
Syntactic Isomorphism of CNF Boolean
Formulas is Graph Isomorphism Complete?

Giorgio Ausiello1, Francesco Cristiano1, Paolo Fantozzi1 and Luigi Laura2

1 Dip. di Informatica e Sistemistica Università di Roma ”La Sapienza”, Rome Italy.
2 International Telematic University Uninettuno, Rome, Italy

E-mail: ausiello@dis.uniroma1.it, fra.cristiano@gmail.com,

paolo.fantozzi@uniroma1.it, luigi.laura@uninettunouniversity.net

Abstract. We investigate the complexity of the syntactic isomorphism
problem of two Boolean Formulas in Conjunctive Normal Form (CNF):
given two CNF Boolean formulas ϕ(a1, . . . , an) and ϕ(b1, . . . , bn) decide
whether there exists a permutation of clauses, a permutation of liter-
als and a bijection between their variables such that ϕ(a1, . . . , an) and
ϕ(b1, . . . , bn) become syntactically identical. We first show that the CNF
Syntactic Formulas Isomorphism (CSFI) problem is polynomial time re-
ducible to the graph isomorphism problem (GI) and then we show that
GI is polynomial time reducible to a special case of the CSFI problem
(MCSFI) that is CSFI-complete and also GI-complete, thus concluding
that the syntactic isomorphism problem for CNF Boolean formulas is
GI-complete. Finally we observe that the same results hold when con-
sidering DNF Boolean formulas (DSFI).

Keywords: Boolean isomorphism · Complexity theory · Graph isomor-
phism · Boolean formulas · Semantic isomorphism · Syntactic isomor-
phism.

1 Introduction

A Boolean function of arity n f = f(x1, . . . , xn) is a function f : {0, 1}n → {0, 1}.
The truth table of a Boolean function fully specifies the function but it does not
provide any information about its syntactic representation; on the opposite side,
a Boolean formula is a syntactic representations of a Boolean function but such
representation is not unique since each Boolean function may be represented by a
set of Boolean formulas. Calling equivalent the Boolean formulas that represent
the same function, we have that a Boolean function is defined by a Boolean
formula modulo logical equivalences.

Given two Boolean formulas F and G, representing respectively the Boolean
functions f and g, the Formula Equivalence (FE) problem is to decide whether

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). This work was partially
supported by MIUR National Interest Project “AlgoDEEP: Algorithmic Challenges
for Data-intensive Processing on Emerging Computing Platforms”

2 Ausiello, Cristiano, Fantozzi, and Laura

they are semantically (or logically) equivalent (i.e., if and only if each model of
F is a model of G and vice versa, or, in other terms, f = g [14]), that is F ≡ G
[20].

Given two Boolean functions, represented by the Boolean formulas F and
G defined over the variables set {x1,, xn}, a semantic isomorphism λ is a
permutation of the variables of G such that G becomes logical equivalent to
F i.e. such that F ≡ G ◦ λ = G(λ(x1),, λ(xn)). For example the Boolean
formulas x ∧ ¬y and ¬x ∧ y are semantically isomorphic, since we can swap
x and y in the first formula to get the second, but they are not semantically
equivalent (it suffices to build the truth table in order to see this). The problem
of deciding whether two Boolean formulas are semantically isomorphic is called
the Formula Isomorphism (FI) problem [1, 2]. From the definitions of Formula
Equivalence and Formula Isomorphism problems it follows that two semantically
equivalent Boolean formulas are also semantically isomorphic since the semantic
equivalence relationship preserves the semantic isomorphism.

The Formula Isomorphism problem has been widely studied by Agrawal and
Thierauf showing that, though FI is in Σ2P, i.e. the second level of the polyno-
mial hierarchy, it cannot be Σ2P-complete unless the polynomial time hierar-
chy collapses [1, 2]. In Thierauf’s work [20], where the author considers several
problems related to equivalence and isomorphism, it is shown that Graph Iso-
morphism (GI) is polynomial time reducible to FI.

