
Complexity of Scorpion Solitaire and
applications to Klondike?

Extended Abstract

Francesco Arena and Miriam Di Ianni1

Dipartimento di Ingegneria dell’Impresa “Mario Lucertini”,
University of Rome Tor Vergata

francesco.arena.160@gmail.com and miriam.di.ianni@uniroma2.it

Abstract. Scorpion is a puzzle game that falls under the category of
Solitaires. The problem of determining whether a starting configuration
of a Solitaire game (generalised to contain an arbitrary number of cards)
can lead to a winning configuration has been studied from the perspective
of Computational Complexity for some of the most popular Solitaires,
namely Free Cell [1], Klondike [2] and Spider [3], all resulting in hardness
proofs. Scorpion, though, has a unique twist compared to aforementioned
ones: each card can be moved to cover only one other card. This property
narrows the set of possible moves and makes a worthwhile issue inves-
tigating whether the same problem proved NP-complete for Free Cell,
Klondike and Spider falls in P as far as Scorpion is considered. In this
paper we prove that the problem of deciding whether an n-card s-suits
initial configuration of Scorpion allows for a winning sequence of moves
is NP-complete for any s ≥ 1, and it remains so also when the initial
configuration contains no face down (locked) cards. We then negatively
answer a question posed in [2] by proving that it is NP-complete to de-
cide whether an n-card one red suit-one black suit configuration of the
Klondike Solitaire allows for a winning sequence of moves.

Keywords: Card Solitaires · Computational Complexity.

1 Introduction

Solitaire games are one-player games, or puzzles, which employ a deck of cards
and a tableau of possible positions for the cards. The goal of the game is to
achieve a winning configuration of the cards on the tableau by applying legit-
imate moves to an initial configuration. The possible decks, tableaux, moves,
initial and winning configurations are determined by the rules of the particu-
lar type of Solitaire one intends to play. According to [5], solitaire games came
into existence when fortune-telling with cards gained popularity in the eigh-
teenth century. Many variations of solitaire exist today, among which we remind
Klondike, Free Cell, Spider, and Scorpion.

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 F. Arena et al.

In this paper, we consider the Scorpion Solitaire that we now introduce in
its traditionally played version. The deck is composed of 52 cards, partitioned
into 4 suits of 13 cards each (♥, ♦, ♣ or ♠), ranging from rank 1 (Ace) to 13
(King). The setting consists of a tableau and a stock, with the tableau, in turn,
consisting of 7 columns each of which may contain a stack of cards, and the stock
being a special reserve set of cards. At the start of the game an initial layout is
supplied, with 3 face down cards placed in the stock and 7 stacks of cards dealt
in the tableau: the first 4 stacks contain 2 face down cards at the bottom and
5 face up cards on top, while the last 3 stacks consist of 7 face up cards (see
Figure 1). The goal of the game is to build 4 stacks of cards on the tableau,

	

Fig. 1. Example of an initial Scorpion layout.

each of them containing 13 cards of the same suit arranged in descending order,
with the King (rank 13) at the bottom and the Ace (rank 1) on top of each
stack. The goal is pursued by performing a sequence of moves: a face up card x
is allowed to be moved from the stack containing it to cover card y only if y is
the top card of a different stack , suit(x) = suit(y) and rank(y) = rank(x) + 1.
Hence, any non-King card x is allowed to perform one single move within the
game, and has no choice about which move to perform. When a card x is moved,
all the cards covering x are moved together as a unit, preserving their relative
order (see Figure 2). A face up King and all the cards covering it can be moved
to any empty column slot on the tableau, which appears after a card located at
the bottom of its own stack is moved. A face down card is turned up when it
becomes the top card of its stack. At any point in the game, the player can deal
the 3 cards in the stock on top of the stacks located in the 3 leftmost column
slots on the tableau.

