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Abstract. In this extended abstract we review some recent work about
the application of the inverse method to refute formulas in Intuitionistic
Propositional Logic.

The inverse method, introduced in the 1960s by Maslov [21], is a saturation
based theorem proving technique closely related to (hyper)resolution [7]; it relies
on a forward proof-search strategy and can be applied to cut-free calculi enjoy-
ing the subformula property. Given a goal, a set of instances of the rules of the
calculus at hand is selected; such specialized rules are repeatedly applied in the
forward direction, starting from the axioms (i.e., the rules without premises).
Proof-search terminates if either the goal is obtained or the database of proved
facts saturates (no new fact can be added). As pointed out by Vladimir Lifs-
chitz [20], “the role of the inverse method in the Soviet work on proof procedures
for predicate logic can be compared to the role of resolution method in theo-
rem proving projects in the West”. But, he regrets, “for a number of reasons,
this work has not been duly appreciated outside a small circle of Maslov’s asso-
ciates”. The method has been popularized by Degtyarev and Voronkov [7], who
provide the general recipe to design forward calculi, with applications to Clas-
sical Predicate Logic and some non-classical logics. Further extensions can be
found in [2,8,19]. A significant investigation is presented in [4,5], where focused
calculi and polarization of formulas are exploited to reduce the search space in
forward proof-search for Intuitionistic Logic. These techniques are at the heart
of the design of the prover Imogen [22].

In all the mentioned papers, the inverse method has been exploited to prove
the validity of a goal in a specific logic. In [15,16] we follow the dual approach,
namely: we design a forward calculus to derive refutations asserting the un-
provability of a goal formula in Intuitionistic Propositional Logic (IPL). Our
motivation is twofold. Firstly, we aim to define a refutation calculus which con-
structively ascertains the unprovability of a formula by providing a concise coun-
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termodel for it3. The second motivation is to clarify the role of the saturated
database obtained when the search for a refutation (refutation-search) fails. In
the case of the usual forward calculi for Intuitionistic provability, if proof-search
fails, a saturated database is generated which “may be considered a kind of coun-
termodel for the goal sequent” [22]. However, as far as we know, no method has
been proposed to effectively extract it. Actually, the main problem comes from
the high level of non-determinism involved in the construction of countermodels.
Here, assuming the dual approach, the saturated database generated by a failed
refutation-search can be considered as “a kind of proof of the goal”; we give
evidence of this by showing how to extract from such a database a derivation
witnessing the Intuitionistic validity of the goal.

The formula to be proved (the goal formula) determines the instances of the
rules of the forward calculus. The calculus we define is parametrized by the goal
formula G (where the goal is to prove that G is not valid in IPL). We call the
related calculus FRJ(G) (Forward Refutation calculus for IPL parametrized by
G); formulas occurring in the sequents of FRJ(G) are suitable subformulas of
G. In [16] we define a forward refutation-search procedure to build an FRJ(G)-
refutation of a goal formula G, namely an FRJ(G)-refutation of a sequent of the
form Γ ; G, meaning that G is not derivable in IPL from assumptions Γ . This
is a standard saturation procedure where the derivable sequents of FRJ(G) are
collected step-by-step in a database DG. To avoid redundancies and maintain DG
compact, we introduce a subsumption relation between sequents; for instance, if
at some step σ is proved and σ is subsumed by a sequent already in DG, then σ
is discarded and not added to DG (forward subsumption).

If the formula G is valid in IPL, refutation-search for G fails (indeed, no
FRJ(G)-refutation of G can be built) and we eventually get a saturated database
DG for G. This means that for every sequent σ derivable in FRJ(G), DG contains
a sequent σ′ which subsumes σ; thus DG is in some sense representative of all
the sequents derivable in FRJ(G). We can exploit DG to build a derivation of
G in a sequent calculus for IPL. To this aim, we introduce the sequent calculus
Gbu(G), a variant of the well-known sequent calculus G3i [25]. From a Gbu(G)-
derivation of G, we can immediately obtain a G3i-derivation of G. Differently
from G3i, backward proof-search in Gbu(G) always terminates; indeed, we can
define a weight function on sequents such that, after the backward application
of a rule of Gbu(G) to a sequent, the weight of the sequents decreases. Nonethe-
less, backward-proof search in Gbu(G) might present several backtrack points,
in correspondence of the applications of rules for left implication and right dis-
junction. The crucial point is that we can remove backtracking by exploiting the
database DG: in presence of multiple non-deterministic choices, we query DG as
an oracle to select the right way so to successfully continue proof-search. Thus,
we can consider DG as a proof-certificate of the validity of G, in the sense that
it contains enough information to reconstruct a derivation of G in the sequent
calculus G3i. In general DG is not unique; however, if we eliminate all the re-