A different notion from the semantic isomorphism is the syntactic isomor-
phism, i.e. a permutation λ of the variables {x1,, xn} of G such that it be-
comes syntactically identical to F , i.e., F = G ◦ λ = G(λ(x1),, λ(xn)). It is
straightforward to verify that each syntactic isomorphism is also a semantic iso-
morphism, since it is a permutation of variables that leads two Boolean formulas
to be equivalent, but not the converse. By definition, we have that literals are
variables and negated variables, terms are conjunction of literals and clauses are
disjunction of literals. Recalling that each Boolean function can be represented
as a disjunction of terms, called Disjunctive Normal Form (DNF), or as a con-
junction of clauses, called Conjunctive Normal Form (CNF), we say that two
Boolean formulas represented in CNF (or DNF) are syntactically isomorphic if
and only if they can be written in identical way under a suitable permutation
of variables, literals and clauses (terms); e.g., the Boolean formulas, x ∧ ¬y and
¬x∧y are syntactical isomorphic since we can swap x and y in the first formula,
and we can permute the two literals, getting ¬x ∧ y.

In this paper we focus on the Syntactic Isomorphism of CNF Boolean For-
mulas (CSFI): given two CNF Boolean formulas ϕ(a1, . . . , an) and ϕ(b1, . . . , bn),
decide whether there exist a permutation of clauses, a permutation of literals,
and a bijection between their variables such that ϕ(a1, . . . , an) and ϕ(b1, . . . , bn)
become syntactically identical. We prove that this problem is GI-complete: in
particular, we i) show that the CSFI problem is polynomial time reducible to
the graph isomorphism problem (GI, that is solvable in quasi-polynomial time
as in [5]) and ii) show that a special case of the CSFI problem, limited to mono-
tone formulas Monotone CNF Syntactic Formula Isomorphism (MCSFI), is both

CSFI is GI-complete 3

CSFI-complete and GI-complete; combining these results it holds that the syn-
tactic isomorphism problem of CNF Boolean formulas is GI-complete.

The end results of our findings are twofold. First, the GI-completeness of
CSFI supports the existence of a “graph theoretic independent” isomorphism
class, as already observed by Fortin [11] about the Term Equality Problem (TEP)
[6]; furthermore, it is interesting to observe that CSFI represents a special (and
easier) case of TEP and, as a consequence of our results, TEP reduces to CSFI.
The CSFI problem is peculiar amongst the graph isomorphism-complete prob-
lems in that i) it regards a subclass of Boolean formulas and so it is not defined
in terms of a graph theoretic problem, ii) it is a special case of a more general
isomorphism problem that is FI; therefore all GI-complete problems (either of
a graph theoretic nature or not) can be reduced to a subset of FI.

Second, our result increases, in some sense, the similarities between the For-
mula Isomorphism and the Graph Isomorphism problems:

1. a) If GI is NP-complete, then the polynomial hierarchy collapses to its
second level [19].

b) If FI is NPNP-complete, then the polynomial hierarchy collapses to its
third level [1].

2. a) The counting version of GI can be reduced to its decision version [15].
b) The counting version of FI can be reduced to its decision version [1].

3. a) GI ≡p CSFI, that is poly-time reducible to its monotone case MCSFI
[this paper].

b) FI is poly-time reducible to its monotone case [13].

Thus, in addition to the similarities regarding noncompleteness and counting
versions of each problem [1, 2], thanks to the results proved in this paper, we can
deduce that both FI and CSFI are polynomial time reducible to their monotone
special case.

A preliminary version of this paper [4] appeared in the Electronic Colloquium
on Computational Complexity3 (ECCC). This preliminary version has been cited
in [18] as related result for the graph isomorphisms and in [3] as related result
about isomorphism testing of computable functions. It has been further cited in
[17] as base to build a solution for the incremental analysis of source code and
in [16] in the related works section as equivalent to the max-cut problem.