We study the computational complexity of deciding, given an initial layout,
if a sequence of moves exists achieving the goal. Needless to say, we shall con-
sider generalized layouts, that is, layouts dealing with a deck of s suits with n
cards each, with a tableau composed of k columns of arbitrary size in the initial
arrangement and a stock with d cards in the initial arrangement (with d ≤ k).



Complexity of Scorpion Solitaire and applications to Klondike 3

Fig. 2. Example of move of a non-King card.

Differently from the original game, we deal with a complete information game,
that is, we have no face down cards. Instead, we may have face up locked cards:
a locked card cannot be moved until the card covering it is not moved; in partic-
ular, all cards in the stock will be considered locked. Our choice of dealing with
complete information games is shared with the literature on this topic [1–4].

The study of Solitaire card games from a computational complexity perspec-
tive is not a novel topic, where (as we remarked a few lines above), whenever we
talk about a complexity result for a Solitaire game, we implicitly refer to gen-
eralized versions employing decks of arbitrarily large size. The first major result
about computational complexity in Solitaire games comes from a paper about
Automated Planning domains used in AI planning competitions [1]. Among sev-
eral results, the paper proves that planning a winning strategy for a Free Cell
game is a hard problem; more precisely, the author shows, by a reduction from
3SAT, that it is NP-Complete to decide whether a winning strategy for Free Cell
exists. The NP-Completeness proof in [3] for Spider also follows from a reduction
from 3SAT.
The hardness proofs for the Scorpion Solitaire we present in this paper are also
reductions from 3SAT. However, they require a substantially different approach
to model the non deterministic nature of the choice of a truth assignment to the
variables in a boolean formula: indeed, while a non deterministic behaviour is
intrinsic in the Free Cell (or Spider) playing rules, in that each (let’s say, black)
card may be covered by two (let’s say, red) cards (for instance card (3,♣) may
be covered by both (2,♥) and (2,♦)), the Scorpion playing rules state that any
(non-ace) card may be covered by exactly one other card (that is, card (3,♣)
may be covered only by (2,♣)).
In [2] Klondike, one of the most popular Solitaires games (partly because of
its presence in Microsoft Windows pre-installed games), gets thoroughly anal-
ysed from a Computational Complexity perspective. The problem of solving the
classical 4-suits version of the game is proved to be NP-Complete, again by a
reduction from 3SAT (notice that Klondike rules share with Free Cell the “multi-
ple coverings” feature). The paper then turns to analyse the complexity of many
restricted versions of Klondike, achieving membership/hardness proofs to/for a



4 F. Arena et al.

variety of complexity classes. In particular, the one-black one-red suits version,
is considered in [2] and proved to be in NP and at least NL-hard. The presence
of just one red suit and just one black suit weakens the, let’s say, intrinsic non
deterministic behaviour of the Solitaire playing rules: as noticed by the same
auhors in [2], the “cases of a red suit and a black suit are especially puzzling.
We strongly suspect these cases to be in P, but could they possibly be hard
for P? Are they in NL?”. Actually, In this paper, exploiting its similarities with
Scorpion (in its forbidding the “multiple coverings” feature), we prove that such
one-black one-red suits version of Klondike is NP-complete, so strengthening the
result in [2] and negatively answering the question posed therein.

After having provided the needed formal definitions in Section 2, in Section
3 we prove the NP-completeness of deciding if a winning strategy for a 4-suits
Scorpion game exists even when the initial setting has an empty stock. In Section
3, we also state the stronger result according to which the problem remains NP-
complete for 1-suit games and initial setting not containing locked cards. Then,
in Section 4, we prove the NP-completeness of the one-black one-red suits version
of Klondike. Finally, in Section 5 we draw some conclusions and discuss some
open problems.

