
Educational Tasks, Fun, and Informatics

Lorenzo Repetto

Istituto di Istruzione Superiore “Italo Calvino”, Genova, Italy
lorenzo.repetto@calvino.edu.it

Abstract. This contribution proposes some case studies and sugges-
tions to introduce – at different levels of learning – several concepts of
undoubted importance in informatics. The starting point is a set of prob-
lems faced by students in various competitions or while trying to solve
classic puzzles, logical and algorithmic riddles, strategy games, and com-
puter graphics amusements. I intend to provide teachers with few tips,
hopefully useful to develop and strengthen computational thinking in
students’ minds, at differing stages of their courses.
The contents are concerned with: how to deal with knapsack problem
and some hard problems on graphs (e.g. minimum vertex cover); com-
parisons between different greedy (efficient) algorithms, and exact (more
complex) algorithms; examples of complementary problems or, more gen-
erally, problems that are equally demanding in terms of computational
load; examples of puzzles (programmable by backtracking or by heuristic
techniques or even as instances of exact cover set problem), the solutions
of which consist either in a final state or in a sequence of moves to reach
it; few hints to introduce strategy games for two competitors, impar-
tial combinatorial ones as well; a didactic game, in which both players
are dummy; finally, two notes about logical and algorithmic riddles (with
some indicative examples) and graphic procedures related with computer
science, both practical and theoretical.

Keywords: Games · Graphs · Time-complexity · Greedy / efficient al-
gorithms · Hard / equivalent problems.

1 Introduction

Through more than thirty years of teaching informatics (both as the science and
technique of programming in the broadest sense, and as computer science), I have
often achieved unexpected benefits considering, analyzing, and solving – with
the help of the computer – educational tasks of various kinds: questions (with a
logical or mathematical background), puzzles, solitaires, or strategy games. As a
matter of fact, students were usually more motivated both by the purely playful,
amusing aspect, and by the sense of challenge that the computer implementation
entailed, so that they learned more easily methods and techniques to represent
information and to process data.

Another important aspect is that a lot of educational tasks like the ones pro-
posed in Bebras competitions can offer the opportunity to explain key ideas and

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

2 Lorenzo Repetto

concepts at different levels of thinking skills: beginning with notions understand-
able by children and culminating in generalizations and formalization which can
be covered in a university course, grasping the features of computational com-
plexity, as well as power and limits of computing mechanisms.

The concept of game – in a broad sense – can be found in all cultures and in
all historical periods, and there are many sectors of computer science benefiting
from it: artificial intelligence, security, distributed computing, and so on. Only a
few topics are proposed and discussed in this paper: suggestions and indications
useful to find or create others are provided. Teachers will find countless ideas
and hints in [1–5] and in the “canonical” fifteen books encompassing Martin
Gardner’s “Mathematical Games” columns from Scientific American, written
by this prolific and unforgettable author from 1957 to 1980 and beyond. Italian
teachers can also get inspiration from my book [6]; the short reports presented
here are taken from it.

2 Efficient algorithms and hard problems

In Bebras competitions [7] instances of classic problems in informatics are often
proposed in the form of educational tasks, in a realistic or fairytale scenario.
Moreover, with a bit of imagination, you can always devise new questions or
puzzles, in order to illustrate, for instance:

- “efficient” algorithms on unweighted (and possibly directed) graphs; e.g. to
build a maximal tree, containing all the vertices reachable from a given start-
ing vertex, either in depth (Depth-First Search), using the system stack, or in
breadth (Breadth-First Search), using a queue;

- “efficient” algorithms on weighted (usually undirected) graphs; e.g. to find a
“covering” tree of minimum weight (Minimum Spanning Tree, or MST). I would
like to mention three greedy algorithms – following three different rules – due to
O. Bor̊uvka, J. B. Kruskal, and V. Jarńık-R. C. Prim, respectively. The first is
the oldest of all, dating back almost a century ago; the second one is the easiest
to understand: the two “closest” vertices are connected at each step, making sure
that no cycle is created; the third one inspired E. W. Dijkstra for the design of
his famous algorithm to find the least cost paths from a given vertex to each of
the others, more generally in a directed graph;

- “hard” problems on unweighted (and undirected) graphs; e.g. Minimum
Vertex Cover and Maximum Independent Vertex Set (two “complementary” sub-
set problems, which we will discuss later);

- “hard” problems on weighted graphs; e.g. Travelling-Salesman Problem, or
TSP (a famous permutation problem);

- other “hard” problems; e.g. Bin-Packing (a partition problem), Knapsack
(another subset problem; see below), Multiprocessor Scheduling (in which the
possible precedence constraints between the processes – with different durations
– are expressed by means of a directed acyclic graph).