This paper is organized as follows: in the next section we provide the neces-
sary background, whilst our main result is discussed in Section 3.

2 Preliminaries and problems definitions

In this section we provide the necessary background and definitions of the prob-
lems considered. We begin, from [12], with the already mentioned

Definition 1 (Graph Isomorphism (GI)). Given two undirected graphs
G1 = (V1, E1) and G2 = (V2, E2), are G1 and G2 isomorphic, i.e. is there a
bijection f : V1 → V2 such that (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2?

3 ECCC papers have the status of technical reports.

4 Ausiello, Cristiano, Fantozzi, and Laura

A well known example of a GI-complete problem is the following [7]:

Definition 2 (Bipartite Graph Isomorphism (BGI)). Given two undi-
rected bipartite graphs G1 = (V1,W1, E1) and G2 = (V2,W2, E2), are G1 and
G2 isomorphic, i.e. are there two bijections f : V1 → V2 and g : W1 → W2 such
that (u, v) ∈ E1 if and only if (f(u), g(v)) ∈ E2?

We also consider, from [10], the following:

Definition 3 (Matrix Isomorphism (MI)). Given two n×m matrices A and
B with entries respectively a(i,j) and b(i,j) (1 ≤ i ≤ n, 1 ≤ j ≤ m) defined over
an integers set Σ, the Matrix Isomorphism (MI) problem is to determine whether
there exists an isomorphism between the matrices, i.e. a permutation of the rows
of A σr and a permutation of the columns of A σc such that a(σr(i),σc(j))=b(i,j) .

We remind that other relevant GI-complete problems concern the isomor-
phisms of finite automata, hypergraphs, and context-free grammars [21]. We can
now formally introduce

Definition 4 (CNF Syntactic Formula Isomorphism (CSFI)). Given
two Boolean formulas in CNF:

ϕ(a1, ..., an) =
m
∧

c=1

(
2n
∨
l=1
α(c,l)

)
=
(
α(1,1)∨, ...,∨α(1,2n)

)
∧, ...,∧

(
α(m,1)∨, ...,∨α(m,2n)

)
ϕ(b1, ..., bn) =

m
∧

c=1

(
2n
∨
l=1
β(c,l)

)
=
(
β(1,1)∨, ...,∨β(1,2n)

)
∧, ...,∧

(
β(m,1)∨, ...,∨β(m,2n)

)
the syntactic isomorphism problem of CNF Boolean formulas (CSFI) is to

decide whether there exists a permutation of the clauses σc and a permutation of
the literals σl in ϕ(a1, ..., an) and a bijection f between their variables such that
ϕ(a1, ..., an) and ϕ(b1, ..., bn) may be written in the same way i.e.:

m
∧
c=1

(
2n
∨
l=1
f(α(σc(c),σl(l)))

)
=

m
∧
c=1

(
2n
∨
l=1
β(c,l)

)
As an example, considering the following formulas defined over the variables

set {x, y, z} ∪ {a, b, c} :

ϕ(z, y, x) = (¬z ∨ z) ∧ (y ∨ x) ∧ (z ∨ ¬y ∨ ¬x)

ϕ(a, c, b) = (a ∨ b) ∧ (¬a ∨ c ∨ ¬b) ∧ (¬c ∨ c)
a possible solution consists in the following bijection f = {〈y, a〉, 〈x, b〉, 〈z, c〉}

and a suitable permutations of σc and σl.
Recalling that a Boolean formula is said to be monotone if it does not contain

any negation, the following problem can be seen as a special case of CSFI, in
which there are no negated variables.

Definition 5 (Monotone CNF Syntactic Formula Isomorphism (MCSFI)).
Considering two Boolean monotone formulas in CNF, the syntactic isomorphism
problem for CNF monotone Boolean formulas (MCSFI) is the CSFI problem
restricted to CNF monotone formulas.

