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Abstract. The eternal vertex cover (EVC) problem is to compute the
minimum number of guards to be placed on the vertices of a graph so
that any sequence of attacks on its edges can be defended by dynami-
cally reconfiguring the guards. The problem is NP hard in general and
polynomial time algorithms are unknown even for simple graph classes
like cactus graphs and bipartite graphs. A major difficulty is that only
few lower bounds, other than the trivial lower bound of vertex cover, is
known in general and the known bounds are too weak to yield useful
results even for the graph classes mentioned above. We introduce the
notion of substructure property in the context of the EVC problem and
derive a new lower bounding technique for the problem based on the
property. We apply the technique to cactus graphs and chordal graphs
and obtain new algorithms for solving the eternal vertex cover problem
in linear time for cactus graphs and quadratic time for a family of graphs
that includes all chordal graphs and cactus graphs.
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1 Introduction

Eternal vertex cover (EVC) problem is described by a two player attack-defense
game played on a graph G [1] using k guards. Initially, the defender places guards
on a vertex cover of G, defining an initial configuration. In each subsequent round,
an attacker attacks an edge of her choice. In response, the defender reconfigures
guards by moving them in parallel such that: a) each guard is either unmoved
or moved to an adjacent vertex b) at least one guard moves across the attacked
edge c) the resultant configuration is a vertex cover of G 1. The game proceeds to
the next round with this configuration. The set of all configurations encountered
in the game defines an eternal vertex cover class (evc class) of size k for G. The
eternal vertex cover number, evc(G), is the minimum number k of guards required

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

1 Another version of the problem places an additional constraint that at most one
guard can be on any vertex in a configuration. The results of this paper and those
cited hold true in both versions.



to eternally defend any arbitrary sequence of attacks. Clearly, evc(G) ≥ mvc(G),
the vertex cover number of G. An evc class of G whose configurations have evc(G)
guards is called a minimum evc class of G.

Fomin et al. [2] showed that computation of evc(G) is NP-hard, but is in
PSPACE. It is unknown whether the problem is in NP for bipartite graphs [2].
The problem remains open even for graphs of treewidth two. For any graph G,
evc(G) is at most twice the size of a maximum matching in G [2] and is at most
cvc(G) + 1, where cvc(G) is the minimum cardinality of a connected vertex cover
of G [1]. Dynamic variants of other classical graph parameters like dominating
set [3,4,5,6] and independent set [7,8] and their relationship with eternal vertex
cover number [9,10] are well known in literature.

Efficient algorithms for computing evc(G) were known for elementary classes
like trees, cycles, grids [1] and some simple generalized tree structures [11].
Recently, a quadratic time algorithm for biconnected chordal graphs was ob-
tained [12]. All the graph classes for which polynomial time algorithms for eternal
vertex cover has been obtained so far satisfies evc(G) ∈ {mvcX(G),mvcX(G)+1},
where mvcX(G) is the minimum cardinality of a vertex cover of G that contains
all cut vertices of G. In other words, mvcX(G) is a close lower bound for evc(G)
for these classes.

A cactus is a connected graph in which any two simple cycles have at most
one vertex in common. The class of cactus graphs includes trees and cycles, but
also contains graphs for which evc(G) /∈ {mvcX(G),mvcX(G) + 1}. In Section 6,
we show an infinite family of cactus graphs for which evc(G) > 3

2 mvcX(G). This
shows that known lower bound techniques fails even on simple graph classes like
cactus graphs.

We formulate a new lower bounding technique based on the substructure prop-
erty (Definition 4) using which efficient algorithms are obtained for the EVC prob-
lem in some graph classes violating the condition evc(G) ∈ {mvcX(G),mvcX(G)+
1}. This is achieved by generalizing a recursive procedure for trees by Kloster-
meyer and Mynhardt [1], to larger graph classes that satisfy the substructure
property. The generalization yields a new quadratic time algorithm for computing
evc(G) for a graph class that includes all chordal graphs and cactus graphs. It is
also shown that evc(G) of cactus graphs can be computed in linear time.

2 Some basic observations

Definition 1. Let G be a graph and S ⊆ V (G). The minimum cardinality of
a vertex cover of G that contains all vertices of S is denoted by mvcS(G). The
minimum integer k such that there is a defense strategy on G using k guards with
all vertices of S being occupied in each configuration is denoted by evcS(G).

When S = {v}, we use mvcv(G) and evcv(G) respectively instead of mvcS(G)
and evcS(G). From the above definition, it is clear that evc(G) ≤ evcS(G).