By efficient algorithm we mean a procedure which, in order to be executed,
requires a time at most polynomial (that is to say, bounded above by a polyno-

Educational Tasks, Fun, and Informatics 3

mial) in the length of the input data coded in bits. (Usually, then, for practical
purposes, it is understood that the degree of this polynomial should not be too
high.)

By hard problem we mean, basically, a problem (in general) for which no
efficient algorithm, that exactly solve it, is known: either for sure no efficient
algorithm exists (as happens for intrinsically exponential problems, e.g. the fa-
mous towers of Hanoi) or it is unknown whether such an algorithm exists. For
the problems mentioned here, this latter meaning applies.

2.1 A first case study: Knapsack

In this subsection let’s see how to gradually deal with the “backpack optimizing
problem”, starting from an instance that I leave to your imagination; it could
be a mountaineer packing for a long hike, or a thief who is robbing a shop and
wants to accumulate stolen goods of the greatest possible value.

In general, the input data (all positive integers) are: P , the maximum weight
supported by the backpack; (p1, ..., pn) and (v1, ..., vn), respectively the lists of
weights and values of n objects. The goal is to determine a set of objects whose
overall weight is not greater than P and whose overall value is maximum.

The input data of an instance could be for example: P = 12, weights =
(1, 2, 3, 3, 5, 6), and values = (2, 4, 6, 6, 7, 9); so, n = 6. Generally speaking, the
value does not necessarily increase with weight and the order in which the objects
are arranged does not matter; moreover, the two objects with weight 3 and value
6 could be exactly the same or not.

The first idea that usually comes to mind (even to very young students) is
to choose – from time to time – the most valuable object that can still fit in the
backpack. It is expressed by a greedy algorithm, which in our case leads to the
choice of objects of value 9, 7, and 2 (18 in total) and weighing 6, 5, and 1 (12 in
total, leading to a full backpack). But can a higher overall value be achieved?

A side conversation can be started now, illustrating a problem for which
there is a greedy algorithm that always leads to an optimal solution (e.g. the
aforementioned Kruskal’s algorithm to obtain an MST), and yet another classic
problem: composing a given sum with the minimum number of coins, of certain
denominations, since we dispose of them at will of each denomination. Suppose
we choose the largest possible denomination at each step. Well, characterizing
the coin systems (each one represented by its list of denominations), for which
this greedy procedure leads to the minimum number of coins, is still an open
question if there are more than five available denominations. It can be seen that
this problem is actually a variant of Knapsack...

Let’s start from another reflection: if we were handed over an already partially
filled backpack, we will still get the greatest profit by maximizing the value of
the objects that can still be added, choosing them among the remaining ones.
Overturning the view: supposing that the capacity c of the backpack increases
progressively from 1 to P , at each stage let’s ask ourselves what is the maximum
value, achievable by having only the first object, or the first two. . . or all the n
objects (as we said, the order does not matter). When we have to decide whether

4 Lorenzo Repetto

to choose the k-th object or not, assuming that its weight does not exceed c, we
will choose it only if its addition manages to improve the overall profit.

This idea leads to the well-known dynamic programming algorithm, which
uses a support data structure consisting of a matrix M of integers, with P + 1
rows and n + 1 columns, where the first row and the first column (which we
suppose have index 0) are filled with 0’s (if the backpack cannot contain anything
or there is no object, then its value is 0):

for c from 1 to P

for k from 1 to n
if pk > c then M[c, k] := M[c, k − 1];
else M[c, k] := max{M[c− pk, k − 1] + vk, M[c, k − 1]};

After this, the element M[P, n] contains the value of an optimal solution – of
course, the correctness of any algorithm should always be proved...

To find out which objects to choose, we proceed in the following way:

c := P ; k := n;
while c > 0 and k > 0 {

if M[c, k] 6= M[c, k − 1] then
{ choose the k-th object; c := c− pk; }

k := k − 1;

}

In our case, the application of this algorithm leads us to choose the objects in
places 5, 4, 3, and 1, with a total value of 21, and still a full backpack; students
can understand the why by doing a hand simulation. Here are other equally
good solutions yet: which ones? Which solution is found depends on the order
in which the objects (with their respective pk and vk) are initially arranged!

