of library dependency and understanding how it affects

1

the maintenance effort. In this work in progress a set
of metrics is proposed to measure the library depen-
dencies. These dependencies can take place between
two libraries or between another type of software prod-
uct and a library. We refer to dependencies between
libraries interchangeably with dependency between a
software product and a library.

Based on our problem statement, we define the fol-
lowing research question:

RQ1: How can we measure the degree of source code
dependency between a software product and a library?
The goal of this research question is to define the met-
rics to measure dependency. We focus on coupling
metrics, which have been used for many years, in par-
ticular for Object-Oriented systems [BDW99]. The
key difference is that these metrics have been used to
measure coupling within a software product, and not
between different software products. Therefore, the
definition of coupling is changed, and so is the mean-
ing of the metrics.

2 Background

Coupling is defined as the strength of the connection
from one item to another, and is related to the main-
tainability of a software product [GC09]. To evaluate
the connection or dependency between items that be-
long to the same product, a wide variety of metrics
has been proposed to measure coupling. There are
six main groups of coupling metrics: structural, dy-
namic, evolutionary and logical, information entropy
approach, conceptual, and domain-specific [PM06].
The most largely studied by the literature is the struc-
tural coupling, and it is the type of coupling measured
in this research.

Briand et al. [BDW99] defined a unified framework
for coupling metrics, based on three previously existing
frameworks [EKS94, HM95, BDM97]. They specify six
criteria that define the type of coupling used for metric
calculation.

Criterion 1: Type of connection, which is the con-
nection mechanism that creates coupling.
Criterion 2: Locus of impact, or the point of view
from which the coupling being measured. It can be
import coupling, the point of view of the element that
uses another element, the client element. Or export
coupling, the point of view of the element that is being
used by another one, the server element.
Criterion 3: The granularity of the measure, which
includes two aspects: the aggregation level (e.g.
method, class, system), and how the metric counts
the connections between the two elements (e.g. count
each connection individually or binary evaluation of
the connection between two elements).

Criterion 4: The stability of the server, a stable
server is not subject to modifications in the project
at hand.
Criterion 5: Direct/Indirect coupling, if the metric
accounts for indirect relationships, or only measures
the direct ones.
Criterion 6: Inheritance, this criterion specifies how
certain cases related to inheritance (e.g. inheritance
and polymorphism) affect coupling.

3 Related Work

To the best of our knowledge, no studies measure
the degree of dependency between libraries. However,
some studies perform an evaluation of the dependen-
cies according to certain characteristics.

Soto-Valero et al. [SVHMB20] conducted a study
of bloated dependencies. Bloated dependencies, either
direct or transitive, are those specified in the depen-
dency set of a project, that are not used for either
compilation or product deployment. The authors de-
veloped the tool DepClean, which analyses the depen-
dencies of Java artifacts. This tool identifies bloated
dependencies and generates an alternative dependency
set without bloated dependencies. Further, DepClean
creates a call-graph of the API members of the li-
braries and dependencies. However, the focus is on the
bloated dependencies, not on measuring the degree of
the dependencies.

Pashchenko et al. [PPP+18] propose a method to
analyze dependencies in which they distinguish be-
tween own and third-party libraries, as well as de-
ployed and non-deployed dependencies. In addition,
they remark the importance of halted dependencies,
since the libraries that create these dependencies are
no longer updated. However, Pashchenko et al. do not
perform a call-level analysis of the dependencies, since
their dependency resolution is based only on the POM
file of the libraries. Hence, the transitive dependencies
that are not really used in the studied library are still
counted.

4 Definition of coupling

The first step towards creating a model to measure the
dependencies is to define which meaning of coupling is
involved in these dependencies. We use the framework
explained in section 2, from Briand et al. [BDW99] to
define coupling.

4.1 Criterion 1: Type of connection

With this criterion, it is defined which type of connec-
tion creates coupling between the two libraries. There
are several clearly distinguished mechanisms that can
create coupling [BDW99], and are listed below.

2

Given class a that belongs to library A, and class b
that belongs to library B...