CSFI is GI-complete 5

3 CSFI is GI-complete

Before presenting our main result, we need to prove few lemmas that describe
some relationship between the problems defined in the previous section. In partic-
ular, the combination of these lemmas allows us to provide the following results:

CSFI ≤p MI {−1,0,1,2} ≤p GI ≤p BGI ≡p MI {0,1} ≡p MCSFI ≤p CSFI

where≤p and≡p represents, respectevely, polynomial-time reduction and polynomial-
time equivalency, from which we can derive that CSFI is GI-complete.

Lemma 1. The matrix isomorphism problem between matrices with entries de-
fined over the integers set Σ = {0, 1} is GI-complete.

Proof. We prove the above lemma by showing that it holds both BGI ≤p MI {0,1}
and MI {0,1} ≤p BGI :

1. BGI ≤p MI {0,1}: by definition two graphs G1 and G2 whose adjacency
matrices are respectively A1 and A2, are isomorphic if and only if there
exists a permutation matrix P such that A2 = PA1P

−1 [9].
2. MI {0,1} ≤p BGI : each binary matrix M1 corresponds to a bipartite graph
G1 whose adjacency matrix A1 is:

A1 =

(
0 M1

MT
1 0

)
Where MT

1 is the transpose of M1. Is simple to verify that two binary matrices
M1 and M2 are isomorphic if and only if the respective bipartite graph, whose
adjacency matrices are build upon the showed reduction, are isomorphic. So, it
holds BGI ≡p MI {0,1}. ut

Theorem 1. CSFI is deterministic polynomial time reducible to MI (i.e.,
CSFI ≤p MI).

We first provide the reduction, whilst its correctness hinges on Lemma 2 and
Lemma 3.

Reduction. Each CNF formula can be represented by a matrix whose n rows
represent variables, belonging or not to the literals of each clause, and whose
m columns represent clauses, and entries are defined over the set of integers
Σ = {−1, 0, 1, 2} such that the generic entry a(i,j) at the i-th row and the j-th
column may be:

– 0 if the i-th variable does not belong to the literals of the j-th clause, neither
positive nor negated.

– 1 if the i-th variable belongs to the literals of the j-th clause.
– -1 if the i-th negated variable belongs to the literals of the j-th clause.
– 2 if both the i-th negated and the i-th non negated variables belong to the

literals of the j-th clause.

6 Ausiello, Cristiano, Fantozzi, and Laura

For the previous example, we have:

ϕ(z, y, x) =

2 0 1
0 1 −1
0 1 −1

 ϕ(a, c, b) =

1 −1 0
0 1 2
1 −1 0

Such a matrix can be built in deterministic polynomial time from ϕ since

there are exactly n×m entries to place in the matrix where n is the cardinality
of the variables set and m is the cardinality of the clauses set.

In order to prove the theorem we divide it in two distinct lemmas.

Lemma 2. If two CNF formulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn) are syntactically
isomorphic then the respective matrices M [ϕ(x1, ..., xn)] and M [ϕ(y1, ..., yn)],
built upon the mentioned reduction, are isomorphic:

(ϕ(x1, ..., xn), ϕ(y1, ..., yn)) ∈ CSFI ⇒ (M [ϕ(x1, ..., xn)],M [ϕ(y1, ..., yn)]) ∈ MI

Proof. We can see that each permutation of clauses in ϕ(x1, ..., xn) corresponds
to a column permutation in M [ϕ(x1, ..., xn)] and each permutation of liter-
als, present or not in the clauses of ϕ(x1, ..., xn) , corresponds to a row per-
mutation of M [ϕ(x1, ..., xn)].Moreover, when ϕ(x1, ..., xn) is syntactically iso-
morphic to ϕ(y1, ..., yn) then the matrix of this isomorphism, by construction,
matches with M [ϕ(y1, ..., yn)] . So deciding if two CNF formulas ϕ(x1, ..., xn) and
ϕ(y1, ..., yn) are syntactically isomorphic corresponds to decide if, permutating
rows and columns of M [ϕ(x1, ..., xn)] , we can switch from M [ϕ(x1, ..., xn)] to
M [ϕ(y1, ..., yn)]. But deciding if there exist row and column permutations be-
tween two matrices, with entries defined over an integers set, such that the two
matrices coincide, is a special case of the MI problem (case with entries defined
over the set Σ = {−1, 0, 1, 2}). ut