At this point, students can be easily stimulated to make some further con-
siderations, on slightly larger instances: what would be the value of the stolen
goods if the strategy used by the thief was to always choose “the lightest ob-
ject” that can fit in the backpack? Or, otherwise, “the object that has the best
value/weight ratio”?

If the aim is to fill the backpack as much as possible, then just match the
values of the objects with their respective weights. Considering only weights,
a formulation of the decision problem (with answer yes or no) asked to estab-
lish if the backpack can be filled exactly with its maximum weight P , which is
equivalent to ask if the equation

Σn
i=1pixi = P (1)

has solutions when each unknown value xi is 0 or 1: this is the Subset-Sum prob-
lem, which is also found in cryptography. Incidentally, asking the same question
for a linear system with integer coefficients does not change the complexity of
the problem, which is called integer (linear) programming 0-1.

Educational Tasks, Fun, and Informatics 5

A significant variant of Knapsack assumes the unlimited availability of spec-
imens of each type of object; the procedure requires less memory space (two
arrays, each of P + 1 elements, instead of the matrix M) but its first part still
consists of two nested for loops... Talking about computational complexity, the
two nested loops would suggest a polynomial time (nP), but which is actually
exponential in the size of the input data expressed in bits. Nevertheless, when
the input is a list of numbers and the execution time is bounded by a polyno-
mial in the greater of these numbers and in the length of the list, we speak of
pseudo-polynomial algorithms. And this is our case, so Knapsack is NP-hard but
not strongly (unlike, e.g., TSP and Bin-Packing).

How to explain in simple terms what an “NP-hard” problem is? “NP” stands
for “Non-deterministic Polynomial” and means that the problem could be gen-
erally solved in polynomial time by a hypothetical algorithm such that, if a
solution of the problem exists, at each step it makes the right choice to arrive
at the closer solution, whereas, if the problem does not admit any solution, at
each step it makes the choice leading to further failure. In practice, but for the
purposes of our discussion: it is included in those problems to solve which we do
not have a time-polynomial algorithm in the bit length of the input data, and
we don’t even know if such an algorithm there exists – probably not. “Hard”
means that any NP problem can be reduced to it (i.e., any instance of any NP
problem can be transformed in a suitable instance of it) in polynomial time.

Lastly, you could propose some instances of problems easily solvable by ap-
plying the idea of dynamic programming (referring to those processes in which it
is required to find the best decisions one after the other, in particular for multi-
stage ones, whose evolution can be described by a directed acyclic graph); it is
one of the most general algorithmic techniques together with linear programming
and backtracking. For instance: finding an optimal path from the first to the last
column of a chessboard, in which each square has its own cost (or benefit) of
visit, bearing in mind – as a general principle – that each terminal part of an
optimal path is itself an optimal path, for a smaller sub-problem.

2.2 A second case study: some “hard” problems on graphs

Starting from a few simple tasks proposed in Bebras competitions, let’s see how
we can formulate and solve some “hard” problems on unweighted and undirected
graphs. For instance, in 2016, the Swiss group produced the scenario sketched
in Fig. 1 for a question, the starting point of which was given by a community
of beavers who must decide in which of the ten places to build three medical
stations for primary health care, so that from each of the other places it is
possible to reach a station by swimming through only one water canal.

In general, when a set of vertices of minimum cardinality must be found
in an undirected and connected graph, such that each of the other vertices is
adjacent to (i.e. joined by an edge with) at least one of these, we have to solve a
Minimum Dominating Set (or MDS) problem, which is NP-hard. (Incidentally,
the proposed task has eight solutions of cardinality 3, which is the minimum.)

6 Lorenzo Repetto

A

B

C

D

E

F

I
K

H

A

K

G

C

H

D

B
F

I

E

Fig. 1. The ten places of the beavers’ community and the canals connecting them.

But, using the same scenario as base, let’s ask ourselves another question:
since from each place we can check all the water canals having an end at that
place, what is the minimum number of places in which to install a watchtower, so
that all canals are monitored? In general, this is called Minimum Vertex Cover
(or MVC) problem, NP-hard too. If the graph, in addition to being unweighted
and undirected, is simple (i.e. without parallel edges), connected and without
“loops” (i.e. edges whose endpoints coincide), then it can be represented by a
list of pairs (u, v) with u < v, denoting the n vertices with the numbers from 1
to n. The goal is to determine a set of vertices of minimum cardinality, such that
every edge of the graph has at least one of the two endpoints (i.e., is incident to
at least one vertex) in this set.

