
A Java visual Simulator of Turing Machines?

Alessandro Burigana, Francesco De Martino, and Agostino Dovier

Dipartimento di Scienze Matematiche, Informatiche e Fisiche
Università di Udine, 33100 Udine, Italy

{burigana.alessandro, demartino.francesco}@spes.uniud.it
agostino.dovier@uniud.it

Abstract. We present a graphical simulator of 1-Tape, k-Tapes, deter-
ministic and non deterministic Turing machines. The simulator is written
in Java and as such it runs on most platforms. During and after the com-
putation it returns interesting features such as the amount of space vis-
ited/used and the number of steps. When simulating non-deterministic
Turing machines it allows to browse the “tree” of non deterministic com-
putations. It is developed purely for didactic purposes: it can be used in
courses of Foundations of Computer Science, in courses of Computational
Complexity, as well as in didactic projects with high schools.

Keywords: Turing Machines · Teaching Computer Science · Computabil-
ity · Complexity.

1 Introduction

When computer science students meet computation models, and in particular
Turing machines, they find useful (and even funny) testing their first programs
using a simulator. Although encoding a simulator can be proposed as a useful
exercise using a high level programming language, the availability of a graphical
working simulator is in general very appreciated.

Several existing simulators are available, some of them running on Android
and iOS. However, the availability of multi-platform simulators is rather limited,
and, as far as the authors know, there is only one simulator for multi tape deter-
ministic Turing machines, and no simulators at all for non-deterministic Turing
machines. With this communication we would like to present a graphical simu-
lator of 1-Tape, k-Tapes, deterministic and non deterministic Turing machines
that, being written in Java, runs on most operating systems, and in particular
it is tested on Windows, Linux, and macOS. The simulator (.jar) is available
for free download and use from http://clp.dimi.uniud.it/sw/.

We rely on the syntax based on 5-tuples (q, s, q′, s′, L/R) as originally pre-
sented by Alan Turing in his seminal paper On Computable Numbers, with an
Application to the Entscheidungsproblem [13]. The syntax is slightly extended
for multi tape Turing machines as suggested in, e.g., [8, 4], while [10] and [1] used

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 A. Burigana, F. De Martino, A. Dovier

a simplified syntax (in a single step the machine either write a new symbol or
move, but not the two things together).

As anticipated above, Turing Machine simulators are available. A complete
analysis is out of the scope of this paper. We just survey some of them focusing
on those based on a 5-tuple syntax. Some of them are obsolete, such as [6],
running on MS-DOS and based on a character-based interface. Uber Turing

Machine [12] runs only on Windows systems and it is not free SW. Tursi [11]
and Alan [7] are instead multi-platform simulators. A particular remark is due
to Turing Machine Simulator [14] that, being a free app running on Android
systems, including smartphones, it can be of interest of students. All the listed
proposals simulate single-tape deterministic Turing machines only. There are
then other multi-platform simulators based on other representations such as
Tuatara [5] that allows also to experiment with formal languages, and JFlap [9]
that allows to simulate multi-tape Turing machines.

The tool we present (split in two components, A-machine and NA-machine,
N standing for Non deterministic) is devised as a support for students of Com-
puter Science or Mathematics, but it can be used for didactic projects with high
schools (e.g., PLS project). However, the authors hope that it can be of inter-
est of passionate scientific readers of introductory books such as The Universal
Computer [2] or The millennium problems [3]. NA-machine can, in fact, help the
reader in investigating the fascinating NP world.

2 Turing Machines

A Turing Machine is a 4-tuple 〈Q,Σ, P, q0〉 where Q is a finite set of (mental)
states, q0 ∈ Q is the initial state, Σ is the alphabet of the machine, that should
contain at least two symbols: one symbol for the “empty” cell (blank) “ ” and
another symbol (tally). P is a set of 5-tuples of the form (q, s, q′, s′,m) where
q, q′ ∈ Q, s, s′ ∈ Σ and m ∈ {L,R} where L stands for left and R for right such
that for each pair (q, s) there is at most one tuple beginning with q, s in P to
guarantee determinism.

An instantaneous description (ID) is a 4-tuple 〈q, `, s, r〉 where q is the current
state, `sr denotes the “interesting” portion of the tape: ` the string at the left
of the head, s the symbol currently read, and r the string at the right of the
head. P allows us to determine the deterministic relation successor (`) among
IDs, and hence, the notion of computation. A machine halts if (and only if) the
current ID is 〈q, `, s, r〉 and no tuples starting with q, s is in the program P .