Lemma 3. If two matrices M [ϕ(x1, ..., xn)] and M [ϕ(y1, ..., yn)], built respec-
tively from the CNF formulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn) upon the showed
reduction, are isomorphic then the CNF formulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn)
are syntactically isomorphic:

(ϕ(x1, ..., xn), ϕ(y1, ..., yn)) ∈ CSFI ⇐ (M [ϕ(x1, ..., xn)],M [ϕ(y1, ..., yn)]) ∈ MI

Proof. Suppose that the two matrices M [ϕ(x1, ..., xn)] and M [ϕ(y1, ..., yn)] are
isomorphic, then, by definition, it exists a row and column permutation in
M [ϕ(x1, ..., xn)] such that it coincides with M [ϕ(y1, ..., yn)]. Since, by the showed
reduction, each matrix with entries over the integers set Σ = {−1, 0, 1, 2} corre-
sponds to a CNF formula and vice versa, we have that, each column permutation
in M [ϕ(x1, ..., xn)] corresponds to a clause permutation in ϕ(x1, ..., xn) and each
row permutation in M [ϕ(x1, ..., xn)] corresponds to a permutation of literals,
present or not in the clauses of ϕ(x1, ..., xn), and when the two matrices coincide
then, by construction, the respective CNF formulas are syntactically isomorphic
(they are written in identical way except a bijection between their variables).
So, deciding if there exist row and column permutations in M [ϕ(x1, ..., xn)] such

CSFI is GI-complete 7

that it coincides with M [ϕ(y1, ..., yn)] is equivalent to decide if there exists a
permutation of clauses and literals and a bijection of variables in ϕ(x1, ..., xn)
such that it is syntactically isomorphic to ϕ(y1, ..., yn). ut

Theorem 2. The MI problem, between two matrices MA and MB whose entries
are defined over the integers set Σ = {−1, 0, 1, 2}, is deterministic polynomial
time reducible to GI (i.e., MI {−1,0,1,2} ≤p GI).

Reduction. Each n ×m matrix of a MI instance, between two matrices MA

and MB whose entries are defined over the integers set Σ = {−1, 0, 1, 2} , can be
represented with a graph G = (V,A) built as follow (see Figure 1 for an example
of the construction):

– Set of vertices V = {R ∪ C ∪ E ∪ S ∪X} where:
• R = {r1,, rn} is the set of rows.
• C = {c1, ..., cm} is the set of columns.
• X is the set of 3 vertices used to build 2 cliques of degrees 1 and 2 each

of which identifies, respectively, the set of columns and the set of rows.
• E = {(1, 1), (1, 2), ..., (m,n)} is the set of ordered pairs (i, j) that repre-

sents the coordinates of each generic entry a(i,j) positioned at the i-th
row and j-th columns.

• S is the set of 18 vertices used to build 4 cliques of degrees 3,4,5, and 6
each of which codifies, respectively, the integers numbers: −1,0,1, and 2.

– Set of edges A obtained linking the following vertices:
• every vertex ri is linked to the pairs (i, j) and is linked to the clique of

degree 2 in order to represent the membership of ri to the set of rows.
• every vertex cj is linked to the pairs (i, j) and is linked to the clique of

degree 1 in order to represent the membership of cj to the set of columns.
• every vertex (i, j) is linked to the clique of degree k if and only if the

entry a(i,j) is codified by the clique of degree k.