The first greedy idea usually coming to mind to any good student is the
following: to construct the vertex cover X (initially empty), at each step choose
a vertex v with maximum degree (the degree of v is the number of edges incident
to v), insert v into X, and delete both v and the edges incident to it (and any
vertices that remain isolated, too) from the graph. In our case, at the first step we
have two alternatives: C or H, both with degree 4; if we choose H, any subsequent
choice, with the same maximum degree, finally leads to one of the two minimum
covers {H, K, I, D, A} and {H, K, I, D, C}, both of 5 vertices. But if we initially
chose C and, at the second step, B (with degree 3), then we would not find a
minimum vertex cover. Therefore, this procedure does not always work; in fact,
it is not even a constant-factor approximation algorithm: in bad cases, the ratio
between the number of selected vertices and the number of vertices in a minimum
cover tends to grow (although logarithmically) as the number of vertices in the
graph increases.

A second greedy idea arises from observing that, for each edge, at least one
of the two endpoints must be in a minimum vertex cover. So, to build the set
X, at each step we choose (at random) an edge, let’s say the one between the
two vertices u and v, we insert both u and v into X, and we delete u and v, as
well as each edge incident to u or v, from the graph. In the proposed example,
no choice leads to an optimal solution; if we indeed are unlucky, we will even
take all the vertices! In general, in the worst case, the cardinality of the resulting
vertex cover is twice the minimum: this is therefore an approximation algorithm
with a constant factor of 2. For instance, in the case of Kn,n (i.e. the bipartite
graph with n vertices in each of the two parts, and each vertex of one part joined

Educational Tasks, Fun, and Informatics 7

by an edge to each vertex of the other part) all 2n vertices are taken, whereas
each of the two minimum covers contains only n vertices. (It should be noted
that, however, on any bipartite graph the problem can be solved efficiently.)

One could think of combining the two criteria, choosing an edge not at ran-
dom, but with the maximum sum of the degrees of its two endpoints. In the case
of Kn,n there would be no benefit; in our example, we would get a vertex cover
of 8 vertices: it doesn’t work! In truth, as we said, MVC is an NP-hard problem.

Nevertheless, the second greedy algorithm suggests an easy way for a pro-
cedure that gives an optimal solution: we also calculate what is obtained by
inserting only u or only v into X, bearing in mind that, when adding only one
of the two, we must necessarily add at the same time also all vertices adjacent
to the other. For instance, in Fig. 1, if we consider the edge between C and H,
choosing H and excluding C, we need to include D, A, and K. We can finally
formulate an algorithm to achieve an optimal solution, given the graph G.

a. If G has no edges, then return the empty set (of vertices). End.
b. Otherwise, let (u, v) be an arbitrarily chosen edge of G; recursively, and if
possible in parallel, solve the following three problems:

1. X := {w|(w, u) is an edge ofG} and letG1 be the graph obtained by removing
from G the vertices belonging to X and the edges incident to them; let X1

be the solution found when G1 is given; finally, X1 := X1 ∪ X.
2. X := {w|(w, v) is an edge ofG} and letG2 be the graph obtained by removing

from G the vertices belonging to X and the edges incident to them; let X2

be the solution found when G2 is given; finally, X2 := X2 ∪ X.
3. Let G3 be the graph obtained by removing from G the vertices u and v and

the edges incident to them; let X3 be the solution found when G3 is given;
finally, X3 := X3 ∪ {u, v}.

c. Return the set with the least cardinality, between X1, X2, and X3. End.

If k is the number of vertices belonging to a minimum cover, you can prove
that the depth reached by the algorithm just described is at most k, and therefore
its time-complexity has a factor of 3k.

MVC can be seen as a particular case of Minimum Set Cover (or MSC), a
problem that consists in choosing the least number of sets (from a given family of
sets) whose union coincides with a given “universe” (often, the family union). To
be convinced of this fact, just consider, for each vertex, the set of edges incident
to it and, as “universe”, the set of all the edges of the graph.

MSC is equivalent to MDS. In fact, if we consider the time required to solve
them exactly, we can say that they are equally difficult; more precisely, any
instance of one can be transformed, in polynomial time, into a corresponding
instance of the other. Let’s reduce MDS to MSC: with each vertex v we associate
the set consisting of v and its neighbors; once covered with the least number of
such sets the set of all the vertices, it will be enough to consider – as a solution
of MDS – the vertices with which such sets are associated. You can let mature
students prove the other way around – a little more challenging.