Definition 2. If G is a graph and x ∈ V (G), we use G+
x to denote the graph

obtained by adding an additional vertex which is made adjacent only to x.



Observation 1 evc(G+
x ) ≤ evc(G) + 1.

For proofs of some observations that are omitted from the main text, the reader
may refer to the draft version [13].

Definition 3 (x-components and x-extensions). Let x be a cut vertex in
a connected graph G and H be a component of G \ x. Let G0 be the induced
subgraph of G on the vertex set V (H) ∪ {x}. Then, G0 is called an x-component
of G and G is called an x-extension of G0.

Definition 4 (Substructure property). Let x be an arbitrary non-cut vertex
of a graph G. If the following is true for any arbitrary x-extension G′ of G, then
G satisfies substructure property:
• if evc(G+

x ) ≤ evcx(G), then in every eternal vertex cover C ′ of G′, the number
of guards on V (G) is at least evcx(G)− 1 and
• if evc(G+

x ) > evcx(G), then in every eternal vertex cover C ′ of G′, the number
of guards on V (G) is at least evcx(G).

Observation 2 If a graph G satisfies substructure property and x is a non-cut
vertex of G, then evcx(G) ≤ evc(G+

x ) ≤ evcx(G) + 1.

Definition 5. Let G be a graph and x be a vertex of G. Then, G is Type 1
with respect to x if evc(G+

x ) = evcx(G) and G is Type 2 with respect to x if
evc(G+

x ) > evcx(G).

Remark 1. A tree is Type 1 with respect to all its vertices. An even (respectively,
odd) cycle is Type 1 (respectively, Type 2) with respect to all its vertices. A
complete graph Kn, with n ≥ 3 is Type 2 with respect to all its vertices.

Remark 2. By Observation 2, if G satisfies substructure property and x is a
non-cut vertex of G, then G is either Type 1 or Type 2 with respect to x.

Definition 6 ([14]). Let x be a cut vertex of a connected graph G. The set of
x-components of G will be denoted as Cx(G). For i ∈ {1, 2}, we define Ti(G, x)
to be the set of all x-components of G that are Type i with respect to x.

Definition 7. For a cut vertex x of connected graph G, we define

χ(G, x) = 1 +
∑

Gi∈T1(G,x)

(evcx(Gi)− 2) +
∑

Gi∈T2(G,x)

(evcx(Gi)− 1)

Lemma 1. Let G be a connected graph and x be a cut-vertex of G such that each
x-component of G satisfies the substructure property. If all x-components of G
are Type 2, then evc(G) = evcx(G) = χ(G, x). Otherwise, evc(G) = evcx(G) =
1 + χ(G, x).



3 Computation of the Type of vertices

Lemma 1 indicates the possibility of a recursive method to compute eternal vertex
cover number of graphs whose x-components satisfy the substructure property.
However, this makes it necessary to also compute evcx(G) and the type of each
x-component of G, with respect to x. Since a cut vertex of G is not a cut-vertex
in its x-components, a general method to find the type of a graph with respect to
any arbitrary vertex of the graph (including non-cut vertices) is necessary. This
section addresses this issue systematically.

Observation 3 (Type with respect to a cut vertex) Let G be a connected
graph and x be a cut-vertex of G such that each x-component of G satisfies the
substructure property. Then, G is Type 1 with respect to x if at least one of the
x-components of G is Type 1 with respect to x. Otherwise, G is Type 2 with
respect to x.

Proof. Note that when a pendent edge xv is added to x, that edge is a Type 1
component with respect to x. Further, evcx of this x-component is 2. Using these
facts in the expressions given in Lemma 1 immediately yields the observation. ut

Observation 4 Let G be a graph that satisfies substructure property and x be
any vertex of G. If evc(G) < evcx(G), then G is Type 1 with respect to x.

Proof. If evc(G) < evcx(G), then by Observation 1, we have evc(G+
x ) ≤ evc(G) +

1 ≤ evcx(G). By Remark 2 and Observation 3, evc(G+
x ) ≥ evcx(G). Therefore,

evcx(G) = evc(G+
x ). From this, the observation follows. ut

The following observation is useful for deciding the type of a graph with respect
to a pendent vertex.

Lemma 2 (Type with respect to a pendent vertex). Let G be a graph and
x ∈ V (G). Let H = G+

x with v being the vertex in V (H) \ V (G). Suppose each
x-component of H satisfies substructure property. Then, H is Type 1 with respect
to v if and only if G is Type 1 with respect to x.

