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Abstract. The idea of ensemble learning is to build a prediction model
by combining the strengths of a collection of simpler base models. Al-
though they are extensively used, ensemble methods have high require-
ments in terms of memory and computational time.
In this work, we propose a quantum algorithm that allows reproducing
ensemble classification using bagging strategy. The algorithm generates
many sub-samples in superposition, in such a way that only a single exe-
cution of a quantum classifier is required. In particular, the entanglement
between a quantum register and different training sub-samples in super-
position allows obtaining a sum of individual results which gives rise to
the ensemble prediction. When considering the overall temporal cost of
the algorithm, the single base classifier impacts additively rather than
multiplicatively, as it usually happens in ensemble framework. Further-
more, given that the number of base models scales exponentially with
the number of qubits of the control register, our algorithm opens up the
possibility of exponential speed-up for quantum ensemble.

Keywords: Quantum Computing ·Machine Learning · Ensemble Meth-
ods.

1 Background

Thanks to the quantum mechanical principles of superposition and entangle-
ment, Quantum Computing (QC) can achieve vast amounts of parallelism [8]
without the need for the multiple replications of hardware that are usually re-
quired in a classical computer. One of the most important fields in which QC
promises to make an impact in the future is machine learning (ML). However,
being an entirely new field, Quantum Machine Learning (QML) poses many
open challenges [1].

The idea of a quantum ensemble based on Bayesian Model Averaging (BMA)
is investigated in [9], but BMA approach is not very used in ML because of its
limited performance in real-world applications [7].

In general, the idea of ensemble learning is to build a prediction model by
combining the strengths of a collection of simpler base models to reduce the
Expected Prediction Error [6]. One of the most popular schemas to build an
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ensemble is Bagging, in which a committee of independent weak classifiers cast
a vote for the predicted class. It is the basis of the well-known method Ran-
dom Forest [2] and constructs a homogeneous ensemble by applying the same
learning algorithm under different training conditions. In practice, we compute
f1(x), . . . , fB(x) using B separate training sets and average them to obtain a
single low-variance model:

fbag(x) =
1

B

B∑
b=1

fb(x).

It turns out that Bagging produces a combined model that outperforms the
single model built from all training data, and is never substantially worse [4].

2 Contribution

In this work, we provide a quantum algorithm to perform ensemble classification
using bagging. The idea is to generate different sub-samples of the training set in
superposition, each entangled with a quantum state of a control register. Thus,
a quantum classifier C is applied to obtain a large number of classifications in
superposition. The proposed algorithm limits the number of state preparation
routines and makes the evaluation of large ensemble feasible with small circuits.

3 Quantum Algorithm for Bagging Ensemble

The quantum algorithm for ensemble involves 5 quantum registers:

|Φ0〉 = |0〉
control

⊗ |0〉
training

⊗ |0〉
temp

⊗ |0〉
test

⊗ |0〉
target

(1)

where the size of the control register determines the size of the ensemble (i.e.
the number of base models), the size of training and test registers depend on
the amount of data. The temp register determines the size of the sub-sample
used as input in a single base model. Finally, the number of qubits in the target
register depends on the nature of the target variable. Starting from these five
registers, the algorithm involves four steps:

(Step 1) The state preparation consists in encoding the training and test set
into their respective registers. Also, the control register is initialised into uniform
superposition:

|Φ1〉 =
(
H⊗d ⊗ S(x,y) ⊗ 1⊗ S(x̃) ⊗ 1

)
|Φ0〉 =

=

(
1√
2d

2d∑
i=1

|i〉

)
⊗ |x, y〉 ⊗ |0〉 ⊗ |x̃〉 ⊗ |0〉 , (2)

where S(x,y) and S(x̃) are the unitaries that encode data in quantum states

whose form depends on the encoding strategy chosen for data, and H⊗d is the
Walsh-Hadamard gate.
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(Step 2) The second step is sampling in superposition and consists in generating
many altered transformation of the original training data, (x, y), in superposi-
tion. We consider a quantum oracle V which entangles several sub-sample of
data with the control register:

|Φ2〉 =
(
V ⊗ 1⊗ 1

)
|Φ1〉 =

(
1√
2d

2d∑
i=1

|i〉 |x, y〉 |xi, yi〉

)
⊗ |x̃〉 ⊗ |0〉 , (3)

where |xi, yi〉 is a random sub-sample of |x, y〉. After this step, the training
register can be in any state, it will not be used further in the computation.

(Step 3) The classification step consists in the interaction via interference be-
tween the temp and test registers, to store the estimates of the target variable:

|Φ3〉 =
(
1⊗ 1⊗ C

)
|Φ2〉 =

1√
2d

2d∑
i=1

|i〉 |x, y〉 |xi, yi〉 |x̃〉 |fi(x̃)〉 , (4)

where fi(x̃) is an estimate of the target variable for x̃ and it depends on the i-th
sub-sample and the test set x̃. We refer to C as a quantum oracle that takes
as input two sets of data encoded into two different registers, and provides an
estimate of the target variable in an additional register.