8 Lorenzo Repetto

In computer science, it may sometimes be convenient to transform our prob-
lem into another equivalent to it (or more general), to solve which we already
have special software; but then we also need to know how to interpret (easily)
the results, to get the solution of the original problem.

If we consider the complement of a minimum vertex cover w.r.t. the set of
all the vertices in the graph, we get a solution of another interesting optimiza-
tion problem: finding the Maximum Independent Vertex Set (or MIVS), a set of
vertices of maximum cardinality which, two by two, are not joined by an edge.

If X is a set of vertices, the following statements are equivalent:
- X is an independent set
- every edge is incident to at most one vertex belonging to X
- every edge is incident to at least one vertex not belonging to X
- the complement of X is a vertex cover.
A maximum independent set complements therefore a minimum vertex cover.

The complement graph of a graph G has the same vertices as G, none of
the edges of G, and all edges (between two different vertices) that are not in G.
An independent set is made up of the vertices belonging to a complete subgraph
(clique) in the complement graph, and therefore each solution of a MIVS problem
is also a solution of the Maximum Clique problem on the complement graph, and
vice versa: they are therefore computationally equivalent problems. The example
in Fig. 2 clarifies what has just been said.

(a) (b) (c)

Fig. 2. In black, examples of Minimum Vertex Cover (a) and Maximum Independent
Vertex Set (b); Maximum Clique in the complement graph (c).

If X is a maximum independent set, for each vertex v of the graph either v or
at least one of its neighbors belongs to X. To solve exactly an MIVS problem, it
is therefore possible to solve several of its reduced size instances, taking then the
best; it is hoped to contain in this case the number of such instances, choosing
– from time to time – a vertex with minimum degree. The detailed design of an
appropriate procedure can be left to mature students.

To conclude, for all the aforementioned “hard” problems on graphs, it can
be proposed to solve, recursively and if possible in parallel, two or more sub-
problems of reduced size, and then to package an exact solution using one of those
of the sub-problems that has certain characteristics. Doing so, time grows how-
ever exponentially with the number of vertices. The best algorithms for MIVS

Educational Tasks, Fun, and Informatics 9

so far conceived have indeed a time-complexity of the form cn, where n is the
number of vertices in the graph and c is a constant slightly greater than 1.2.

3 Puzzles

There are many fun puzzles that can be solved, more or less laboriously, with
the help of a computer. Some of them are easily “programmable” using the
backtracking technique, actually based on a “trial and error” procedure. If we
get to an impasse, the idea is to go back to the last previous crossroads and
choose another path, and if there are no other possibilities, then we backtrack
one more step back, and so on. Sooner or later, either a solution is reached or all
possible paths have been tried in vain and fruitlessly; in the second case, then,
the particular instance of the problem does not admit any solution.

If a solution really exists, the one we will find might be entirely contained in
the “final state”, and it doesn’t matter how we got there. To avoid running into
loops, if there is this danger, we will have to leave a trace of the path – which
will eventually indicate the solution found – in the current state. Examples of
this type of puzzle are: Sudoku; classic puzzles with interlocking tiles, without
knowing the final image or the final arrangement of the tiles; the drawing of a
tour (open or closed) of the knight on a chessboard (square or rectangular or
other shape), or the design of a path to get out of a labyrinth: the unknown final
state, which must be reached, is precisely the solution to the problem. We could
also force the continuation of the process after finding a solution and perform
an exhaustive search for all solutions, providing that the time required does not
become prohibitive.

The completion of a Sudoku scheme can also be seen as an instance of Exact
Cover Set (or ECS; an NP-hard problem which, unlike MSC, requires that each
element of the universal set be covered once and only once, i.e., the sets chosen
are two by two disjoint, but not necessarily as few as possible) or dealt – at least
for the most part – exploiting ad hoc techniques.

One of the first programs that used the backtracking technique is due to the
eminent logician Dana S. Scott, who created it in 1958, with the help of Hale
F. Trotter, just to get all the essentially different solutions of a combinatorial
puzzle with the 12 pentominoes [8]: it was a question of forming an 8×8 square,
with a 2×2 hole in the center. This puzzle can be traced back to three instances
of ECS. Incidentally, there are 65 different solutions, found by Scott-Trotter’s
program in about 3.5 hours.