Proof. In any eternal vertex cover class of H with evcv(H) guards in which v is
occupied in every configuration2, x must also be occupied in every configuration
(otherwise, an attack on the edge vx cannot be defended maintaining a guard on
v). Hence, the induced configurations on G define an eternal vertex cover class
of G in which x is occupied in every configuration. It follows that evcv(H) ≥
evcx(G) + 1. Moreover, from an eternal vertex cover class of G with x always
occupied, we can get an eternal vertex cover class of H with v always occupied
by placing an additional guard at v. Hence, evcv(H) ≤ evcx(G) + 1. Thus,
evcv(H) = evcx(G) + 1. Note that, by Observation 1, evc(H+

v ) ≤ evc(H) + 1.

2 If more than one guard is allowed on a vertex, we still can assume without loss of
generality that v has only one guard in any configuration. Instead of placing more
than one guard on v, it is possible to place all but one of those guards on x.



First, suppose G is Type 1 with respect to x. Then, evc(H) = evcx(G) and
we get evcv(H) = evcx(G) + 1 = evc(H) + 1 = evc(H+

v ), which means that H is
Type 1 with respect to v.

Now, suppose G is Type 2 with respect to x. Then, evc(H) = evcx(G) + 1.
Further, by Observation 3, if x is a cut vertex in G, then all the x-components of
G are Type 2 with respect to x. Irrespective of whether x is a cut-vertex of G
or not, by Lemma 1, evc(H+

v ) = 2 + evcx(G). Hence, evc(H+
v ) = evcv(H) + 1.

Thus, if G is Type 2 with respect to x, then H is Type 2 with respect to v. ut

Now, we give some observations that are useful for deciding the type of a graph
with respect to a degree-2 vertex.

Lemma 3. Let G be any graph and suppose v is a degree-2 vertex in G such that
its neighbors v1, v2 are not adjacent. Let G′ be the graph obtained by deleting v
and adding an edge between v1 and v2. Then, evcv(G) = evc(G′) + 1.

Definition 8. Let X be the set of cut vertices of a graph G. If B is a block of
G, the set of B-components of G is defined as
CB(G) = {Gi : Gi ∈ Cx(G) for some x ∈ X ∩ V (B), Gi edge disjoint with B}.
If P is a path in G, then the set of P -components of G is defined as
CP (G) = {Gi : Gi ∈ Cx(G) for some x ∈ X ∩ V (P ), Gi edge disjoint with P}.

Definition 9. For a block B (respectively, a path P ) of connected graph G, the
type of a B-component (respectively, P -component) is its type with respect to
the common vertex it has with B (respectively, P ). For i ∈ {1, 2}, we define
Ti(G,B) (respectively, Ti(G,P )) to be the set of all B-components (respectively,
P -components) of G that are Type i.

If B is a block (respectively, P is a path) of a connected graph G, such that all
B-components (respectively, P -components) of G satisfy substructure property,
then we can easily obtain a lower bound on the total number of guards on⋃

Gi∈CB(G) V (Gi) (respectively, on
⋃

Gi∈CP (G) V (Gi)) in any eternal vertex cover
of G or its extensions. The notation introduced below is to abstract this lower
bound.

Definition 10. For a block B of connected graph G, we define χ(G,B) to be

|V (B) ∩X|+
∑

Gi∈T1(G,B)
xi∈V (Gi)∩V (B)

(evcxi(Gi)− 2) +
∑

Gi∈T2(G,B)
xi∈V (Gi)∩V (B)

(evcxi(Gi)− 1).

Similarly, for a path P of connected graph G, we define χ(G,P ) to be

|V (P ) ∩X|+
∑

Gi∈T1(G,P )
xi∈V (Gi)∩V (B)

(evcxi
(Gi)− 2) +

∑
Gi∈T2(G,P )

xi∈V (Gi)∩V (B)

(evcxi
(Gi)− 1).

Remark 3. If B is a block (respectively, P is a path) of a connected graph G, such
that all B-components (respectively, P -components) of G satisfy substructure



property, then the total number of guards on⋃
Gi∈CB(G) V (Gi) (respectively, on

⋃
Gi∈CP (G) V (Gi)) in any eternal vertex cover

of G or its extensions is at least χ(G,B) (respectively, χ(G,P )).