1. ... class a has an attribute of type b (Relationship
of aggregation).

2. ... method of class a has a parameter of type b or
has return type b.

3. ... method of class a has a local variable of type b.
4. ... method of class a calls a method which has a

parameter of type b.
5. ... method of class a references attribute of class b.
6. ... method of class a invokes method of class b.
7. ... class a and class b have a relationship such as

uses or consists-of.

Having a single metric that measures more than one
of these types of connections is not recommended as
this requires to figure out if every type of connection
creates the same coupling, and whether it affects main-
tenance in the same way. It would not be possible to
know how much of the coupling is created by which
type of connection.

Therefore, different metrics should be used for dif-
ferent connections. To decide which types of connec-
tions to measure, we have decided to review the liter-
ature on coupling metrics, to understand which con-
nections are the most measured and why.

Reference 1 2 3 4 5 6 7
[EKS94] x x x x x x
[HM95] x x x x x x
[BDM97] x x x
[WK00] x x
[YTB05] x x x x x
[GS07] x x x
[GC09] x x x x x x x
[HCN98] x x
[DBDV04] x x x
[KKK+19] x x x

Table 1: Literature usage of the types of connection

Types 1 and 6 are the most used in the literature
and therefore we define a metric to measure type 6:
method invocation.

The second metric that we consider is type 1: ag-
gregation coupling, for two main reasons. It is used
as much as type 6 in the reviewed literature, and be-
cause in some cases measuring type 6 may not be
enough to understand how much maintenance a library
dependency may need. There is the possibility that a
class has an attribute of another class, but never calls
a method that belongs to that class.

The above-mentioned metrics are those that we ini-
tially consider in our work, and we will explain them
in greater detail in Section 5. Nevertheless, it might

be necessary to include additional metrics, to account
for other connection types.

4.2 Criterion 2: Locus of impact

The goal of this measurement is to know how much
a library depends on another. Therefore, the point of
view of this evaluation is from the library that uses an-
other one. Hence, the locus of impact of the coupling
to be measured is import.

4.3 Criterion 3: Granularity of the measure

There are two aspects to define: (1) the aggregation
level of the measure, and (2) how the metric counts the
connections. First, we are going to discuss the aggre-
gation level. Briand et al. define the following levels:
Attribute, Method, Class, Set of classes, System.

Our goal is to measure the coupling between the
set of classes of the client library and the set of classes
of the server library. Therefore, the aggregation level
used in this research is the library level. To main-
tain the precision of the measurement, the calculation
of coupling for a more coarse-grained level, such as li-
brary, is done by aggregating the coupling of the more
fine-grained aggregation levels, such as method and
class.

There are two basic options for counting connec-
tions: A) counting every time an item is used, and B)
count the number of items used. From a maintenance
point of view, it matters whether a method is called
once or multiple times, and we therefore use option
A. To support fine-grained analysis, connections are
counted from the smallest aggregation level, and ag-
gregated up to the considered aggregation level. For
example, when counting method invocations, we add
up the number of method invocations per each
method of each class of a library.

4.4 Criterion 4: Stability of the server

Briand et al. [BDW99] define stable classes as ”Classes
that are not subject to change in the project at hand”,
hence we consider stable classes all the classes not im-
plemented in the client library. Therefore, we mea-
sure coupling from non-stable classes to stable classes.
However, the separation between stable and unstable
classes is not enough. The goal is to measure coupling
only with those stable classes that are part of third-
party open-source libraries. Therefore, the standard
classes of a programming language are not considered.

4.5 Criterion 5: Direct and indirect coupling

To make a decision about this criterion, we need to dis-
tinguish two alternative scenarios in which we want to
measure coupling: direct dependencies and transitive

3

dependencies. For the initial approach, we focus on
the direct dependencies only. Therefore, the metrics
measure direct coupling.

4.6 Criterion 6: Inheritance

Within this criterion, there are three aspects to decide
about: how, if at all, does the metric distinguish be-
tween inheritance-based coupling and non-inheritance-
based coupling? Does the metric account for poly-
morphism? And finally, what determines whether a
method or attribute is part of a class or not?