It is simple to verify that each vertex (i, j) is linked to the clique correspond-
ing to the codified number as specified in the matrix and so the built graph
matches the whole relational structure of the matrix. Two examples of reduc-
tions from isomorphic matrices are shown in Figure 1; vertices are labelled for
clarity. We note that the corresponding graph can be built in polynomial time
from the matrix MA.

In order to prove the theorem we divide it in two distinct lemmas.

Lemma 4. If two matrices MA and MB, with entries defined over the integers
set Σ = {−1, 0, 1, 2}, are isomorphic then the corresponding graphs G[MA] and
G[MB], built following the shown reduction, are isomorphic:

(MA,MB) ∈ MI {−1,0,1,2} ⇒ (G[MA], G[MB]) ∈ GI

Proof. If MA and MB are isomorphic then they are the same matrix modulo
row and column permutations. We can see that each permutation of rows and
each permutation of columns in the matrix MA corresponds, respectively, to a

8 Ausiello, Cristiano, Fantozzi, and Laura

A =

0 1 −1
0 1 −1
2 0 1

!"#$%

&"

!$#"%

'(

!"#"%

'$

'"

&$

!$#$%

!(#$%!(#"%

&(

!"#(%

!$#(%

!(#(%

"

$

$

$

$

$

$

)"

)")"

"

"

"

"

*

* *

*

B =

1 −1 0
1 −1 0
0 1 2

!"#$%

&"

!$#"%

'(

!"#"%

'$

'"

&$

!$#$%

!(#$%!(#"%

&(

!"#(%

!$#(%

!(#(%

"

$

$

$

$

$

$

)"

)")"

"

"

"

"

*

* *

*

Fig. 1. An example of the reduction used in the proof of Theorem 2

permutation of vertices aligned with the rows and to a permutation of vertices
aligned with the columns in G[MA] and when an isomorphism between MA and
MB exists, then the graph of the matrix of this isomorphism, by construction, is
isomorphic to G[MB]. But permuting vertices aligned with rows and/or columns
in G[MA] generate graphs isomorphic to G[MA]. So deciding if two matrices MA

CSFI is GI-complete 9

and MB , whose entries are defined over the integers set Σ = {−1, 0, 1, 2} , are
isomorphic corresponds to deciding if the two graphs G[MA] and G[MB], built
upon the shown reduction, are isomorphic. ut

Lemma 5. If two graphs G[MA] and G[MB], built respectively from the matrices
MA and MB upon the shown reduction, are isomorphic then the matrices MA

and MB are isomorphic:

(MA,MB) ∈ MI {−1,0,1,2} ⇐ (G[MA], G[MB]) ∈ GI

Proof. It is straightforward to see that, when the graphs G[MA] and G[MB]
are isomorphic, then, since by construction each graph represents the whole
relational structure of a matrix, the two matrices MA and MB from which they
were built, have to be isomorphic. ut

Theorem 3. MI {0,1} between two binary matrices MA and MB is deterministic
polynomial time reducible to MCSFI (i.e., MI {0,1} ≤p MCSFI).

Reduction. As seen in Theorem 1, each CNF formula can be represented by
a matrix whose entries are defined over an integers set and vice versa. More
formally, each CNF monotone formula can be represented as a matrix in which
rows represents the variables and columns represents the clauses and matrix
entries are defined over the integers set Σ = {0, 1} such that the generic entry
a(i,j) positioned at the i-th row and j-th column is:

– 0 if the i -th literal is not presents in the j -th clause
– 1 if the i -th literal is present in the j -th clause

Example: the binary matrix A1 =

1 0 1
0 1 1
1 1 0

 corresponds to the CNF mono-

tone formula defined over the variables set {z, y, x} :

ϕ(z, y, x) = (z ∨ x) ∧ (y ∨ x) ∧ (z ∨ y)

Note that such a CNF formula can be built in polynomial time from a n×m
matrix since there are at most n×m literals to place in each formula.