Definition 11 (Vertex bunch of a path). Let P be a path in a connected
graph G. The vertex set V (P ) ∪

⋃
Gi∈CP (G) V (Gi) is the vertex bunch of P in G,

denoted by VBG(P ).

Definition 12 (Eventful path). Let G be a connected graph and X be the set
of cut vertices of G. A path P in a graph G is an eventful path if (i) P is either
an induced path in G or a path obtained by removing an edge from an induced
cycle in G (ii) the endpoints of P are in X and (iii) any subpath P ′ of P with
both endpoints in X has |V (P ′) \X| even.

Lemma 4. Let G be a connected graph and let P be an eventful path in G. Let
X be the set of cut vertices of G. If each P -component in CP (G) satisfies the
substructure property, then in any eternal vertex cover configuration of G, the

total number of guards on VBG(P ) is at least |V (P )\X|
2 + χ(G,P ). Moreover, if

VBG(P ) 6= V (G) and the number of guards on VBG(P ) is exactly equal to the
above expression, then at least one of the neighbors of the endpoints of P outside
VBG(P ) has a guard on it.

Proof. Consider any subpath P ′ of P such that both endpoints of P ′ are in X
and none of its intermediate vertices are from X. Let C be an eternal vertex cover
configuration of G. Since P is eventful, |V (P ′) \X| is even and in any vertex

cover of G, at least |V (P ′)\X|
2 internal vertices of P ′ must be present. Using this

along with the substructure property of P -components proves the first part of
the lemma.

Now, suppose VBG(P ) 6= V (G) and the number of guards in the configuration
C on VBG(P ) is exactly equal to the expression given in the lemma. Now, for
contradiction, let us assume that none of the neighbors of the endpoints of P
outside VBG(P ) has a guard in C. Consider an attack on an edge xv, where x is
an endpoint of P and v is a neighbor of x outside VBG(P ). To defend this attack,
a guard must move from x to v. Note that, no guards can move to VBG(P ) from
outside VBG(P ). Hence, while defending the attack, the number of guards on
VBG(P ) decreases at least by one. But, then the new configuration will violate
the first part of the lemma. Hence, it must be the case that at least one of the
neighbors of the endpoints of P outside VBG(P ) has a guard in C. ut

Definition 13 (Maximal uneventful path). Let G be a connected graph and
let X be the set of cut vertices of G. A path P in G is a maximal uneventful path
in G if (i) V (P ) ∩X = ∅ (ii) |V (P )| is odd and (iii) P is a maximal induced
path in G satisfying the above two conditions.

The next lemma is applicable to any connected graph G that contains a block B
which is a cycle such that all B-components satisfy the substructure property.
Since each block of a cactus is either a cycle or an edge, this lemma will be useful



for computing the eternal vertex cover number of cactus graphs. The proof of the
lemma makes use of the fact that B can be partitioned into a collection of edge
disjoint paths which are either eventful paths or maximal uneventful paths.

Lemma 5. Let B be a cycle forming a block of a connected graph G and let X
be the set of cut vertices of G. Suppose each B-component Gi of G that belongs
to CB(G) satisfies the substructure property. If T1(G,B) = ∅, then evc(G) =⌈
|V (B)\X|

2

⌉
+ χ(G,B). Otherwise, evc(G) =

⌈
|V (B)\X|+1

2

⌉
+ χ(G,B).

Proof. Let |V (B)| = n and |X ∩ V (B)| = k. For each B-component Gi of G that
belongs to CB(G), let xi be the vertex that Gi has in common with B. Let C be
a minimum eternal vertex cover of G. Note that the condition stated in Lemma 4
has to simultaneously hold for all subpaths of the cycle that are eventful in G.

Let l ≥ 0 be the number of maximal uneventful paths in B and let P1, P2,
. . ., Pl be these listed in the cyclic order along B. To protect the edges within

each Pi, V (Pi) should contain at least mvc(Pi) = b |V (Pi)|
2 c guards. If there are

exactly b |V (Pi)|
2 c guards on V (Pi), the end vertices of Pi are not occupied and

alternate vertices in Pi are occupied by guards. We divide the proof into four
cases, based on the parity of n− k and whether T1(G,B) is empty or not. We
prove one of the cases here.