2 Preliminaries

Let n ∈ N and s ∈ N; a deck of cards is a set D = [n]× [s]1. A Scorpion layout
L = {S,C1, . . . , Ck} for a deck of cards D is an arrangement of the cards in D
into k columns C1, . . . , Ck and a stock S. The stock is a sequence 〈s1, s2, . . . , sd〉 of
d ≤ k cards. Each column consists of a pair of (possibly empty) stacks: the locked
cards stack and the unlocked cards stack. Let 〈u1, u2, . . . uh〉 be the (non-empty)
unlocked cards stack in some column: for any j ∈ 2, . . . , h − 1, the sequence of
cards 〈uj , . . . uh〉 is called a sub-column starting at uj , card u1 is the base of the
column, card uh is the top of the column and, for i = 2, . . . , h, card uj covers
card uj−1.

A Scorpion game is a sequence 〈L0, L1, . . . , Ln〉 of Scorpion layouts such that,
for any t = 1, . . . , n, the transition from Lt to Lt+1 occurs according to one of
the (mutually exclusive) rules described in the following.

1) Lt has a non-empty stock and Lt+1 is derived from Lt by moving all cards
in the stock: for h = 1, . . . , d, the hth card in the stock in Lt becomes the
(unlocked) top card of column Ch in Lt+1 and the stock of Lt+1 is empty.

2) In Lt card (i, j) is the top card of column `, (i−1, j) is unlocked and contained
in column `′ 6= `, and Lt+1 is derived from Lt by moving card (i − 1, j) to
cover card (i, j): the whole sub-column starting at (i − 1, j) is moved to
column ` so that the top card of column `′ in Lt is the top card of column
of column ` in Lt+1. If (i− 1, j) covers card (i′, j′) in Lt, then (i′, j′) is the
top card of column `′ in Lt+1 while, if (i − 1, j) is the base card of column
`′ in Lt, column `′ is empty in Lt+1.

1 For m ∈ N, we shortly denote as [m] the set {1, 2, . . . ,m}.



Complexity of Scorpion Solitaire and applications to Klondike 5

3) In Lt column ` is empty and an unlocked card (n, j) is contained in column
`′ 6= `, and Lt+1 is derived from Lt by moving to column ` the subcolumn
starting at (n, j): in Lt+1 the base of column ` is (n, j), the top card of
column ` is the top card of column `′ in Lt, and similarly as in the previous
case as to the top of column `′.

A winning Scorpion layout is a Scorpion layout L such that in L exactly s
columns are non empty, the base of each of them is a (different) card (n, j), with
j ∈ [s], and, for any i ∈ [n− 1] and j ∈ [s], card (i, j) covers card (i+ 1, j).

A winning Scorpion game starting at L0 is a Scorpion game 〈L0, L1, . . . , Lp〉
such that Lp is a winning Scorpion layout.

Given a deck D of cards and a Scorpion layout L0, the Scorpion Winning
Game problem (in short, SWG) consists in deciding if there exists a winning
Scorpion game starting at L0.

3 Computational Complexity of Scorpion

Our first step to the study of the computational complexity of SWG is the proof
of its membership to NP. To this aim, we claim that, for any Scorpion layout
L0, if there exists a winning Scorpion game starting at L0 then there also exists

a winning Scorpion game 〈L0, L
1
, . . . , L

p〉 with p ≤ ns+ 1 + 2|S|. Indeed, since
any card (i, j) ∈ D such that i < n may be moved at most once (that is, once
it covers card (i + 1, j) it can be no longer moved), then a winning Scorpion
game consists of at most one transition occurring according to rule 1), at most
(n−1)s transitions occurring according to rule 2), at most s transitions occurring
according to rule 3) each of which places a different card (n, j) as the base of a
column (for any j ∈ [s]), and a set of transitions still occurring according to rule
3) each of which move some card (n, j) from the base of a column to another.
At most 2|S| moves in the last set are meaningful as to compose a winning
game: they are those pairs of moves such that one move frees one of the first |S|
columns and the other move possibly shifts to it another column having as its
base some (n, j) and as its top an appropriate card to be covered by a card in
the stock.
Hence, a certificate for an instance L0 of SWG is a sequence L1, . . . , Lp of p ≤
ns + 1 + 2|S| Scorpion layouts. Since verifying if 〈L0, L1, . . . , Lp〉 is actually a
Scorpion winning game requires polynomial time, this proves that SWG is in
NP.

