
Equational Logic and Set-Theoretic Models for
Multi-Languages?

Samuele Buro1, Roy L. Crole2, and Isabella Mastroeni1

1 Department of Computer Science, University of Verona
Strada le Grazie 15, 37134 Verona, Italy

{samuele.buro,isabella.mastroeni}@univr.it
2 Department of Computer Science, University of Leicester,

University Road, Leicester LE1 7RH, United Kingdom
rlc3@le.ac.uk

Abstract. Interoperability is the capability of two languages to interact
within a single system: HTML, CSS, and JavaScript can work together to
render webpages. Some object oriented languages have interoperability via
a virtual machine host (.NET CLI compliant languages in the Common
Language Runtime). A high-level language can be interoperable with a
low-level one (Apple’s Swift and Objective-C). While there has been some
research in the foundations of interoperability there is little supporting
theory.
This paper is based upon our existing work on combining languages to
produce so-called multi-languages. Here, we define an equational logic for
deducing valid equations, from axioms that postulate properties of the
multi-language. We define set-theoretic multi-language algebras as models,
and provide algebraic constructions such as congruences and quotient
algebras. Such models, and the constructions, provide the ingredients for
the main deliverable, soundness and completeness for the equational logic.
We illustrate the basic ideas with a running example.

Keywords: Multi-languages · Equational Logic · Set-Algebras.

1 Introduction

Multi-languages arise by combining existing languages [23, 1, 28, 10, 15, 22, 21, 19].
For instance, the multi-language in [19] allows programmers to interchange
ML expressions and Scheme expressions. Benefits are code reuse and software
interoperability. Unfortunately, they come at the price of a lack of clarity of
(formal) properties of the new multi-language, mainly semantic specifications.
Developing such properties is a key focus of this paper.

But what exactly are multi-languages? What is a good abstract definition of
a multi-language? How should we be thinking conceptually? The problem was
originally addressed in [19]. The authors introduced boundary functions, new
? Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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constructs able to regulate the flow of values between the underlying languages.
Buro, Crole, and Mastroeni [8, 6] extended their approach to the broader class of
order-sorted signatures : rather than combining two fixed languages, they combine
two such signatures Sg1 and Sg2. The result is a notion of multi-language term.
Such a term contains symbols from both signatures and also boundary function
symbols to formally specify the interchange of multi-language terms.

Here we focus on equational algebras [29, 5, 11, 17, 12] and we provide
and study suitable algebras for modelling multi-language terms, which we call
multi-language algebras. Inspired by the classic results of [5], we develop in detail
a number of analogues of standard concepts such as algebra congruences and
quotients. These are put to use in a completeness proof for a system of equational
reasoning in the multi-language setting, which we now describe.

Research on equational reasoning and logic has been prolific (see [30, 18]).
There are many sound and complete derivation systems if Sg is a many or
order -sorted signature: see [5], [11], and [12]. So another challenge lies in devising
deduction systems that allow for sound reasoning between multi-language terms.
We address this challenge by defining a multi-language equational logic. In more
detail we give a deduction system for equations between multi-language terms.
The main result is that our new system is sound and complete for deductions
starting from a set of axiom equations, relative to the multi-language algebras.

Contributions and Paper Structure: In Section 2 we review the theory of
order-sorted equational logic [12] and the multi-language framework of [6]. We
adopt the Birkhoff approach to proving soundness and completeness, that is, we
formulate multi-language algebras which are free, or quotients of other algebras.
In Section 3 we describe the free multi-language algebra construction that yields
the notion of multi-language terms with variables. Then we extend constructions
of universal algebra to the multi-language context. In particular, we define the
notion of multi-language quotient algebra. In Section 4, we give definitions of multi-
language equation and equation satisfaction, and we sketch a proof of soundness
and completeness. We need to assume familiarity with ordered structures for
reasons of space (we redirect the reader to [12] for an introduction).

Running Example: Throughout the paper we develop a small illustrative
application example that lays the foundations for combining a core imperative
language with a functional one (the simply-typed lambda-calculus). In particular,
we show how we can provide a formal semantics to multi-language terms accom-
panied by an equational theory. For instance, we formally define the semantics
of the multi-language term x = (λy:int . z * y) 5 obtained by blending a
lambda-term into an imperative program.