Some common variations are allowed in Turing Machines. For instance, the
possibility of staying in the same position (that can be simulated by the ex-
ecution of two consecutive instructions L and R) We refer to this feature as
S (for “Stay”). In [8] P is assumed to define a function δ : Q × Σ −→ (Q ∪
{yes, no, halt}) × Σ × {L, S,R}. Basically, when the machine halts it reaches a
pseudo-state that acts as final state. This is of course allowed by the standard
definition by using three states to be selectively reached at the stop time, and by
adding no 5-tuples in P starting with them. Ending with yes, no, or halt can be

A Java visual Simulator of Turing Machines 3

exploited as output signal. Those terminating always with yes and no are used
for decision purposes.

It is well-known that a Turing machine with tape limited on one side (e.g.,
on the left) is sufficient to prove the equivalence between the set of Turing
computable function and the set of (partial) recursive function (see, e.g., [4]),
the Theorem that led to the Church-Turing thesis. Sometimes this can be made
explicit by requiring that the tape begins with a symbol B which imposes some
constraints: it cannot be cancelled and the head simply move R (and possibly
change state) when reading it.

Following [8], k-tapes Turing machines are allowed. In this case the use of
B is explicitly required in all tapes. Other restrictions are added. The first tape
contains the input. Machines terminating with halt compute functions: in this
case the result can be retrieved in the tape k. The program P is therefore de-
scribed by a function δ : Q×(Σ)k −→ (Q∪{yes, no, halt})×(Σ×{L, S,R})k. I/O
k-tapes Turing machines have the same structure; some further requirements are
added on the behaviour relative to tape 1 and k. These machines are used for
studying classes in space and for analyzing the functions used for reductions
between problems.

Last, non determinism must be kept into account (leading to the famous
open problem P vs NP). Non deterministic Turing machines are simply one-tape
machines1 with the unique (but crucial) difference that P is no longer a function:
more than one tuple starting with a pair q, s are allowed. This leads to a definition
of ` which is no longer deterministic. Starting from an initial ID0 = 〈q0, ε,B, x〉,2
the machine can run a set of non-deterministic computations. This set can be
visualized as paths in a tree rooted by ID0 and we refer to it as the tree of non
deterministic computations (briefly, ND tree).

3 The deterministic Turing Machine simulator

The first tool we present in this paper is the A-Machine; its name is inspired
from [13] where Alan Turing said

If at each stage the motion of a machine [...] is completely determined
by the configuration, we shall call the machine an “automatic machine”
(or a-machine).

The simulator is written in Java, using the graphical library JavaFX. It is multi-
platform and tested under Linux, Windows, and macOS systems.

The alphabet Σ contains two symbols by default: # and blank (). # is used
as an ASCII version of B (it is not a technical problem, but we experimentally
realized that its absence in the keyboards decreases the usability) and starts
every tape. New symbols can be added by selecting the option in the upper right
square (see Fig. 1). Each state has its unique name and an optional description.

1 Multi tape non-deterministic Turing machines are easy to be defined.
2 ε denotes, as usual, the empty string.

4 A. Burigana, F. De Martino, A. Dovier

States can be added by selecting the option in the lower right square. A new
machine is endowed with the initial state q0 and the “pseudo” states yes, no, and
halt (see Section 2).

Fig. 1. A-machine: Initial screenshot.

Program instructions are added by clicking “+” below the left table. There
is a text field where a description of the instruction can be added. Instructions
can be later easily modified or cancelled. Some facilities to sort instructions,
symbols, and states are available. Programs can be saved and retrieved.

The machine has one tape as default. New tapes can be can be added or
erased. All tapes start with #. The input in the tape can be written/erased by
clicking on the pencil in the right low corner.

Execution can be launched/interrupted by pressing on the common anima-
tion buttons. In Fig. 2 we report one example of execution. From the menu
Computation (see Fig. 1), the user can select the Computation log and get all
details (step by step) of the computation, the number of computation steps (info
related to the time complexity), and the numbers of total cells and of new cells
used (info related to space complexity).