Figure 1: Example of coupling special cases, based on
example from Briand et al. [BDW99]

In order to answer the first question, we focus on
the method mc of ClassB in Figure 1. This method
invokes ma of ClassA, inherited by a class ClassB. This
inheritance-based coupling is sometimes considered as
a special case of coupling. When there is a change of an
inherited method that a class uses, it requires the same
maintenance effort as the method that is not inherited.
Therefore, our metrics include inheritance-based
coupling without distinction.

In case of polymorphism we look at the methods
of ClassA. This class contains an attribute of type
Class1, which could be of type Class2 or Class3.
We first analyze whether a call to a method of Class1
would create coupling with Class2 and Class3, and
if it makes a difference when the method is overridden
or not. The method ma invokes m1, which is not over-
ridden by any of the descendants of Class1. When
a change is made in Class2 or Class3 no change is
required as the invoked method remains the same. In
contrast, method mb calls m2, which is overridden in
Class2. Here, the implementation of m2 in Class2

could be updated, and this may affect the way ClassA

uses it, and therefore changes may be needed. Thus,
it is necessary to account for polymorphism.

Further, a method belongs to the class that imple-
ments it (could be more than one since we account
for polymorphism), or a method belongs to the class
that it is referenced from. The last two lines of the

method mc of ClassB call method m1 and m2 on an
object of type Class2. Note that m1 is only imple-
mented in Class1, while m2 is overridden in Class2.
From a maintenance perspective, when the method m1

is updated in Class1, this probably requires updating
ClassB as well. However, changes in Class2 do not
generate a need to update the method call to m1 in
ClassB. Differently, when m2 is updated in Class1, it
will not make a difference for this call of m2 since it is
not executing the implementation of Class1. There-
fore, a method call creates coupling with the
class that contains the implementation.

5 Formal definition of the metrics

Based on the characteristics of coupling described in
Section 4 we define two coupling metrics that differ
with respect to the measured connection type.

5.1 Metric 1: Method invocation coupling
(MIC)

The method invocation coupling between two libraries,
with a direct dependency is calculated by the function
MIC(Lc, Ls), where Lc is the client library and Ls is
the server library. According to criterion 3, the metric
is calculated for each of the methods implemented in
the classes included in the client library Lc. The set
of methods implemented in library Lc is represented
as M(Lc). For each of the methods, the number of
individual invocations to methods implemented in Ls

are counted, and summed up.

MIC(Lc, Ls) =
∑

mc∈M(Lc)

nII(mc, Ls)

The function nII(mc, Ls) calculates the number of
individual invocations from the method m c to meth-
ods of library Ls, considering all polymorphic imple-
mentations. In order to calculate nII(mc, Ls), for each
of the stable methods invoked by mc, the set of sta-
ble methods invoked by mc is SIM(mc). A stable is
a method which does not belong to Lc. For each one
of the invoked methods (ms), the number of invoca-
tions from mc, denoted nI(mc,ms), is multiplied by
the number of polymorphic implementations of the
method that are included in the server library (Ls).
The number of polymorphic implementations is calcu-
lated by the function nP(ms, Ls).

To obtain the number of polymorphic implementa-
tions, we intersect the set of polymorphic implementa-
tions of a method ms (PM(ms)) with the set of methods
implemented in the server library (M(Ls)). The cardi-
nality of the intersection is the number of polymorphic
implementations of the method ms in Ls.

4

nII(mc, Ls) =
∑

ms∈SIM(mc)

nI(mc,ms) ∗ nP(ms, Ls)

nP(ms, Ls) = |PM(ms) ∩ M(Ls)|

5.2 Metric 2: Aggregation coupling (AC)

The second metric, which considers aggregation cou-
pling between a client library (Lc) and a server library
(Ls), is computed with the function AC(Lc, Ls). For
this type of connection, the finest-grained level of ag-
gregation is the class. Therefore, the function iterates
through each class implemented in the client library.
The set of classes implemented in library Lc is the set
C(Lc).