We now turn to proving the NP-completeness of SWG.

Theorem 1. SWG is NP-Complete even when restricted to set of instances such
that D is a deck on four suits and the stock in the initial layout is empty.

Proof. To prove the assertion, we provide a reduction from 3SAT. Let 〈X, f〉 be
an instance of 3SAT, where X = {x1, . . . , xn} is a set of boolean variables and
f = {c1, . . . , cm} is a set of clauses over X each containing exactly three literals
(each literal, in turn, being a variable in X or its negation). We write li,j for the



6 F. Arena et al.

ith literal in cj (i = 1, 2, 3), and, with a slight abuse of notation, we write xi ∈ cj
(¬xi ∈ cj) if xi (respectively, ¬xi) is a literal in cj . Without loss of generality,
in what follows we shall assume that m ≥ n.

The description of the instance 〈D,L0
f 〉 of SWG corresponding to an instance

〈X, f〉 of 3SAT is rather intricate and the reader may refer to Fig. 3 to get some
intuition about how the gadgets are structured.

Fig. 3. Example of the instance of SWG corresponding to the 3SAT formula f =
{c1, c2, c3} with c1 = {x3, x2, x1}, c2 = {¬x3, x2, x1}, c3 = {¬x3,¬x2, x1}, over the set
X = {x1, x2, x3}.

The deck of cards D consists of 4 suits of nf = 10m+ 1 cards each. In order
to make the proof closer to the language of card players, in what follows we shall
denote the four suits as ♥, ♣, ♦ and ♠ (instead of 1, 2, 3, 4 as defined in Section
2).

For any 1 ≤ i ≤ n, we define the base variable value of xi as αi = 5(i − 1)
and, for any 1 ≤ j ≤ m, we define the base clause value of cj as βj = 3(j − 1)
and the base clubs clause value of cj as γj = 10(j − 1).

The columns of L0
f are partitioned into three sets: a set of variable gadgets

columns, a set of clause gadgets columns, and a set consisting of one critical
columns and four suit columns.

Variable gadgets columns. Each variable xi is associated to a pair of columns
denoted as vi and v̄i:

1. column vi contains the unlocked cards (αi +3,♥) and (αi +2,♥), (αi +2,♥)
being the top of column vj and covering card (αi + 3,♥);



Complexity of Scorpion Solitaire and applications to Klondike 7

2. column v̄i contains the unlocked cards (αi +1,♥) and (αi +4,♥), (αi +4,♥)
being the top of column vj and covering card (αi + 1,♥).

Clause gadgets columns. Each clause cj is associated to the four columns
uj1 , uj2 , uj3 and uj4 :

1. uj1 , uj2 and uj3 contain a single unlocked card each (being their, respective,
top card): uj1 contains (γj + 3,♣), uj2 contains (γj + 6,♣) and uj3 contains
(γj + 9,♣);

2. finally, uj4 contains the following stack of unlocked cards:

〈(βj + 2,♦), (βj + 1,♠), (γj + 7,♣), (γj + 4,♣), (γj + 1,♣), (βj + 2,♠)〉,

with (βj + 2,♠) at its top.

We can now model a variable (or its negation) being contained in a clause.
Starting with j = 1, and up to j = m, we repeat the following steps: for any
1 ≤ i ≤ n,

– if l1,j = xi then we add card (γj + 8,♣) as a locked card at the bottom of
column vi, while if l1,j = ¬xi then we add card (γj + 8,♣) as a locked card
at the bottom of column v̄i;

– if l2,j = xi then we add card (γj + 5,♣) as a locked card at the bottom of
column vi, while if l2,j = ¬xi then we add card (γj + 5,♣) as a locked card
at the bottom of column v̄i;

– if l3,j = xi then we add card (γj + 2,♣) as a locked card at the bottom of
column vi, while if l3,j = ¬xi then we add card (γj + 2,♣) as a locked card
at the bottom of column v̄i.