3 Note that our use of the term refutation is different from the one in the context of
resolution, where it is about establishing that False is entailed in all models.
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dundancies from DG (if σ belongs to DG, then remove from DG all the sequents
subsumed by σ), then we get a saturated database D∗G which is the minimum
among the saturated databases of G, hence we can consider D∗G as the canonical
proof-certificate of the validity of G. To get the minimum saturated database,
we have to enhance the refutation-search procedure by implementing backward
subsumption. We have experimented that the backtracking-free proof-search in
Gbu(G) driven by a saturated database can be more efficient than the usual
backward proof-search procedure in G3i.

The rules of FRJ(G) are inspired by Kripke semantics. We show that, from
a refutation of G, we can extract a countermodel for G, namely a Kripke model
such that, at its root, the formula G is not forced, witnessing that G is not valid
in IPL [3]. Actually, there is a close correspondence between a refutation and
the related Kripke model. Thus, our forward refutation-search procedure can be
understood as a top-down method to build a countermodel for G, starting from
the final worlds down to the root. This original approach is dual to the stan-
dard one, where countermodels are built bottom-up, mimicking the backward
application of rules (see, e.g., [1,6,9,10,11,17,18,23,24]). This different viewpoint
has a significant impact on the outcome. Indeed, the countermodels generated
by a backward procedure are always trees, which might contain some redundan-
cies. Instead, forward methods re-use sequents and do not replicate them; thus
the generated models are DAGs (Direct Acyclic Graphs) not containing dupli-
cations and are in general very concise. As a significant example, let us consider
the one-variable formulas Ni of the Nishimura family [3], which are not valid in
IPL:

N1 = p N2n+3 = N2n+1 ∨ N2n+2

N2 = ¬p N2n+4 = N2n+3 ⊃ N2n+1 n ≥ 0

For formulas Nj our approach generates the standard “tower-like” minimum
countermodel [3]; e.g. in Fig. 1 we display the countermodel for N17.

We also investigate the relationship between a non-valid formula G and the
height of the countermodel extracted from an FRJ(G)-refutation of G. We show
that, given a countermodel for G of height h, we can build an FRJ(G)-refutation
of G having height at most h. By this fact, we conclude that, if G is not valid
in IPL, we can build an FRJ(G)-refutation of G such that the height h of
the extracted countermodel is minimal (namely, there exists no countermodel
for G having height less than h). Actually, we can tweak the refutation-search
procedure so that, if G is not valid, it yields an FRJ(G)-refutation of G such
that the extracted countermodel has minimal height. However, in general the
obtained models are not minimal in the number of worlds, and the definition
of a calculus devoted to the construction of minimal models (in the number
of worlds) seems to be challenging. A different approach to generate minimal
models, exploiting Answer Set Programming, is presented in [14].

To evaluate the potential of our approach we have implemented frj, a
Java prototype of our refutation-search procedure based on the JTabWb frame-
work [12]4. frj implements term-indexing, forward and backward subsumption

4 frj is available at http://github.com/ferram/jtabwb_provers/.

3

http://github.com/ferram/jtabwb_provers/


Fig. 1. Countermodel for N17

and it allows the user to generate the rendering of proofs and of the extracted
countermodels. We point out that the minimal countermodel in Fig. 1 has been
generated by frj; the other provers we have tested fail to get such a concise
countermodel.

As a future work we plan to investigate the applicability of our method to
other logics, in particular to modal logics (see [13] for a preliminary work) and
intermediate logics such as Gödel-Dummett logic characterized by linear Kripke
models.
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19. L. Kovács, A. Mantsivoda, and A. Voronkov. The inverse method for many-valued
logics. In F. Castro-Espinoza et al., editor, MICAI 2013, volume 8265 of LNCS,
pages 12–23. Springer, 2013.

20. V. Lifschitz. What is the inverse method? J. Automat. Reason., 5(1):1–23, 1989.
21. S. Ju. Maslov. An invertible sequential version of the constructive predicate cal-
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