For each one of these classes, the metric consid-
ers all the declared attributes of the class, the type of
which is a stable class. The set of stable classes which
are the type of an attribute declared in class cc is de-
noted SAT(cc). A stable class is a class which is not
implemented in the client library (Lc).

In order to account for inheritance as described in
the discussion of criterion 6, we multiply the number
of times a stable class cs is the type of a declared at-
tribute in class cc (denoted by (nA(cc, cs)) by the num-
ber of descendants of the class cs implemented in the
server library Ls.

The number of descendants of a class cs, imple-
mented in the server library Ls, is calculated by the
function nDC(cs, Ls). To obtain the result, the set of
descendants of the class (including the class) is inter-
sected with the set of classes implemented in the server
library. These sets are denoted DC(cs) and C(Ls), re-
spectively. The cardinality of the intersection is the
result of the function nDC(cs, Ls).

AC(Lc, Ls) =
∑

cc∈C(Lc)

∑
cs∈SAT(cc)

NA(cc, cs) ∗ nDC(cs, Ls)

nDC(cs, Ls) = |DC(cs) ∩ C(Ls)|

6 Preliminary Results

The preliminary results have been obtained by means
of a proof of concept implemented in Java using the
javassist1 library to analyze bytecode. We used Maven
to download the client and server libraries that are part
of the dependency tree of the client libraries.

Figure 2 illustrates current results. Some depen-
dencies have zero value for both metrics. This could
be due to client library that uses the server library but

1http://www.javassist.org/

with a type of connection not measured by MIC or AC.
This puts a requirement to implement other metrics
to measure dependencies in PoC. Another explanation
could be a possible relocation of a server library in the
jar file of the client library during the build, which
is not detected by the PoC. Finally, the results could
mean the library is not using the dependency, i.e. it is
a bloated dependency [SVHMB20].

Figure 2: Results of MIC and AC for library flink-core

Most of the dependencies that have AC 6= 0 also have
MIC 6= 0. Figure 2 shows a single case of a dependency
(flink-metrics-core) that has AC = 1 and MIC = 0.
In addition, there is only one case (kryo) in which the
value of AC is greater than the value of MIC. However,
the value of AC is mostly due to the detection of the de-
scendants of the declared types (criterion 6). It might
be interesting to compare which part of the measured
coupling is due to accounting for inheritance. There
are also cases where a dependency has MIC > 0 and
AC = 0.

Figure 2 shows that the values of MIC range from 0
to 188, and AC from 0 to 380. However, for some other
libraries that were investigated (but not shown here)
this range is greater. For example, the MIC ranges from
zero to 7601 for puppycrawl-tools-checkstyle.

7 Conclusion and Next Steps

We leveraged the framework defined by Briand et al.
to formulate the definition of coupling to be measured.
The framework was adapted to the use case of depen-
dencies between libraries. The result is the definition
of two metrics which measure different types of con-
nection between libraries: method invocations and ag-
gregation. An initial proof-of-concept (PoC) has been
implemented and used with some example libraries.

We plan to extend the work presented by defining
the metrics to measure transitive dependencies. Next,
we will perform the theoretical validation of the met-
rics based on the properties defined by Briand et al.
In addition, we will improve the PoC tool to calculate
and compare the metrics defined.

5

http://www.javassist.org/

Then, we will focus on a second research question.
This second research question targets different cases
of dependency replacement, how each one affects the
code and how much effort is required for the replace-
ment. Finally, we will compare the real effort in-
vested in a replacement with the effort estimated by
our model.

8 Acknowledgment

The work of the second author on this paper has been
executed with the scope of the FASTEN project. The
FASTEN project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation
programme under grant agreement No 825328.

References

[BDM97] Lionel Briand, Prem Devanbu, and Wal-
celio Melo. An investigation into cou-
pling measures for c++. In Proceedings of
the 19th international conference on Soft-
ware engineering, pages 412–421, 1997.