As an example, if c2 = {¬x2, x3,¬x8} then we add (18,♣) to the bottom of
column v̄2, (15,♣) to the bottom of column v3 and (12,♣) to the bottom of
column v̄8, all of them locked.

Critical column: the critical column consists of the single unlocked card (βm+
1,♦), which is both base and top of the critical column and covers the following
stack of locked cards:

〈 (10,♣), (20,♣), . . . , (10m,♣),
(3,♠), (6,♠), . . . , (3m,♠),
(3,♦), (6,♦), . . . , (3(m− 1),♦), (3m,♦),
(5,♥), (10,♥), . . . , (5n,♥),
(1,♦) = (β1 + 1,♦), (4,♦) = (β2 + 1,♦), . . . , (βm−1 + 1,♦) 〉.

As to the suit columns, that is, the hearts column, the spades column, the
diamonds column and the clubs column, all the cards they contain are unlocked
and

– the hearts column consists of the stack

〈(nf ,♥), (nf − 1,♥), . . . , (5n+ 1,♥)〉

with (5n+ 1,♥) as its top;



8 F. Arena et al.

– the remaining three suit columns have a similar structure, that is,

spades column: 〈(n,f ♠), (nf − 1,♠), . . . , (3m+ 1,♠)〉,
diamonds column: 〈(nf ,♦, (nf − 1,♦), . . . , (3m+ 1♦)〉,
clubs column: 〈(10m+ 1,♣)〉.

The description of L0
f is now complete. Needless to say, deriving L0

f from
〈X, f〉 requires polynomial time.

It remains to show that there exists a winning Scorpion game starting at L0
f

if and only if there exists a truth assignment for X satisfying all clauses in f .
Assume there is a truth assignment a : X → {true, false} satisfying f .

We now derive from a a winning Scorpion game starting at L0
f ; for the sake of

readability, in what follows we shall describe the sequence of card moves yielding
the Scorpion layouts by which the winning game is composed.

For any 1 ≤ i ≤ n, the following steps are repeated.

– If a(xi) = true, the sub-column 〈(αi + 3,♥), (αi + 2,♥)〉 is moved from
column vi to column v̄i so that card (αi + 3,♥) covers card (αi + 4,♥).
In this way, cards in the locked stack of column vi get unlocked one after
the other and can be moved to become the top cards of some clause gadget
column: if, for some 1 ≤ j ≤ m, card (γj +2,♣) (or (γj +5,♣) or (γj +8,♣))
has become the top card of column vi then it gets unlocked and it is moved
to cover card (γj + 3,♣) in column uj1 (respectively, card (γj + 6,♣) in
column uj2 or card (γj + 9,♣) in column uj3). This makes another card in
the locked stack unlocked, and so on.

– If a(xi) = false, the sub-column 〈(αi + 1,♥), (αi + 4,♥)〉 is moved from
column v̄i to column vi so that card (αi + 1,♥) covers (αi + 2,♥). In this
way, just as in the previous case, cards in the locked stack of column v̄i get
unlocked one after the other and are moved to become top cards of some
clause gadget column.

Since a satisfies all clauses in f then, for each 1 ≤ j ≤ m, at least one
column out of uj1 , uj2 , uj3 has its top card changed into, respectively, (γj +2,♣),
(γj + 5,♣) and (γj + 8,♣); we can therefore move at least one of the three cards
(γj + 7,♣), (γj + 4,♣), or (γj + 1,♣) from uj4 to cover the new top card in uj1 ,
or uj2 or uj3 . After this, the top card of either uj1 , or uj2 or uj3 has become
(βj + 2,♠): we can then move (βj + 1,♠) from uj4 to cover (βj + 2,♠). By doing
so, card (βj + 2,♦) has become the top card of column uj4 .