2 Background

2.1 Order-Sorted Algebras

The basic notions of order-sorted algebras [12] are signature and algebra. We
assume readers are familiar with these ideas, but include definitions to set up
notation.
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Definition 1 (Order-Sorted Signature). An order-sorted signature is a
triple Sg , (S,≤, Σ), where (S,≤) is a poset of sorts and Σ is an (S∗ × S)-
sorted set Σ , {Σw,s | (w, s) ∈ S∗ × S } of operators. If σ ∈ Σw,s we call σ
an operator (symbol) and (w, s) the rank of σ. If w = ε, we call the operator a
constant, and otherwise a function symbol. Given Σ, we write f : w → s, for
function symbols, and k : s for constants, as shorthands for the set memberships.
These data satisfy:

(1os) each constant has a unique rank (ε, s): we abbreviate the rank to s and say
sort as a synonym; and

(2os) function symbols satisfy the following monotonicity condition: if we have
f : w1 → s1 and f : w2 → s2 with w1 ≤ w2, then s1 ≤ s2.

Definition 2 (Order-Sorted Algebra). An order-sorted Sg-algebra A for
an order-sorted signature Sg , (S,≤, Σ) is specified by an S-sorted set A ,
( JsKA , As | s ∈ S ) of carrier sets, together with interpretation functions
Jσ : w → sKA : JwKA → JsKA for each operator σ : w → s, where w , s1 . . . sn
and JwKA , Js1KA×· · ·× JsnKA. In the case that w = ε, so that σ is a constant k,
we define JεKA , {•}; then, instead of Jk : sKA : {•} → JsKA, we write Jk : sKA ∈
JsKA. These data satisfy:

(1oa) s ≤ s′ implies JsKA ⊆ Js′KA; and
(2oa) if f : w1 → s1 and f : w2 → s2 with w1 ≤ w2, then Jf : w1 → s1KA(a) =

Jf : w2 → s2KA(a) for all a ∈ Jw1KA.

From now on, we drop the algebra subscript and the ranks of operator symbols
within the semantic brackets whenever they are clear from the context.

Definition 3 (Order-Sorted Homomorphism). Let Sg , (S,≤, Σ) be a sig-
nature and let A and B be Sg-algebras. An order-sorted Sg-homomorphism
h : A→ B is an S-sorted function h : A→ B such that

(1oh) hs(JkKA) = JkKB for each k : s;
(2oh) hs ◦ Jf : w → sKA = Jf : w → sKB ◦ hw for each f : w → s; and
(3oh) s ≤ s′ implies hs(a) = hs′(a) for each a ∈ JsKA.

The class of all the order-sorted Sg-algebras and the class of all the order-sorted
Sg-homomorphisms form a category denoted by OSAlgSg .

Among the algebras in OSAlgSg , the term Sg-algebra TSg is freely generated
from Sg in the usual way. The carrier set JsKTSg

consists of the (ground) terms
t of sort s. Function symbols f are modelled as interpretation functions which
build new terms from old ones by “applying f ”; for instance, JfKTSg (t) , f(t).
Note that any term t can appear in several carrier sets of the term algebra:
terms are polymorphic. A key property of signatures, related to polymorphism, is
regularity (see [12] for the formal definition). Regularity ensures each term t
has a unique least sort st.
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Proposition 1. If Sg is a regular signature, the term Sg-algebra TSg is an
initial object in OSAlgSg , that is, there is a unique homomorphism h : TSg → A
for any Sg-algebra A. The components (TSg)s are defined by (mutual, struc-
tural) induction, hence hs can be defined by structural recursion. Since we are
seeking a homomorphism, we must have hs(f(t1, . . . , tn)) = JfKA(hw(t1, . . . , tn))
and hs(k) = JsKA. But this is exactly a structural recursion, and the unique
one yielding a homomorphism. As such, it makes sense to define the (unique)
interpretation of a term t, by way of its least sort, as

JtKA , hst(t)

Since our paper focuses in entirety on how the syntax of languages is combined,
term algebras such as this one, and others, will play a major role.