As we did for the previous theorems, we divide the proof in two distinct
lemmas.

Lemma 6. If two binary matrices MA and MB are isomorphic then the re-
spective CNF monotone formulas ϕ(a1, ..., an) and ϕ(b1, ..., bn), built upon the
showed reduction, are syntactically isomorphic:

(MA,MB) ∈ MI ⇒ (ϕ(a1, ..., an), ϕ(b1, ..., bn)) ∈ MCSFI

10 Ausiello, Cristiano, Fantozzi, and Laura

Proof. As seen, each rows permutation in MA corresponds to literals permuta-
tion in ϕ(a1, ..., an) and each columns permutation in MA corresponds to clauses
permutation in ϕ(a1, ..., an) and moreover, when MA is isomorphic to MB then
the CNF monotone formula of this isomorphism will matches, by construction,
with ϕ(b1, ..., bn) unless for a variables bijection. So, deciding if two binary ma-
trices MA and MB are isomorphic is equivalent to decide if permutating literals
and clauses of ϕ(a1, ..., an), and using a variables bijection, we can switch from
ϕ(a1, ..., an) to ϕ(b1, ..., bn) but this problem is, by definition, the syntactic iso-
morphism problem between CNF monotone formulas. ut

Lemma 7. If two CNF monotone formulas ϕ(a1, ..., an) and ϕ(b1, ..., bn), built
respectively from the matrices MA and MB following the above reduction, are
syntactically isomorphic then the two binary matrices MA and MB are isomor-
phic:

(MA,MB) ∈ MI ⇐ (ϕ(a1, ..., an), ϕ(b1, ..., bn)) ∈ MCSFI

Proof. Suppose that the two CNF monotone formulas ϕ(a1, ..., an) and
ϕ(b1, ..., bn) are isomorphic, then, by definition, there exist literal and clause per-
mutations in ϕ(a1, ..., an) and a variables bijection such that it is syntactically
identical to ϕ(b1, ..., bn). Since, by the shown reduction, each matrix corresponds
to a CNF monotone formula and vice versa, we have that, by construction, each
clauses permutation in ϕ(a1, ..., an) corresponds to columns permutation in MA

and each literals permutation in ϕ(a1, ..., an) corresponds to rows permutation
in MA, and when the two CNF formulas are syntactically isomorphic then the
respective binary matrices coincides. For the above reasons, deciding if, unless a
variables bijection, there exists a clauses and literals permutation in ϕ(a1, ..., an)
such that it is syntactically isomorphic to ϕ(b1, ..., bn) is equivalent to deciding
if there exists a rows and columns permutation in MA so that it is isomorphic
to MB . ut

As seen, each binary matrix can be regarded as a CNF monotone formula
and vice versa, hence using the same argument as in Theorem 1 it is simple to
prove the following:

Corollary 1. MCSFI between two monotone formulas ϕ(a1, ..., an) and
ϕ(b1, ..., bn) is deterministic polynomial time reducible to MI {0,1} (i.e.,
MCSFI ≤p MI {0,1}).

Therefore we have:

Corollary 2. MI {0,1} ≡p MCSFI .

Since MI {0,1} is GI-complete we have:

Corollary 3. MCSFI is GI-complete.

We can now present our main result.

Theorem 4. CSFI is GI-complete.

CSFI is GI-complete 11

Proof. Combining the results from Lemma 1 through Corollary 2, we can state
the following:

CSFI ≤p MI {−1,0,1,2} ≤p GI ≤p BGI ≡p MI {0,1} ≡p MCSFI ≤p CSFI

Hence, CSFI is GI-complete. ut

4 Conclusion

In this paper we have shown that the CSFI problem is graph isomorphism com-
plete. This result is interesting first because CSFI is one of the few GI-complete
problems that are not of a graph theoretic nature. Second, it allows to extend
the similarities between the Formula Isomorphism and the Graph Isomorphism
problems, already observed [1, 2]. In particular, we have shown that GI is equiva-
lent to the problem of testing syntactic isomorphism for monotone CNF Boolean
Formulas (MCSFI), as FI is equivalent to the problem of testing semantic iso-
morphism of monotone Boolean Formulas [13]. An interesting aspect for future
researches is the extension of this result for weighted graphs.