Let us consider the case when T1(G,B) = ∅ and n − k is odd. In this case,
from Definition 12, it follows that l is odd. First, suppose l = 1. Let P be the
subpath obtained from B by deleting the edges of P1. It is easy to see that P is

an eventful path. If V (P1) contains only b |V (P1)|
2 c guards, then the end vertices of

P1 are not occupied by guards and the condition stated in Lemma 4 cannot hold
for P . Therefore, the lemma holds when l = 1. Now, suppose l > 1. Then, if V (Pi)

and V (Pi+1) (+ is mod l) respectively contains only b |V (Pi)|
2 c and b |V (Pi+1)|

2 c
guards and the vertex bunch of the path P between the last vertex of Pi and the
first vertex of Pi+1 contains exactly as many guards as mentioned in the first part
of Lemma 4, the condition stated in the second part of Lemma 4 cannot hold
for P . Since this is true for all 1 ≤ i ≤ l, and the condition stated in Lemma 4
has to simultaneously hold for all subpaths of the cycle that are eventful in G, a
simple counting argument shows that number of guards in C should be at least⌈
n−k
2

⌉
+ χ(G,B).

Thus, we know that evc(G) is at least the expression given above. If T1(G,B) =
∅, it is easy to show that these many guards are also sufficient. The guards on
V (B) can defend any attack on edges of B while keeping X ∩ V (B) always
occupied. Attacks on edges of B-components can be handled, maintaining xi
always occupied and having exactly evcxi

(Gi) guards on each B-component Gi.
The proof of the other cases are similar and is omitted. ut

The following lemma gives a method to compute the type of a graph with
respect to degree-two vertices in blocks which are cycles.

Lemma 6. Let B be a cycle of n vertices, forming a block of a connected graph
G. Let X be the set of cut vertices of G and let k = |X ∩ V (B)|. Suppose each



B-component in CB(G) satisfies the substructure property. Let v ∈ V (B) \ X.
The type of G with respect to v can be computed as follows.

– If T1(G,B) 6= ∅ and n − k is even, then evcv(G) = evc(G) = evc(G+
v ). If

T1(G,B) 6= ∅ and n − k is odd, then evcv(G) = evc(G) + 1 = evc(G+
v ). In

both cases, G is Type 1 with respect to v.
– If T1(G,B) = ∅ and n − k is even, then evcv(G) = evc(G) + 1 = evc(G+

v )
and G is Type 1 with respect to v. If T1(G,B) = ∅ and n − k is odd, then
evcv(G) = evc(G), evc(G+

v ) = evcv(G) + 1 and G is Type 2 with respect to v.

4 Computing eternal vertex cover number of cactus

Theorem 1. Every cactus graph satisfies substructure property.

Proof. Let G be a cactus graph. The proof is using an induction on the number
of cut-vertices in G.

In the base case, G is a cactus without a cut vertex. Then, G is either a single
vertex, a single edge or a simple cycle. In all these cases, the lower bound for the
number of guards on V (G), specified by substructure property is equal to the
vertex cover number of the respective graphs. Hence, the theorem holds in the
base case.

Now, let us assume that the theorem holds for any cactus with at most k
cut-vertices. Let G be a cactus with k+ 1 cut vertices, for k ≥ 0 and let X be the
set of cut vertices of G. Let v be a non-cut vertex of G and G′ be an arbitrary
v-extension of G. We need to show that in any eternal vertex cover configuration
of G′, the number of guards on V (G) is as specified by the substructure property.
Since v is a non-cut vertex of the cactus G, either it is a degree-one vertex of G
or it is a degree-2 vertex of G that is in some block B of G, where B is a cycle.
We want to compute a lower bound on the number of guards on V (G) in an
arbitrary eternal vertex cover configuration C′ of G′.

First, consider the case where v is a degree-one vertex of G. Let w be the
neighbor of v in G and let H = G \ v. Since G has at least one cut-vertex, w
must be a cut vertex in G. There are two possibilities depending on whether w
is a cut-vertex of H or not.

When w is a cut-vertex of H, consider any w-component Hi of H. Hi is
a cactus and the number of its cut vertices is less than that of G. Hence, Hi

satisfies the substructure property. Further, G′ is a w-extension of Hi. In C′, the
number of guards on V (Hi) is at least evcw(Hi) − 1 if Hi ∈ T1(H,w) and it
is evcw(Hi) if Hi ∈ T2(H,w). The total number of guards on V (H) is at least
1+
∑