[BDW99] Lionel C. Briand, John W. Daly, and Ju-
rgen K Wust. A unified framework for
coupling measurement in object-oriented
systems. IEEE Transactions on software
Engineering, 25(1):91–121, 1999.

[DBDV04] Bart Du Bois, Serge Demeyer, and Jan
Verelst. Refactoring-improving coupling
and cohesion of existing code. In 11th
working conference on reverse engineer-
ing, pages 144–151. IEEE, 2004.

[EKS94] Johann Eder, Gerti Kappel, and Michael
Schrefl. Coupling and cohesion in object-
oriented systems. Technical report, Cite-
seer, 1994.

[GC09] Varun Gupta and Jitender Kumar
Chhabra. Package coupling measure-
ment in object-oriented software. Jour-
nal of computer science and technology,
24(2):273–283, 2009.

[GS07] Gui Gui and Paul D Scott. Ranking
reusability of software components using
coupling metrics. Journal of Systems and
Software, 80(9):1450–1459, 2007.

[HBG18] Joseph Hejderup, Moritz Beller, and
Georgios Gousios. Prazi: From package-
based to precise call-based dependency
network analyses, 2018.

[HCN98] Rachel Harrison, Steve Counsell, and
Reuben Nithi. Coupling metrics for
object-oriented design. In Proceed-
ings Fifth International Software Met-
rics Symposium. Metrics (Cat. No.
98TB100262), pages 150–157. IEEE,
1998.

[HM95] Martin Hitz and Behzad Montazeri. Mea-
suring coupling and cohesion in object-
oriented systems. Citeseer, 1995.

[KGDP17] Riivo Kikas, Georgios Gousios, Marlon
Dumas, and Dietmar Pfahl. Structure
and evolution of package dependency net-
works. In Proceedings of the 14th Inter-
national Conference on Mining Software
Repositories, pages 102–112. IEEE press,
2017.

[KKK+19] Falko Koetter, Monika Kochanowski,
Maximilien Kintz, Benedikt Kersjes, Ivan
Bogicevic, and Stefan Wagner. As-
sessing software quality of agile student
projects by data-mining software reposi-
tories. In Proceedings of the 11th Inter-
national Conference on Computer Sup-
ported Education-Volume 2: CSEDU,
INSTICC, pages 244–251. SciTePress,
2019.

[PM06] Denys Poshyvanyk and Andrian Mar-
cus. The conceptual coupling metrics for
object-oriented systems. In 2006 22nd
IEEE International Conference on Soft-
ware Maintenance, pages 469–478. IEEE,
2006.

[PPP+18] Ivan Pashchenko, Henrik Plate, Ser-
ena Elisa Ponta, Antonino Sabetta,
and Fabio Massacci. Vulnerable open
source dependencies: Counting those
that matter. In Proceedings of the
12th ACM/IEEE International Sympo-
sium on Empirical Software Engineering
and Measurement, page 42. ACM, 2018.

[SVHMB20] César Soto-Valero, Nicolas Harrand,
Martin Monperrus, and Benoit Baudry.
A comprehensive study of bloated depen-
dencies in the maven ecosystem. arXiv
preprint arXiv:2001.07808, 2020.

[WK00] F George Wilkie and Barbara A Kitchen-
ham. Coupling measures and change rip-
ples in c++ application software. Journal
of Systems and Software, 52(2-3):157–
164, 2000.

6

[YTB05] Hong Yul Yang, Ewan Tempero, and
Rebecca Berrigan. Detecting indirect
coupling. In 2005 Australian Software
Engineering Conference, pages 212–221.
IEEE, 2005.

7

	Introduction
	Background
	Related Work
	Definition of coupling
	Criterion 1: Type of connection
	Criterion 2: Locus of impact
	Criterion 3: Granularity of the measure
	Criterion 4: Stability of the server
	Criterion 5: Direct and indirect coupling
	Criterion 6: Inheritance

	Formal definition of the metrics
	Metric 1: Method invocation coupling (MIC)
	Metric 2: Aggregation coupling (AC)

	Preliminary Results
	Conclusion and Next Steps
	Acknowledgment