Then there are puzzles a little more complicated to “program”, where a
solution (if any) consists in the sequence of transitions (or moves), not known,
which led from the initial state to the final state (of success), perhaps already
known (that is, you know where you want to go, but you don’t know how).
Sometimes there is no risk of falling into loops (e.g., when the pieces cannot
retreat or one of them is removed with each move), but often, on the contrary,
it is necessary to keep a list of the states visited along the path traveled so far.
In some cases, it is interesting to look for the shortest solution, or one of the

10 Lorenzo Repetto

shortest, or even all the shortest ones: e.g., in the “English 16” puzzle (first
published by W. W. Rouse Ball in 1892) or in the “15” puzzle (perhaps the
most famous of the sliding-block puzzles). Of course, if you want to find all
the shortest solutions, in addition to forcing backtracking, you need to keep in
computer memory a set of solutions (and each solution is a list of states): when
a solution of the same length as the others is found, it is added to them; if a
shorter solution is found, then it replaces all the others. In the “English 16”
puzzle, also known as “Fore and aft”, the same position cannot be repeated, and
therefore it also makes sense to ask ourselves what the longest solutions are.

In many cases, we can usefully apply a heuristic algorithm that performs, for
example, a best-first search (that gives precedence to the most promising moves,
which give more hope to reach near the target, according to an appropriate
evaluation function) in which the “cost” of a move is calculated as the sum
of the number of moves already made starting from the initial state and the
minimum estimated number of moves that remain to be made to reach the final
state. If the estimate never exceeds the true number of moves needed to get
a solution, then the procedure finds one of the shortest solutions (if at least
one solution exists) in a hopefully reasonable amount of time. For instance, in
the “15” puzzle, where each move involves the movement of a single tile, an
estimate can be made by adding the “Manhattan distances” between each tile
and its final position. In this way a lower bound is certainly achieved for the
number of remaining moves, since each tile must move at least as many times
as the places (both horizontally and vertically) that separate it from its final
position.

4 Strategy games

Let’s consider now strategy games between two competitors, especially zero-sum
games with perfect information, in which a computer can be programmed to play
(if possible at best) against a human or another software. The popular tic-tac-
toe, possibly dating back to Ancient Egypt, was the subject of the first video
and graphical computer game, for EDSAC at the University of Cambridge, in
1952. As is well known, it is a “futile” game: if neither player makes mistakes,
the game ends in a draw. However, it can be used as a base to understand some
fundamental ideas for solving (in a strong sense) a game, such as the minimax
algorithm (maybe in its simplest negamax version) and alpha-beta pruning (or
even more modern pruning techniques). You can explain then how to design,
instead, a program stopping the analysis at a certain depth; consider, e.g., some
of the simplest variants of the Mancala family, where a non-final state can be
heuristically evaluated by a subtraction of pieces (or material).

Within the reach of younger students there are the procedures to determine
which of the two players has a winning strategy in some impartial combinato-
rial games (characterized by no distinction of material, i.e. the same moves are
available to each player, and no possibility of a draw), such as:

Educational Tasks, Fun, and Informatics 11

- (normal) NIM, the most classic game with matches, paradigmatic of the whole
class of impartial combinatorial games: for its analysis, binary numbering and
exclusive or operation are needed;
- Euclid’s game [9], where, instead, the remainder of integer division, the golden
ratio, and also the Fibonacci sequence have a decisive role;
- simple instances of other games on graphs; see, e.g., [10].

Attention should be paid both to infinite games, where if nobody makes
mistakes the game doesn’t end (e.g. Pong Hau K’i and Picaria), and to those
dummy games in which it seems that the two opponents are playing a game,
whereas – in reality – the outcome of each game is established a priori, whatever
the choice made by the turn player from time to time. For instance, I propose
the following didactic one: let’s place n identical coins on the tabletop; the two
players take turns stacking two stacks of the same height (each player’s first
move is forced, if n > 3); and when there are no two stacks of the same height,
the player in turn loses. Once n is fixed, all games end after the same number
of moves and with the same winner (either the first or the second player). At
the end of each game with n coins, on the table there will be indeed a stack of
k coins for each k in the representation of n as sum of powers of 2. Discarding
therefore the least significant bit of the binary number n and then counting the
1’s, if these bits are odd then the first player wins, otherwise the second wins.
The sequence that associates the winning player with each n is related to the
famous non-periodic Prouhet-Thue-Morse sequence [11].