Hi∈T1(H,w) (evcw(Hi)− 2)+
∑

Hi∈T2(H,w) (evcw(Hi)− 1). If v is occupied in

C′, then the total number of guards on V (G) is at least the same as that of evc(G)
as given by Lemma 1. If v is not occupied in C′, then to defend an attack on the
edge wv, a guard from V (H) must move to v. Hence, in C′, the number of guards
in V (H) should have been one more than the minimum mentioned earlier. Hence,
in this case also, the number of guards on V (G) in C′ would have been at least
evc(G). By Lemma 1, evc(G+

v ) = evc(G) + 1. By Lemma 2, the type of G with



respect to v is the same as the type of H with respect to w. Hence, if H is Type 1
with respect to w, we have evc(G+

v ) = evcv(G) = evc(G) + 1. We have seen that
the number of guards on V (G) is at least evc(G) = evcv(G)− 1. If H is Type 2
with respect to w, then we have evc(G+

v ) > evcv(G). Since evc(G+
v ) = evc(G)+1,

in this case we must have evcv(G) = evc(G). We have seen that the number of
guards on V (G) is at least evc(G) = evcv(G). Hence, the substructure property
holds in both cases.

When w is not a cut vertex of H, G′ is a w-extension of H. By substructure
property of H, it follows that in configuration C′, the number of guards on
V (G) must be at least evcw(H) if H is Type 1 with respect to w and at least
evcw(H) + 1 if H is Type 2 with respect to w. By Lemma 1, when H is Type 1
with respect to w, evc(G) = evcw(H) and when H is Type 2 with respect
to w, evc(G) = evcw(H) + 1. By Lemma 2, the type of G with respect to v
is the same as the type of H with respect to w. Hence, if H is Type 1 with
respect to w, we have evc(G+

v ) = evcv(G) = evc(G) + 1. The number of guards
on V (G) is at least evcw(H) = evcv(G) − 1. If H is Type 2 with respect to
w, we have evc(G+

v ) > evcv(G). Since evc(G+
v ) = evc(G) + 1, in this case

we must have evcv(G) = evc(G). The number of guards on V (G) is at least
evcw(H) + 1 = evcv(G). Hence, the substructure property holds in both cases.

Now, consider the case when v is a degree-two vertex of G that is in some
block B of G, where B is a cycle. Suppose |V (B)| = nb. Let X be the set of cut
vertices of G and kb = |X ∩ V (B)|. As noted earlier, we have to compute a lower
bound on the number of guards on V (G) in an arbitrary eternal vertex cover
configuration C′ of G′. Let p and q respectively be the clockwise and anticlockwise
nearest vertices to v in X ∩ V (B). Let P be the path in B between p and q that
does not contain v. Note that, every B-component of G satisfies substructure
property by our induction hypothesis and G′ is an extension for each of them.
Hence, we have a lower bound on the number of guards on V (Gi), for each
Gi ∈ CB(G). Similarly, the condition stated in Lemma 4 needs to be satisfied for
each eventful subpath P ′ of P .

We have three possibilities to consider. When T1(G,B) = ∅, by similar
arguments as in the proof of Lemma 5, we can see that the number of guards
on V (G) in C′ must be at least evc(G). By Lemma 6, when nb − kb is even, G is
Type 1 with respect to v and evcv(G) = evc(G) + 1. Since the number of guards
on V (G) is at least evc(G) = evcv(G)− 1, we are done. Similarly, when nb − kb
is odd, G is Type 2 with respect to v and evcv(G) = evc(G) and we are done.
When T1(G,B) 6= ∅ and nb − kb is even, by similar arguments we can see that
the number of guards on V (G) in C′ must be at least evc(G)− 1. By Lemma 6,
G is Type 1 with respect to v and evc(G) = evcv(G). Since the number of guards
on V (G) is at least evc(G)− 1 = evcv(G)− 1, we are done. When T1(G,B) 6= ∅
and nb − kb is odd, by similar arguments we can see that the number of guards
on V (G) in C′ must be at least evc(G). By Lemma 6, G is Type 1 with respect
to v and evcv(G) = evc(G) + 1. Since the number of guards on V (G) is at least
evc(G) = evcv(G)− 1, we are done. Thus, in all cases, the lower bound on the
number of guards on V (G) in an arbitrary eternal vertex cover configuration C′



of G′ satisfies the condition stated in substructure property. Hence, G satisfies
substructure property.

Thus, by induction, it follows that every cactus satisfies substructure property.
ut

Now, we have all ingredients for designing a recursive algorithm for the computa-
tion of eternal vertex cover number of a cactus, using Lemma 1. Our algorithm
will take a cactus G and a vertex v of G and output evc(G), evcv(G) and the
type of G with respect to v. If G is a cycle or an edge or a vertex, the answer is
trivial and can be computed in linear time.