2.2 Multi-Language Signatures and Algebras

A key role of a multi-language specification is to specify which terms of one
language can be deployed in the other. As such, showing exactly how this is
done is a key milestone in the paper. Such a choice amounts, formally, to a
mapping between terms of one language and terms of the other, and it is usually
defined between syntactic categories (i.e., collection of terms) rather than single
terms [22, 19, 21]. Therefore, in the algebraic context, it is tantamount to a
relation specifying pairs of sorts with one sort in each language. We call such
specifications interoperability relations. A multi-language signature is specified
by two order sorted signatures together with an interoperability relation. The
signature is used to determine the terms of the multi-language. Note that a
multi-language signature explicitly provides users with the original two language
specifications; but it is also used to define a “multi-language”, that is, a new
language of terms which is a combination of the two originals. Please note our
notation: If S1 and S2 are two sets of sorts we denote by S1 +S2 their coproduct.
If s ∈ Si with i , 1, 2, we write si for (s, i) ∈ S1 × {1} ∪ S2 × {2}.

Definition 4 (Multi-Language Signature). A multi-language signature
SG , (Sg1,Sg2,n) is defined by a pair of signatures Sg1 , (S1,≤1, Σ1) and
Sg2 , (S2,≤2, Σ2) and a binary interoperability relation n over S1+S2 such
that sins′j with i, j ∈ {1, 2} and i 6= j (thus, due to our notation, in relationships
si n s′j we have s ∈ Si and s′ ∈ Sj).

The idea is that if si n s′j and t is a term of sort s in Sg i, then t can be used
“as a term with with sort s′ in the language generated by Sgj”. A multi-language
algebra provides meaning to the underlying languages Sg1 and Sg2 and it specifies
exactly how terms of sort s may be converted to terms of sort s′ whenever sin s′j .
These specifications are called boundary functions [19].

Definition 5 (Multi-Language Algebra). Let SG , (Sg1,Sg2,n) be a multi-
language signature. An SG-algebra A is given by
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– a pair of order-sorted algebras A1 and A2 over Sg1 and Sg2; and
– a boundary function Jsins′jKA : JsKAi

→ Js′KAj
for each constraint sins′j .

Example 1. Let Sg(Imp) and Sg(λ�) be the signatures of a small imperative
language and the simply-typed lambda-calculus. We may want to define the
interoperability relation between these two languages in order to use λ�-terms as
expressions in Imp and vice versa. As a result, we can achieve multi-language pro-
grams such as x = (λy:int . z * y) 5 (the multi-language terms are formally
introduced in Definition 8). Note that, despite the simplicity, the evaluation of
such a term requires a careful translation of meanings between the underlying
languages: In order to obtain the value to assign to x, we first need to compute
the λ� application, which in turn needs the interpretation of 5 as a λ�-term.
Such conversions are specified by the boundary functions.

Homomorphisms between multi-language algebras are ordinary algebraic
homomorphisms that also commute with the boundary functions.

Definition 6 (Multi-Language Homomorphism). Let A and B be two
multi-language SG , (Sg1,Sg2,n)-algebras. A SG-homomorphism h : A→ B
is given by a pair of order-sorted homomorphisms h1 : A1 → B1 and h2 : A2 →
B2 such that they commute with boundary functions, namely, if si n s′j, then
(hj)s′ ◦ Jsi n s′jKA = Jsi n s′jKB ◦ (hi)s.

We can define an S-sorted set A by setting Asi , JsKAi ; and given any such
SG-homomorphism h, there is an S-sorted homomorphism h : A→ B given by
hsi , (hi)s : Asi → Bsi (which commutes with boundary functions).

Lemma 1. The mapping h 7→ h is well-defined, a bijection, and functorial in
that h ◦ h′ = h ◦ h′. This is immediate from the definitions. Note that we will
usually write h for h, thus identifying the two concepts, and regard h : A → B
and h : A→ B as inter-changeable throughout the paper.