(Step 4) Finally, the expectation measurement on the target qubit provides a
sum of expectation values that corresponds to the ensemble prediction:

〈M〉 =
〈
Φ3|1⊗d ⊗ 1⊗ 1⊗ 1⊗M

∣∣Φ3

〉
=

=
1

2d

2d∑
i=1

〈fi(x̃)|M |fi(x̃)〉 =
1

2d

2d∑
i=0

〈Mi〉 =
1

B

B∑
b=1

fb = fbag
(
x̃|(x, y)

)
(5)

where M is a measurement operator (e.g. Pauli gate).
As we can see from Equation 5, measuring the target qubit and leaving

untouched the other quantum registers, we obtain the average of different classi-
fications based on different sub-samples. The separate computation of each base
model is not required; indeed, it is only necessary to generate the quantum state
expressed in Equation 3 and to execute the classifier C once. This implies, when
considering the overall temporal cost of the algorithm, that the single classifier
impacts additively rather than multiplicatively, as it usually happens in ensem-
ble framework. In fact, in the classical ensemble, it is necessary to train the same
algorithm under B different training conditions, and the overall temporal cost
of the algorithm is, at least, the cost of the single classifier times B. In the case
of quantum ensemble, the overall temporal cost of the algorithm depends on
the generation of many sub-samples in superposition, plus one execution of the
quantum classifier that, working via interference, allows propagating the use of
the function f to all sub-samples. Furthermore, given a control register made
up of d qubits, the ensemble size B is equal to 2d. This, in turn, implies that the
ensemble size B scales exponentially with the number of qubits of the control
register, opening up the possibility to achieve exponential speed-up with respect
to the classical ensemble methods.
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4 Experiments

We provide small-scale experiments to show how quantum ensemble works. To
the best of our knowledge, there is no quantum classifier which fulfils the require-
ments of Eq.(4); this problem will be investigated in future works. However, we
show that given a unitary C that implements a generic function f , whose output
is sensitive to the comparison between two inputs (train and test), it is possible
to leverage the quantum algorithm described in Section 3 to obtain the average
of multiple outputs of f , by implementing C only once.

control |0〉 H • X •

x1 |0〉
S(x)

×
x2 |0〉 ×

temp |0〉 × × ×

x̃ |0〉 S(x̃) ×

favg |0〉 H • H

|Φ0〉 |Φ1〉 |Φ2〉 |Φ3〉

Fig. 1: Quantum circuit for the ensemble of two swap-tests. First, all the regis-
ters are initialising according to Equation 2 (|Φ1〉). In the second step, the two
states of the control register are entangled through controlled-swap operations
with the two qubits |x1〉 and |x2〉, by using the temp register (|Φ2〉). Finally,
the swap-test is executed in order to obtain the average distance of x̃ from x1
and x2. All the details about the implementation are made available at the
following GitHub project: https://github.com/amacaluso/Quantum-Algorithm-
for-Ensemble-Learning.

We consider two 2-dimensional training vectors encoded in the amplitudes of
two different qubits (training register) and a single qubit for each of the other
registers (control, temp, test, target). As quantum gate C, we use the swap test [3]
which is a procedure to check how much two quantum states differ. In particular,
given two vectors xi and xj encoded in the amplitudes of two different qubits
(|xi〉 , |xj〉), the final state before measurement of the swap test is:

1

2
|0〉
(
|xi〉 |xj〉+ |xj〉 |xi〉

)
+

1

2
|1〉
(
|xi〉 |xj〉 − |xj〉 |xi〉

)
. (6)

Measuring the first qubit of this state produces outcome |0〉 with probability
(1 + | 〈xi|xj〉 |2)/2. This probability is 1 if xi = xj .

The quantum algorithm for the ensemble of swap tests (Figure 1) entangles
the two training vectors with the two quantum states of the control qubit. Then,
the temp qubit is given as input to the swap test, together with the test qubit.
This procedure allows to obtain the average distance between the test vector
and the two training vectors through a single execution of the swap test. To

https://github.com/amacaluso/Quantum-Algorithm-for-Ensemble-Learning
https://github.com/amacaluso/Quantum-Algorithm-for-Ensemble-Learning
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Fig. 2: The plots illustrate the comparison between the quantum ensemble of
swap-test (qEnsemble), the average of two quantum swap-test executed sepa-
rately (qAV G), and the same average computed classically (cEnsemble). Each
run corresponds to the generation of a different dataset.

show that the idea of ensemble works, we generated 20 random datasets, each
made up of three vectors (x1, x2, xtest). We implemented the circuit in Figure 1
and then measured the target qubit. Results are reported in Figure 2. The plot
on the left shows the experiments considering the quantum simulator that as-
sumes a fault-tolerant quantum computer. The agreement between the quantum
ensemble (orange line) and the classical ensemble (blue line) is almost perfect;
this confirms the possibility to perform quantum ensemble with the advantages
described in Section 3. The plot on the right shows the results using a real de-
vice (ibmq 16 melbourne). In this case, we can see a significant deterioration.
This may be due to the depth of the implemented circuit, which seems to be
prohibitive considering the actual quantum devices.

5 Conclusion

In this work, we proposed a quantum algorithm for ensemble classification that
uses bagging strategy. Besides the theoretical algorithm, we provided small-scale
experiments to show how the algorithm works. In particular, we showed that it is
possible to produce a quantum ensemble by executing the classification routine
only once. The algorithm provides advantages in terms of temporal computa-
tional complexity, although it is not complete in its technical formulation.

Future works will be dedicated to design a proper quantum classifier C, which
is able to provide different outputs based on different training sets. In fact, the
ensemble outperforms the single model only if the outputs of the base models
are accurate and diverse [5]. Also, a generalised quantum routine V to generate
the sampling in superposition has to be designed.

Although some challenges still remain, we believe that this work may be the
first step to show that QML can overcome the limitations of classical ML in the
context of ensemble classification.
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