In other cases, G has at least one cut vertex. If v is a cut vertex, then we
call the algorithm recursively on each v-component of G along with vertex v.
Then, we can use Lemma 1 to compute evc(G) and evcv(G) in constant time
from the result of the recursive call. Using the same information from recursive
calls, the type of G with respect to v can also be computed using Observation 3.
If v is a pendent vertex and w is its neighbor in G, then we recursively call the
algorithm on (G \ v, w). By Lemma 2, the type of G with respect to v is the same
as the type of G \ v with respect to w. Moreover, from the proof of Lemma 2,
we have evcv(G) = evcw(G \ v) + 1. Further, evc(G) = evcw(G \ v), when G is
Type 1 with respect to v and evc(G) = evcw(G \ v) + 1, when G is Type 2 with
respect to v. Thus, from the results of the recursive call on (G \ v, w), the output
can be computed in constant time. In the remaining case, v is a vertex that
belongs to a cycle B in G. In this case, we recursively call the algorithm for each
B-component of G, along with the respective cut vertices it shares with B. Using
this information, we can compute evc(G) using Lemma 5 in time proportional
to the number of B-components. We can also compute evcv(G) and the type
of G with respect to v, using Lemma 6 in time proportional to the number of
B-components.

Thus, the algorithm works in all cases and runs in time linear in the size of
G. Hence, we have the following result.

Theorem 2. Eternal vertex cover number of a cactus G can be computed in
time linear in the size of G.

From the upper bound arguments in the proofs discussed in Section 2 and
Section 3, we can see that with evc(G) guards determining configurations of
guards to keep defending attacks on G is straightforward.

5 Extension to a superclass of chordal graphs

It may be noticed that most of the intermediate results stated in this paper are
generic, though we have stated Lemma 5 and Lemma 6 in a way suitable for
handling cactus graphs. In this section, we show how to extend the method used
for cactus graphs to a graph class consisting of connected graphs in which each
block is a cycle, an edge or a biconnected chordal graph. It may be noted that
this class contains all chordal graphs and cactus graphs. To generalize the proof



of Theorem 1 for this class, the base case of the proof needs to be modified to
handle biconnected chordal graphs as well. The following observation addresses
this requirement.

Observation 5 Every biconnected chordal graph satisfies substructure property.

Proof. Let G be a biconnected chordal graph and v ∈ V (G). Let G′ be a v-
extension of G and C be an eternal vertex cover configuration of G′. If the
number of guards on V (G) in C is less than mvcv(G), then v is not occupied
in C. In this configuration, an attack on an edge of G adjacent to v cannot be
defended, because when a guard on a vertex of G moves to v, some edge of G will
be without guards. Therefore, in any arbitrary eternal vertex cover configuration
C of G′, the number of guards on V (G) must be at least mvcv(G).

By a result in [12], evcv(G) ∈ {mvcv(G),mvcv(G) + 1} and evc(G+
v ) =

mvc(G+
v ) + 1 = mvcv(G) + 1. If evcv(G) = mvcv(G) and evc(G+

v ) = mvcv(G) + 1,
then G is Type 2 with respect to v and we need at least evcv(G) = mvcv(G)
guards on V (G). If evcv(G) = mvcv(G) + 1 = evc(G+

v ), then G is Type 1 with
respect to v and we need at least evcv(G)− 1 = mvcv(G) guards on V (G). Thus,
in both cases, the requirements of substructure property are satisfied by G.

The following lemma is a suitable modification of Lemma 5 and Lemma 6 to
handle the new class. ut

Lemma 7. Let B be a biconnected chordal graph forming a block of a connected
graph G and let X be the set of cut vertices of G. Suppose each B-component Gi of
G that belongs to CB(G) satisfies the substructure property. If T1(G,B) = ∅, then
evc(G) = evcX∩V (B)(B) +χ(G,B)− |X ∩ V (B)| and evc(G) = mvcX∩V (B)(B) +
1 + χ(G,B)− |X ∩ V (B)| otherwise. Further, if χ(G,B) is known, then for any
v ∈ V (B), the type of G with respect to v can be computed in time quadratic in
the size of B.