We have, thus, derived a Scorpion Layout such that, for any 1 ≤ j ≤ m, card
(βj + 2,♦) is the top card of column uj4 (and, actually, its only card). At this
point, we move (βm + 1,♦) from the critical column to cover (βm + 2,♦) on top
of column um4

, so unlocking (βm−1 +1,♦) in the critical column. This last card,
in turn, can be moved to cover card (βm−1 + 2,♦) on top of column u(m−1)4 ,
and so on. At the end of this procedure, card (5n,♥) has been unlocked and has
become the top card of the critical column: we move it to cover the top card in
the hearts column, then we cover it by moving card (5n − 1,♥) = (αn + 4,♥)
from column vn or v̄n. Continuing, we move all the ♥ cards onto the hearts pile.



Complexity of Scorpion Solitaire and applications to Klondike 9

Now, card (3m,♦) is the top card of the critical column and, hence, unlocked.
It can, thus, be moved on top of the diamonds column and, then, be covered by
card (3m−1,♦) that is, by the sub-column 〈(3m−1,♦), (3m−2,♦)〉, that moves
from column um4 , followed by (3m− 2,♦) from the critical column. Proceeding
this way, we bring all the ♦ cards in the diamonds column.
Similarly, all ♠ cards are moved to the spades column and all ♣ cards are moved
to the clubs column.
We have thus derived from a a winning Scorpion game starting at L0

f .

Conversely, assume there exists a winning Scorpion game 〈L0
f , L

1, . . . , LM 〉.
This means that there exists 1 ≤ k ≤ M such that the critical column in Lk

does not contain any ♦. In L0
f , the critical column contains a single unlocked

card, that is, (βm + 1,♦), and such card has to be moved in order to unlock
the card it covers ((βm−1 + 1,♦)). Before card (βm + 1,♦) can be moved, card
(βm+1,♠) (that, in L0

f , covers card (βm+2,♦) in column um4) has to be moved
and this is possible only after (βm + 2,♠) has been moved to a different column.
This is possible either by direcly moving (βm + 2,♠) to cover (βm + 3,♠) or
by moving any of the ♣ cards lying in um4

beneath (βm + 2,♠) (so moving the
whole sub-column). The former case cannot happen, since (βm+3,♠) = (3m,♠)
is locked in the critical column and can become unlocked only after all ♦ cards
above it are moved. Hence, in order to move card (βm + 1,♦), some card out of
(γm+7,♣), (γm+4,♣), (γm+1,♣) (the cards lying on um4

beneath (βm+2,♠))
are to be moved first. All such ♣ cards are locked in some variable gadget column
and they become unlocked only after the ♥ segment at its top is moved, that is,

a) after the sub-column 〈(αi + 3,♥), (αi + 2,♥)〉 is moved to cover card (αi +
4,♥) (in column v̄i), for some vi containing (γm + 7,♣), or (γm + 4,♣), or
(γm + 1,♣),

b) or after the sub-column 〈(αi + 1,♥), (αi + 4,♥)〉 is moved to cover card
(αi +2,♥) (in column vi), for some v̄i containing (γm +7,♣), or (γm +4,♣),
or (γm + 1,♣).

Summarizing, card (βm + 1,♦) is moved only after (αi + 3,♥) has been moved
to cover (αi + 4,♥) or (αi + 1,♥) has been moved to cover (αi + 2,♥). Notice
that these last two moves are mutually exclusive, that is, the occurrence of one
of them forbids the occurrence of the other; hence, we may set

a(xi) =


true if case a) occurs, that is,

(αi + 3,♥) is moved to cover (αi + 4,♥),
false if case b) occurs, that is,

(αi + 1,♥) is moved to cover (αi + 2,♥).