Suppose, instead, of starting with a single stack of n coins; now a turn consists
of splitting a single stack into two stacks of different heights, and a player loses
when he cannot move because all stacks have height 1 or 2. This game, proposed
by P. M. Grundy in 1939, is not a dummy game; however, the characteristics of
the winner’s sequence are still unknown: it is conjectured that it eventually does
become periodic [1], but the question is an unsolved problem.

In certain cases, the same player always has a winning strategy: e.g. the first
player in (normal) Kayles, for any row of n > 0 pins.

5 Logical and algorithmic riddles

I’d like to recommend the logical riddles concerning with informatics and com-
puters: above all, those designed by the eclectic and brilliant Raymond Smullyan,
and not only in the style of the classic questions involving logical deductions.
In his book The Lady or the Tiger? [12] (chapters 9, 16, and 17) he proposes
formidable questions that highlight – and magically show! – both the undecid-
ability of Turing’s halting problem and Gödel’s first incompleteness theorem.
These themes are then explored in the subsequent Satan, Cantor, and Infinity
[13]; in its riddles, some languages that have few essential rules are involved too.

Puzzles with marbles of two or more colours (that combine in sequences or
stack in cylinders) can be invented to understand certain properties of string
rewriting systems (see Fig. 3 and [6], pp. 349–351) or Post production systems
(see [6], pp. 356–357), and their relationship with Turing machines.

12 Lorenzo Repetto

(a)

(b)

Fig. 3. An example of string rewriting system with only one rule (a). Starting from
any sequence of marbles, for instance (b), as long as possible, replace a single occur-
rence (at a time) of the subsequence on the left in (a) with the one on the right. In
this case, the process always ends, whatever the initial sequence; furthermore, when
multiple substitutions are allowed in a rewrite step, all alternatives lead to the same
final sequence (called normal form of the initial sequence), i.e. the system is confluent.
If in rule (a) we add a grey marble at the head of the sequence on the right, then we
get a system that does not always terminate.
As a general result, if the system is finitely terminating, then the confluence is de-
cidable; and if it is confluent too, then each sequence has one and only one normal
form.

You can moreover exploit instances of Post’s correspondence problem, in gen-
eral only semi-decidable (see Fig. 4 and [14]).

In the form of educational tasks, you can formulate new problems; some
have appeared in past Bebras competitions, as well as several tasks useful for
introducing different classes of formal grammars to define artificial languages.

6 Graphic amusements

Among the many instructive graphic entertainments, let me cite the Photomaton
[15] (an image processing that repeats a peculiar redistribution of the same pixels
and, after surprising effects, finally returns to the initial image) and the Persian
recursion [16] (to draw a Persian carpet by assigning a colour to only the four
pixels at the corners and then triggering a recursive procedure that applies itself
four times, if both sides of the carpet are greater than 2 pixels).

Starting from Voronoi’s diagrams, spectacular images – but not cumbersome
to get with the computer aid – are shown and explained in two papers written
by C. S. Kaplan and available on the net [17, 18].

Cellular automata in one or two dimensions (from S. M. Ulam and J. von
Neumann to J. H. Conway and S. Wolfram; visit the truly inexhaustible mine
[19]) offer the vision of amazing evolutions in their “digital world”, together
with their ability to emulate the behavior of complex systems and even with
their universal computing power.

Finally, I would like to recall the turmites (C. G. Langton and others; see [20,
19]), i.e. Turing machines in two dimensions, automata able to move on a plane,
partitioned into square cells of various colours; these colours, in finite numbers,

Educational Tasks, Fun, and Informatics 13

BABABABA

BA

1 2 3 4

Fig. 4. Whenever you click a numbered button, the corresponding pair of marble stacks
falls, from above, into the two cylinders A and B on the right. In these cylinders, initially
empty and as high as you want, you have to build two identical nonempty stacks. In
this case, apart from repetitions, the only solution is to click 2, 4 and 1 in this order;
so button 3 is useless. But, without the two marbles at the base of button 4 (a grey
marble at the bottom of stack A and a black one at the bottom of stack B), the task
would be impossible.
In general, there is no algorithm able to decide whether two identical stacks can be
built or not, given an arbitrary set of n > 4 pairs of marble stacks (i.e., in our riddles,
n buttons); when n = 2 the problem is decidable, but with n = 3 or n = 4 we don’t
know (see [6], pp. 352–355).

play the role of the symbols of the alphabet in a classic Turing machine. One of
the cells is occupied by an automaton that can move (orthogonally) only one cell
at a time, maybe after changing the colour of the cell it just left, thus composing
who knows what fascinating patterns, perhaps related to known mathematical
constructions, like a Fibonacci spiral!