Proof. Since B is a biconnected chordal graph, if for every v ∈ V (B) \X,
mvc(X∩V (B))∪{v}(B) = mvcX∩V (B)(B), then evcX∩V (B)(B) = mvcX∩V (B)(B)
and evcX∩V (B)(B) = mvcX∩V (B)(B) + 1 otherwise [12]. Consider any eternal
vertex cover class C of G. By substructure property of B-components of G, it
follows that in any configuration of C, the number of guards on

⋃
Gi∈CB V (Gi)

is at least χ(G,B). To cover edges of the induced subgraph of G on V (B) \X,
the number of guards required is at least mvc(B \ X) = mvcX∩V (B)(B) −
|X ∩ V (B)|. Hence, the total number of guards on V (G) must be at least
mvcX∩V (B)(B)−|X∩V (B)|+χ(G,B). Further, if there is a vertex v ∈ V (B)\X
for which mvc(X∩V (B))∪{v}(B) 6= mvcX∩V (B)(B), then in any configuration of
C in which v is occupied, the total number of guards on V (G) must be at
least mvcX∩V (B)(B) + 1− |X ∩ V (B)|+ χ(G,B). Hence, in all cases, evc(G) ≥
evcX∩V (B)(B) + χ(G,B)− |X ∩ V (B)|.

When T1(G,B) = ∅, it is easy to show that evc(G) ≤ evcX∩V (B)(B) +
χ(G,B)−|X∩V (B)|. When T1(G,B) 6= ∅, by repeated attacks on edges of V (Gi)
for some Gi ∈ T1(G,B), eventually a configuration which requires χ(G,B) + 1



guards on
⋃

Gi∈CB V (Gi) can be forced. Hence, evc(G) ≥ mvcX∩V (B)(B) + 1 +
χ(G,B)−|X∩V (B)|. Since evcX∩V (B)(B) ≤ mvcX∩V (B)(B)+1, it is not difficult
to also show that evc(G) ≤ mvcX∩V (B)(B) + 1 + χ(G,B)− |X ∩ V (B)|. In both
cases, the value of evc(G) is as stated in the lemma.

For deciding the type of G with respect to a vertex v ∈ V (B), we need to
compare evcv(G) and evc(G+

v ). For computing evc(G+
v ), we can use the formula

given by the first part of the lemma for the graph evc(G+
v ). Using similar

arguments as in the proof of the first part of the lemma, we get the following:
if T1(G,B) = ∅, then evcv(G) = evc(X∩V (B))∪{v}(B) + χ(G,B) − |X ∩ V (B)|
and evcv(G) = mvc(X∩V (B))∪{v}(B) + 1 + χ(G,B)− |X ∩ V (B)| otherwise. By
computing mvc(X∩V (B))(B) and mvc(X∩V (B))∪{v}(B) for each v ∈ V (B), evcv(G)
and evc(G+

v ) can be computed. Since minimum vertex cover of a chordal graph
can be computed in linear time, the total time required for computing evcv(G)
and evc(G+

v ) this way is possible in time quadratic in the size of B. From the
values of evcv(G) and evc(G+

v ), the type of G with respect to v can be inferred.
ut

Now, similar arguments as in the proof of Theorem 1 and Theorem 2 yields:

Theorem 3. Suppose G is a connected graph in which each block is a cycle, an
edge or a biconnected chordal graph. Then, G satisfies substructure property and
the eternal vertex cover number of G can be computed in quadratic time.

6 A cactus family with evc(G) > 1.5mvcX(G)

v1

v2

v3

v4

v2k

v5

v2k−1

Fig. 1. Pendent vertices are attached to alternate vertices of a cycle on 2k vertices. The
cactus G has mvcX(G) = k and evc(G) = k + d k+1

2
e.

Until now, all graph classes with known polynomial time algorithms for eternal
vertex cover had evc(G) ∈ {mvcX(G),mvcX(G) + 1}, where X is the set of all
cut vertices of G. It is interesting to note that mvcX(G) could be much smaller
than evc(G) for some cactus graphs. An example of this is shown in Fig. 1. Using



the formula given by Lemma 5, we can show that the eternal vertex cover number
of this graph G is k+ dk+1

2 e. However, for this graph, mvcX(G) is only k making
evc(G) > 1.5 mvcX(G).

7 Discussion and open problems

Though the substructure property has been shown here for a family of graphs
that include cactus and chordal graphs, we believe that this property or a
generalization of it holds for fairly large classes of graphs. It is interesting to
characterize graphs that satisfy this property. Deriving a generalization of the
substructure property to outerplanar graphs and bounded treewidth graphs is
also an interesting direction.
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