A multi-language signature gives rise to an order-sorted one by adding conver-
sion operators ↪→si,s′j

for each interoperability relation sin s′j : each conversion
operator maps a term of type si (informally, a term built from Sg i) into a term
of type s′j (informally, a term built from Sgj).

Definition 7 (Associated Signature). Let SG , (Sg1,Sg2,n) be a multi-
language signature. The associated signature SG , (S,≤, ΣSG) of SG is the
order-sorted signature defined as follows:

– the poset (S,≤) of sorts is given by S , S1 + S2 and by defining si ≤ rj if
and only if i = j and s ≤i r; and

– the order-sorted set of operators ΣSG is defined by the clauses
• if f : w → s is a function symbol in Σi for some i , 1, 2, then fi : wi → si
is a function symbol in ΣSG ;
• if k : s is a constant in Σi for some i , 1, 2, then ki : si is in ΣSG ; and
• a conversion operator ↪→si,s′j

: si → s′j in ΣSG for each si n s′j.
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A multi-language signature is defined regular if and only if the underlying
signatures are regular. An immediate consequence is that if SG is regular, then
so too is SG . In the multi-language context, the term SG-algebra TSG defines
the terms resulting from the combination of the underlying languages:

Definition 8 (Term SG-Algebra TSG). Let SG , (Sg1,Sg2,n) be a multi-
language signature. The term SG-algebra TSG is defined as follows:

– the order-sorted Sg i-algebra (TSG)i is specified by:
• JsK(TSG)i , JsiKTSG

for each s ∈ Si;
• JkK(TSG)i , JkiKTSG

for each k : s in Σi; and
• Jf : w → sK(TSG)i , Jfi : wi → siKTSG

for each f : w → s in Σi;
– boundary functions are defined by Jsins′jKTSG

, J↪→si,s′j
KTSG

for each sins′j .

A multi-language ground term t is any element of (TSG)si , JsK(TSG)i ,
JsiKTSG

for some si; TSG is of course the “standard” term order-sorted algebra
over order-sorted SG, and we will say that t has sort si.

It follows that each multi-language ground term t has a unique least sort st when
the signature is regular, being the least sort of t over the associated signature
(and of course t may inhabit many other carrier sets).

The category whose objects are multi-language SG-algebras and morphisms
are multi-language SG-homomorphisms is denoted byMLAlgSG . Moreover, as
in the order-sorted case, the multi-language term algebra TSG over a regular
multi-language signature SG is initial inMLAlgSG [6]. Therefore, given a multi-
language SG-algebra A, there is a unique (semantic) function h : TSG → A
defined by recursion over the syntax of terms. Analogous to the order-sorted case,
the multi-language semantics of a ground term t is defined by JtKA , hst(t).

Example 2. Multi-language ground terms of our running example are exactly
those that can be obtained by performing cross-language substitutions of an
Imp-expression for a λ�-term and vice versa. The initiality of the term algebra
ensures a unique meaning for each of these multi-language terms. For instance,
if we compute the semantics of x = (λy:int . z * y) 5, we obtain exactly the
expected function ρ 7→ ρ[x← [ ρ(z) ∗ 5], where ρ is the environment.

3 Universal Constructions in a Multi-Language Context

3.1 Multi-Language Free Algebra

To formally define the terms of our multi-languages we shall make use of the
concept of free algebras. First we review the abstract concept, and then we show
that “terms built using variables” are a concrete instance of a free algebra. The
universal property of a free algebra provides a convenient tool for defining and
working with term substitutions.

A free algebra is the loosest algebra generated from an S-sorted X (whose
elements are understood as variables). As usual [27, 25], the free algebra yields



Equational Logic and Set-Theoretic Models for Multi-Languages 7

terms with variables (as opposed to ground terms in the term algebra). First
recall the notation h in Definition 6 and Lemma 1; after the next definition we
always write h for any h.