The simulator have also other features that can be read in the manual avail-
able at the download site. We just give a quick overview here. I/O Turing ma-
chines can be generated and used by the tool. The programmer can choose if
generate a new “standard” Turing machine or a I/O one. In the latter case the
machine starts with 3 tapes. Verification of the constraints of I/O Turing ma-
chines are checked during programming. The interpreter is capable of using other
machines as sub-routines (Turing referred to them as skeleton tables). They can
be selected by specifying the path of the corresponding file. With this trick it is
possible to define (mutually) recursive machines. The interpreter is capable of
defining and running more machines at the same time.

A Java visual Simulator of Turing Machines 5

Fig. 2. A-machine, after one simulation of a two-tapes deterministic Turing machine
deciding in time O(3n) the language {x ∈ {0, 1}∗ : x is palindrome}.

4 The non deterministic Turing Machine simulator

Although there is no proof of the fact that the main deterministic and non de-
terministic time computational classes are different (or equal) every computer
scientist has experienced the exponential blow up that emerges in the simu-
lation of a non deterministic Turing Machine with a deterministic one, when
building and/or visiting the tree of non-deterministic computations. This intrin-
sic difficulty often leads students to avoiding the activity of programming non
deterministic Turing Machine even for simple examples. The simulator we are
presenting here could represent a support in the early stages of the study of
non deterministic classes by automatically executing the code in a breadth first
fashion and allowing the user to zoom on the interesting part of the ND tree.
Handling of graphics is in this case demanded to the graphical Java environment
Swing.

We refer as NA-machine (non deterministic A-machine) to this version of the
simulator. The overall appearance of the program and user interface is the same
as of A-machine for adding symbols, states, instructions. The constraint that for
each pair q, s there is at most one instruction beginning with q, s is of course
relaxed to allow non-determinism.

Three windows reporting computation data can be analyzed. Statistics keeps
track of some general info on the ND tree and of the number of “yes” node that
has been reached; ND Tree shows the main structure of the ND tree: the picture
of the tree can be enlarged and, clicking on a node, the corresponding ID is
shown; Instantaneous description reports the list of the all IDs associated with
the nodes of the ND tree. See Fig. 3 for an example.

6 A. Burigana, F. De Martino, A. Dovier

Fig. 3. NA-machine: observe the non determinism introduced by instructions 2 and
3. The ND tree can be reduced/enlarged (with usual “mouse/touchpad” techniques).
Nodes representing halting with yes/no are green/red, resp. Clicking on a node, the
corresponding state, tape content, and head position are reported. This is the output
of the computation on input #00111 and the top gren node of the level 3 is selected.

5 Conclusions

We have presented a Java simulator for one tape, multi tape, deterministic and
non deterministic Turing machines. The language of the interpreter (Italian vs
English) can be selected modifying a settings file. The authors are ready to
modify the simulators and/or add different features according to user requests.

References

1. N. J. Cutland. An Introduction to Recursive Function Theory. CUP, 1980.

2. M. Davis. The Universal Computer: The Road from Leibniz to Turing. CRC, 2011.

3. Keith Devlin. The Millennium Problems. Granta Books, 2002.

4. A. Dovier and R. Giacobazzi. Fondamenti dell’Informatica: Linguaggi Formali,
Computabilità, Complessità. Bollati Boringhieri, 2020.

5. J. Foulds. Tuatara Turing Machine Simulator, University of Waikato.
https://sourceforge.net/projects/tuataratmsim/

6. J. Kennedy. Turing machine simulator. Santa Monica College, 1996.
http://archives.math.utk.edu/software/msdos/miscellaneous/jkturing/

7. D. Neuber, O. Pahl, and D. Seichter. Alan. University of Applied Sciences Rosen-
heim. http://alan.sourceforge.net/

8. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

9. S. H. Rodger. JFLAP. Duke University. https://www2.cs.duke.edu/csed/jflap/

10. H. J. Rogers. Theory of Recursive Functions and Effective Computability. The
MIT Press, 1988.

11. C. Schätzle. Tursi. Univ of Freiburg. https://schaetzc.github.io/tursi/index.html

12. SuperUtils. Uber Turing Machine. https://uber-turing-machine.soft32.com/

A Java visual Simulator of Turing Machines 7

13. A. M. Turing. On computable numbers with an application to the entschei-
dungsproblem. Proc. of the London Math. Society, 42(2):230–265, 1936.

14. I. Yudov. Turing Machine Simulator.
https://play.google.com/store/apps/details?id=ru.ilyayudov.TM.

Research partially supported by the University of Udine PRID ENCASE project.