Since, by construction, case a) occurs when xi ∈ cm and case b) occurs when
¬xi ∈ cm, the truth assignment above to variable xi satisfies clause cm.
The above reasoning can be repeated for card (βm−1 + 1,♦) and, hence, clause
cm−1, and so on down to card (β1 +1,♦) and, hence, clause c1. This proves that
the so built truth assignment a satisfies all clauses in f .



10 F. Arena et al.

It turns out that SWG is NP-complete even for sets of instances satisfying
stronger restrictions than those considered in Theorem 1, that is, when the game
is played with a single suit deck of cards (s = 1), and the initial layout has an
empty stock and no locked cards. Since the proof of this case is much more
intricate and long of that of Theorem 1, for the sake of simplicity and due to
space constraints, we have shown the proof for the case of a traditional 4 suits
deck of cards and an initial layout containing locked cards. The proof of the
following, stronger, result is then deferred to the full version of the paper.

Theorem 2. SWG is NP-Complete even when restricted to set of instances such
that D is a deck on just one suit, and the initial layout contains an empty stock
and no locked cards.

We explicitly observe that, by simple generalization, from Theorem 2 it follows
that SWG is NP-complete for any (fixed) number of suits.

4 Klondike

Klondike is played with a 4 suits deck of cards and its setting consists of a stock,
a waste, 4 foundations (one foundation per suit) and a tableau (see Figure 4).
The foundations are initially empty, but, as the game progresses, the foundations
will be built up by suit. The tableau consists of seven stacks of cards: at the
beginning, all cards in each stack are face down except for the top card which is
left face up. Goal of a Klondike game is to place all the cards into the foundations:
when a foundation is empty, as soon as an Ace appears as the top card of any
stack in the tableau, it can be removed from the tableau to become the top card
of that foundation; when the top card of a foundation is card i of suit x, with
1 ≤ i < 13 and x ∈ {♥,♣,♦,♠}, as soon as card i+1 of suit x appears as the top
card of any stack in the tableau, it can be removed from the tableau to become
the top card of that foundation. Hence, the last card moved to a foundation is
a King.
The tableau is used to organize cards until it becomes possible to place them
in the foundations. Cards can be moved among the stacks in the tableau by
alternating color: if the top card of a stack in the tableau is card i of a red
suit (♥ or ♦) and card i − 1 of a black suit (♣ or ♠) is a face up card in a
different stack, then card i− 1 can be moved to cover card i (and similarly with
opposite colors). Similarly to Scorpion Solitaire, whenever a card is moved from
a source stack to a destination stack in the tableau all (face up) cards on the
source stack lying above the moved card must be moved as well, in their order,
to the destination stack. Only a king can be placed into an empty stack. If a
face down card is on the top of a stack, it becomes face up.
The stock is a stack-like set of face down cards: when the player clicks on the
stock, 3 cards are dealt face up to the waste. Only the top most card in the waste
is playable (once it has been played, the card immediately below it becomes
playable, and so on): more precisely, it can be moved to cover a face up card in
some stack in the tableau in decreasing order and alternating color (that is, a



Complexity of Scorpion Solitaire and applications to Klondike 11

red suit card i may cover a black suit card i + 1 and a black suit card i may
cover a red suit card i+ 1).

Fig. 4. Example of a Klondike layout.

We again consider complete information games (in [2]’s terminology thought-
ful solitaire), that is, all cards will be face up, although some of them will be
locked till the cards covering them are removed. Needless to say, our decks con-
tain arbitrary amounts of cards, and the tableau arbitrary amount of stacks.
Furthermore, even though it isn’t expressly mentioned in [2], we are assuming
that the starting configuration allows for stacks in the tableau with possibly
more than one face up card on their top.