Definition 9 (Free SG-Algebra F(X) over X). Let X be an S-sorted set of
variables. A free SG-algebra F(X) over X is an SG-algebra F(X) together with
an S-sorted function ηX : X → F (X) such that the following universal property
is satisfied:

– For each SG-algebra A, if a : X → A is an S-sorted function, then there
exists a unique multi-language SG-homomorphism a∗ : F(X) → A making
the following diagram commute:

X F (X) F(X)

A A

ηX

a a∗ a∗
(1)

The previous definition does not guarantee the existence of such a free SG-
algebra over X. However, if it does exist it is unique up to a unique isomorphism.
We now provide a two-step syntactic construction, establishing existence. See,
for instance, [9, Definition 1.3.2], [13, p. 72], and [12, p. 14] for a free algebra
construction in the one-sorted, many-sorted, and order-sorted worlds. We now
define a specific instance of F(X), denoted by T(X), and constructed out of
syntax.

Definition 10 (Syntactic Free SG-Algebra T(X) over X).

1. Let SG be a multi-language signature and X an S-sorted family of variables
(Xsi | si ∈ S ), each component also disjoint from the symbols in SG. By
setting Xi , ( (Xi)s , Xsi | s ∈ Si ) we obtain an Si-sorted set of variables for
i = 1, 2. The multi-language signature SG(X) , (Sg1(X1),Sg2(X2),n)
over X has the same interoperability relation n as SG, along with order
sorted signatures Sg i(Xi) , (Si,≤i, Σi(Xi)). These are defined with the same
poset (Si,≤i) of sorts of Sg i, along with (S∗i × Si)-sorted sets Σi(Xi) of
operator symbols specified by
– if operator σ : w → s is in Σi, then σ : w → s is also in Σi(Xi); and
– if x ∈ (Xi)s, then x : s is in Σi(Xi).

Informally, Σi(Xi) consists of all Σi operators and, for all s ∈ Si, all variables
of sort si.

2. The free SG-algebra T(X) over X is defined by making direct use of the term
SG(X)-algebra TSG(X) (use an instance of Definition 8). The order-sorted
Sg i-algebras T(X)i, for i , 1, 2, are defined by
– JsKT(X)i , JsK(TSG(X))i for each s ∈ Si;
– JkKT(X)i , JkK(TSG(X))i for each k : s in Σi; and
– JfKT(X)i , JfK(TSG(X))i for each f : w → s in Σi.
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And Jsi n s′jKT(X) : JsKT(X)i → Js′KT(X)j is defined by

Jsi n s′jKTSG(X)
: JsK(TSG(X))i → Js′K(TSG(X))j

Given X and SG, a multi-language term t is any element of the set T (X)si ,
JsKT(X)i , JsiKT

SG(X)
for some si; T

SG(X)
is of course the “standard” term

order-sorted algebra over order-sorted SG(X), and we will say that t has sort
si.

Example 3. Terms in the multi-language free algebra can be thought as ordinary
multi-language terms with “holes”, where a hole is given by an algebraic variable.
For instance, x = (λy:int . z * y) v is not ground since any Imp-expression
can be plugged into v. Terms with free algebraic variables are the basis for
axiomatizing signatures by equations, leading to fully-fledged algebraic theories.

Theorem 1. Let SG be a regular multi-language signature. Then, the SG-algebra
T(X) is free over X inMLAlgSG .

3.2 Multi-Language Quotient Algebra

The aim of this section is to introduce and extend well-known constructions of
universal algebra to multi-languages. Apart from this being interesting in its own
right, quotient algebras are central to our completeness proof. Indeed, we follow
the Birkhoff’s approach [5] and we establish the mathematical machinery needed
to prove the completeness theorem in the classical way. We define the notions
of congruence and quotient algebra. A multi-language signature SG is locally
filtered (resp., coherent) if its associated signature SG is locally filtered (resp.,
coherent). We shall sometimes need these properties for results to hold: and we
will require coherence for a well-defined notion of equation later in the paper.
The reader may want to consult [12] for details.

A congruence (relation) is an equivalence relation on the carrier sets of a
given algebra which is compatible with its structure.