7 Conclusions

Here I presented two case studies that develop different topics, starting from
examples of simple tasks up to the discussion of complex notions step by step. I
then gave suggestions or ideas for fun tasks or games, which can be used very well
to introduce fundamental algorithmic and programming techniques. Examples
like these have been successfully tested over several years in teaching students
aged between 16 and 19, but more recently the basic ideas have also been passed
on to primary school children. This step has been encouraged by engaging and
challenging games designed specifically for younger pupils, which inspired a com-
pelling series of books and teaching materials to pleasantly introduce informatics
from nursery school up to the age of 15 [21].

14 Lorenzo Repetto

The firm belief remains that the learning of a large part of informatics can
be considerably facilitated by this kind of approach, which is always stimulating
for students and appreciated by them, and which often brings fruitful didactic
repercussions even in other branches of knowledge.

References

1. Berlekamp, E. R., Conway, J. H., Guy, R. K.: Winning Ways for your Mathematical
Plays. 2nd edn. 4 vols. A. K. Peters Ltd., Wellesley, MA (2001–2004).

2. Bewersdorff, J.: Luck, Logic, and White Lies. The Mathematics of Games. A. K.
Peters Ltd., Wellesley, MA (2005).

3. Shasha, D. E.: Puzzles for Programmers and Pros. Wrox Press/Wiley, New York,
NY (2007).

4. Knuth, D. E.: Selected Papers on Fun and Games. Lecture Notes, Vol. 192. CSLI
Publications, Stanford University, Stanford, CA (2011).

5. Levitin, A., Levitin, M.: Algorithmic Puzzles. Oxford University Press, New York,
NY (2011).

6. Repetto, L.: Dai giochi agli algoritmi. Un’introduzione non convenzionale
all’informatica. 2nd edn. Edizioni Kangourou Italia, Monza, Italy (2019).
https://drive.google.com/file/d/1tMllvuRregMCwwYb-c25DlhJ7FxsPaM8/view?
usp=sharing

7. Bebras Homepage. https://www.bebras.org (for resources by the Italian group:
https://bebras.it/materiali.html)

8. Pentomino. https://en.m.wikipedia.org/wiki/Pentomino
9. Cole, A. J., Davie, A. J. T.: A game based on the Euclidean algorithm and a winning

strategy for it. Mathematical Gazette 53(386), 354–357 (1969).
10. Edmonds, J. R., Gurvich, V. A.: Games of no return. RUTCOR Research Report,

RRR-4-2010. Rutgers University, New Jersey (2010).
11. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/A010060
12. Smullyan, R. M.: The Lady or the Tiger? And other logic puzzles including a

mathematical novel that features Gödel’s great discovery. A. A. Knopf Inc., New
York, NY (1982).

13. Smullyan, R. M.: Satan, Cantor, and Infinity: and other mind-boggling puzzles. A.
A. Knopf Inc., New York, NY (1992).

14. Post’s Correspondence Problem. http://webdocs.cs.ualberta.ca/%7Egames/PCP
15. Delahaye, J.-P., Mathieu, P.: Images brouillées, Images retrouvées. Pour la Science

242, 102–106 (1997).
16. Burns, A. M.: “Persian” Recursion. Mathematics Magazine 70(3), 196–199 (1997).
17. Voronoi Diagrams and Ornamental Design.

http://www.cgl.uwaterloo.ca/%7Ecsk/papers/kaplan%5Fisama1999.pdf
18. Aliasing Artifacts and Accidental Algorithmic Art.

http://www.cgl.uwaterloo.ca/%7Ecsk/papers/kaplan%5Fbridges2005a.pdf
19. Stephen Wolfram’s A New Kind of Science. https://www.wolframscience.com/nks/
20. 2D Turing Machines. http://www.mathpuzzle.com/MAA/21-2D%20Turing%20

Machines/mathgames%5F06%5F07%5F04.html
21. Hromkovič, J., et alii : Einfach Informatik (Zyklus 1, 5/6, 7–9). Klett und Balmer

Verlag, Baar, Switzerland (2018–2020).