Finally, let us observe that our result easily extends to the syntactic isomor-
phism of DNF Boolean Formulas. In fact, it is simple to verify that, for the
commutativity of the operators AND and OR, identical theorems can be proved
when the Boolean formula is in disjunctive normal form (DNF), since analo-
gously to Theorem 1, we can replace each CNF formula with a DNF formula,
that can be associated to a matrix whose columns represent terms and rows
represent variables.

References

1. Agrawal, M., Thierauf, T.: The boolean isomorphism problem. Foundations of
Computer Science, Annual IEEE Symposium on 0, 422 (1996)

2. Agrawal, M., Thierauf, T.: The formula isomorphism problem. SIAM Journal on
Computing 30(3), 990–1009 (2000)

3. Arvind, V., Vasudev, Y.: Isomorphism testing of boolean functions computable by
constant-depth circuits. Information and Computation 239, 3–12 (2014)

4. Ausiello, G., Cristiano, F., Laura, L.: Syntactic isomorphism of CNF boolean for-
mulas is graph isomorphism complete. Electronic Colloquium on Computational
Complexity (ECCC) 19, 122 (2012), http://eccc.hpi-web.de/report/2012/122

5. Babai, L.: Graph isomorphism in quasipolynomial time. CoRR abs/1512.03547
(2015), http://arxiv.org/abs/1512.03547

6. Basin, D.A.: A term equality problem equivalent to graph isomorphism. Inf. Pro-
cess. Lett. 51, 61–66 (July 1994)

7. Booth, K.S., Colburn, C.J.: Problems polynomially equivalent to graph isomor-
phism. Tech. Rep. CS-77-04, Computer Science Department, University of Water-
loo (1979)

12 Ausiello, Cristiano, Fantozzi, and Laura

8. Borchert, B., Ranjan, D., Stephan, F.: On the computational complexity of some
classical equivalence relations on boolean functions. Theory of Computing Systems
31(6), 679–693 (1998)

9. Eikenberry, J.: Approaches to solving the graph isomorphism problem. Tech. Rep.
GIT-CC-04-09, Georgia Institute of Technology (2004)

10. Ettinger, M.: The complexity of comparing reaction systems. Bioinformatics 18(3),
465–469 (2002)

11. Fortin, S.: The graph isomorphism problem. Tech. Rep. 96-20, Dept. of Computing
Science, University of Alberta (1996)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

13. Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of dnf minimization and
isomorphism testing for monotone formulas. Inf. Comput. 206, 760–775 (June
2008)

14. Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about
systems (second edition). Cambridge University Press (2004)

15. Mathon, R.: A note on the graph isomorphism counting problem. Information
Processing Letters 8, 131–132 (1979)

16. Miao, D., Cai, Z.: On the hardness of reachability reduction. In: International
Computing and Combinatorics Conference. pp. 445–455. Springer (2019)

17. Mudduluru, R., Ramanathan, M.K.: Efficient incremental static analysis using path
abstraction. In: International Conference on Fundamental Approaches to Software
Engineering. pp. 125–139. Springer (2014)

18. Schmidt-Schauß, M., Rau, C., Sabel, D.: Algorithms for extended alpha-equivalence
and complexity. In: 24th International Conference on Rewriting Techniques
and Applications (RTA 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2013)

19. Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci.
37(3), 312–323 (1988)

20. Thierauf, T.: The computational complexity of equivalence and isomorphism prob-
lems. Springer-Verlag, Berlin, Heidelberg (2000)

21. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism
problem. Journal of Mathematical Sciences 29, 1426–1481 (1985)