Definition 11 (Congruence). Let A be a multi-language SG-algebra. A multi-
language SG-congruence ≡ , (≡si ⊆ JsiKA × JsiKA | si ∈ S ) is an S-sorted
family of equivalence relations such that

(1co) ≡|Si
, (≡s , ≡si | s ∈ Si ) is an Sg i-congruence [12] on Ai for i , 1, 2;

and
(2co) sins′j and a≡si a′ implies Jsins′jKA(a)≡s′j Jsins′jKA(a′) for each a,a′∈JsiKA.

The next definition lifts the notion of quotient algebra to multi-languages.
Intuitively, a quotient algebra is the outcome of the partitioning of an algebra
through a congruence relation.

Definition 12 (Quotient Algebra). Let A be a multi-language algebra over
a locally filtered multi-language signature SG. Given an SG-congruence ≡, the
quotient of A induced by ≡ is the SG-algebra A/≡ defined as follows:
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(1q) (A/≡)i is the order-sorted quotient Sg i-algebra [12] Ai/(≡|Si
); and

(2q) sn s′ implies Jsi n s′jKA/≡([a]) = [Jsi n s′jKA(a)].

For each quotient algebra A/ ≡ of the multi-language algebra A, the homo-
morphic quotient map q : A → A/ ≡ is defined by q(a) = [a]. Moreover, the
kernel of q is exactly ≡. Following Definition 6 and Lemma 1 we shall also write
q for the order-sorted homomorphism q : A→ A/ ≡.

4 Equational Logic

We now give an equational logic for multi-language terms. We define equations
between multi-language terms and show that our system is sound and complete
for SG-algebras; we also show the existence of an initial algebra. Through con-
version operators ↪→, multi-language equations can usefully axiomatize boundary
functions.

Definition 13 (Multi-Language Equations). Let SG , (Sg1,Sg2,n) be a
coherent multi-language signature, X be an S-sorted set of variables, and T(X)
the free SG-algebra over X.

1. An SG-equation over X is a judgement of the form t =X t′, such that
t ∈ T (X)si and t′ ∈ T (X)s′i for some s, s′ ∈ Si, where s and s′ are connected
via ≤i (equivalently, least sorts st and st′ are connected in Si). Note that
t =X t is an SG-equation. The connectedness of st and st′ , and coherence
which ensures both terms have a super-sort, is necessary to ensure that
forthcoming definitions of equation satisfaction are well-defined.

2. A conditional SG-equation over X is a judgement of the form E ⇒ t =X t′,
such that t =X t′ is an SG-equation and E is a set of SG-equations over X.
An unconditional equation t =X t′ is ∅⇒ t =X t′.

We write AX for any set of conditional and/or unconditional equations.

Example 4. In order to axiomatize the behaviour of boundary functions that
allow the use of Imp-expressions in place of λ�-terms and vice versa, we provide
equations which define the conversion of values. Intuitively, we want to move the
meaning of terms between the languages only when no more computational steps
are possible. Let e be the sort of λ�-terms and exp the sort of Imp-expressions:

↪→e,exp (i) = i = ↪→exp,e (i) ∀i ∈ {. . . , -1, 0, 1, . . .}
↪→e,exp (x) = x = ↪→exp,e (x) ∀x ∈ Var

↪→exp,e (true) = 1

↪→exp,e (false) = 0

The first equation allows the flow of integers between the imperative language and
the simply-typed lambda-calculus. This is possible because both languages have
the notion of integer values, but in more realistic cases, such a conversion should
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take into consideration different machine-integer implementations, overflow, etc. A
variation on theme can be obtained by assuming a lambda-calculus that does not
provide a primitive notion of integer numbers. In that case, the boundary functions
can move Imp-integers to a suitable numeral encoding in the lambda-calculus,
e.g., the Church encoding. The second equation establishes a correspondence
between variable names of the two languages. Such a correspondence enables
an implicit flow of values between Imp- and λ�-environments. For instance, in
Example 2, the free λ�-variable z “becomes” an Imp-variable when we compute
the semantics of the lambda term. Finally, the last two equations define the
conversion of booleans to integers.