Among the other results, [2] proves it is NL-hard to decide if there exists a
winning Klondike game starting at a given layout also when the deck of cards
is restricted to have only one black suit and one red suit, the initial layout has
empty stock and waste and generalized kings (namely, maximum rank cards) are
not allowed to be moved to an empty stack in the tableau. In [2], such restricted
version of the Klondike related decision problem is named FLAT-SOLIT(1,1).
We have strengthened the result in [2] as summarized in the next theorem.

Theorem 3. FLAT-SOLIT(1,1) is NP-Complete.

Due to space limitations, the proof of Theorem 3 will be provided in the full
paper. For the time being, we want to notice the similarities occurring between
SWG restricted to 2 suits decks and empty stock and FLAT-SOLIT(1,1): indeed,
in both problems, for every card c (other than maximum rank cards) there exists
a unique card c′ such that c may be moved to cover c′ in the tableau and,
conversely, for every card c (other than aces) there exists a unique card c′ such
that c′ may be moved to cover c in the tableau. However, there is also a noticeable
difference between the two games: according to the Klondike rules, foundations
are filled by cards of the same suit, in decreasing order, and by moving one card
after the other. No similar structure exists in the Scorpion Solitaire, and this
is the reason why it does not seem so easy to directly design a reduction from



12 F. Arena et al.

SWG to FLAT-SOLIT(1,1). and we have, instead, exploited again a reduction
from 3SAT to prove Theorem 3. However, the Klondike layout corresponding to
an instance of 3SAT we construct in the proof of Theorem 3 is directly derived
from the Scorpion layout associated to the same instance built in Theorem 2.

5 Conclusions and open problems

In this paper we have studied the computational complexity of deciding if a
winning strategy exists for a Scorpion Solitaire game and we have proved that
the problem is NP-complete even for one suit games and no face down (locked)
cards. We have also negatively answered a question posed in [2] by proving that
it is NP-complete to decide whether a one red suit-one black suit configuration
of the Klondike Solitaire allows for a winning sequence of moves.

A Scorpion game depends on several parameters: number of suits, of cards
per suit and of locked cards, stock size, number of columns. It seems quite clear
after Theorem 2 that the complexity of the problem is not influenced by number
of suits, number of locked cards and stock size.
Instead, the role played as to the complexity of the problem by the number of
columns and by the relation between number of cards and number of columns
looks intriguing. In fact, the problem is trivially in P when the number of col-
umn is one or is equal to the (total) number of cards. And it seems reasonable to
conjecture that the problem remains in P when the number of columns is “rea-
sonably” larger than half of the (total) number of cards. On the other hand, the
Scorpion layout corresponding to an instance 〈X, f〉 of 3SAT derived in the proof
of Theorem 2 is built over a deck of 8n+ 24m cards and consists of 2n+ 4m+ 1
columns (where n = |X| and m is the numbe of clauses in f): that is, the prob-
lem is NP-complete when the number of columns is much smaller than half of
the number of cards. But what about an even smaller number of columns? Actu-
ally, it seems quite a hard issue to understand what happens, for instance, for a
constant number of columns; even for just two columns. We think investigating
such topic could be interesting, eventually also in the parameterized complexity
setting.

References

1. Malte Helmert. Complexity results for standard benchmark domains in planning.
Artificial Intelligence. 143 (2), 219-262, 2003.

2. Luc Longpréa e Pierre McKenzie, The complexity of Solitaire. Theoretical Computer
Science, 410 (50), 5252-5260, 2009.

3. Jesse Stern, Spider is NP-Complete, arXiv:1110.1052v1 [cs.CC], 2011.
4. X. Yan, P. Diaconis, P. Rusmevichientong, B. Van Roy, Solitaire: Man Versus Ma-

chine, in: Proc. Advances in Neural Information Processing Systems (NIPS), 17,
1553-1560, 2004.

5. D. Parlett. A History of Card Games. Oxford University Press, 1991.