The next step is to show how new equations can be inductively generated
(derived) from a set of axioms. The rules require the concept of substitution,
namely a syntactic transformation that replaces variables with terms. Let X
and Y be two sets of variables. A variable substitution is an S-sorted function
θ : X → T (Y ): for each variable x ∈ Xsi we supply a term θsi(x), of sort si,
involving variables from Y . Then by the freeness of T (X) (that is, freeness of
T(X)), there is a unique substitution homomorphism θ∗ : T (X)→ T (Y ) induced
by θ such that θ∗ ◦ ηX = θ: the idea is that for any t ∈ T (X)si , θ∗ recurses over
t and then finally substitutes θsi(x) for each x occuring in t.

We shall adopt some further notation, used in the rules. If a : X → A
where X is a set of variables, then any x ∈ Xsi has the unique sort si and we
write a(x) , asi(x). Further, for any S-sorted homomorphism h : T (X) → A,
if t ∈ T (X)si then of course hsi(t) ∈ Asi . But, since there is a least sort
st, also t ∈ T (X)(st)i ⊆ T (X)si , and since h is a homomorphism we have
h(st)i(t) = hsi(t) ∈ A(st)i ⊆ Asi . From now on we write h(t) , h(st)i(t) (that is,
h(t) = hsi(t) ∈ Asi) to reduce subscript notation.

Definition 14 (Equations Derived from Axioms). Given a set AX of ax-
ioms, the inductive rules of equational logic allow the derivation of new uncondi-
tional equations. Our rules in Figure 1 are a modification of those in [12], and
they make use of the following notation: t, t′, and t′′ are multi-language terms in
T (X), and θ, θ′ : X → T (Y ) are two variable substitutions from X to T (Y ) over
a set Y of variables. Thus one also has θ∗, θ′∗ : T (X)→ T (Y ) by freeness.

If t =X t′ is generated from AX then we write AX ` t =X t′. The rule
(cong) intuitively says that replacing equals for equals yields new equalities,
that is, term formation is a congruence. Thus we may build new equations using
the “usual/informal” rules of equational reasoning. One easily proves admissible
rule (sub), namely that if t =X t′ then θ∗(t) =Y θ∗(t′); but note that the proof
requires the following fact. The composition of two substitution homomorphisms
θ∗1 : T (X)→ T (Y ) and θ∗2 : T (Y )→ T (Z) is still a substitution homomorphism,
since it is induced by θ∗2 ◦ θ1. To see that θ∗2 ◦ θ∗1 = (θ∗2 ◦ θ1)∗ note that

(θ∗2 ◦ θ1)∗ ◦ ηX = θ∗2 ◦ θ1 = (θ∗2 ◦ θ∗1) ◦ ηX
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−
(ref)

t =X t

t =X t′
(sym)

t′ =X t

t =X t′ t′ =X t′′
(trans)

t =X t′′

∀x ∈
⋃

si∈S Xsi . θ(x) =Y θ′(x)
(cong)

θ∗(t) =Y θ′∗(t)

∀u =X u′ ∈ E . θ∗(u) =Y θ∗(u′)
[E ⇒ t =X t′ ∈ AX ] (axsub)

θ∗(t) =Y θ∗(t′)

Fig. 1. Inference Rules for Inductively Defining Equational Logic.

4.1 Soundness, Completeness, and Freeness Results

Definition 15 (Satisfaction). Let A be a multi-language algebra over a regular
multi-language signature SG. We refer to SG-equations as equations. A satisfies
E ⇒ t =X t′, denoted A � E ⇒ t =X t′, if for each assignment function
a : X → A such that a∗ : T (X)→ A equalizes each equation in E , a also equalizes
t and t′, i.e., a∗(t) = a∗(t′). Also, A � t =X t′ just in case each a : X → A
equalizes t and t′. Let AX be a set of conditional and/or unconditional equations.
If an SG-algebra A satisfies each equation in AX we write A � AX . Think of
AX as a set of axioms satisfied (modelled) by the SG-algebra A.

One may generalize the above fact about substitution homomorphisms to
arbitrary assignment functions and SG-homomorphisms. We do so in the next
lemma, which is used in the proof of soundeness and completeness.

Lemma 2. Let A and B be two SG-algebras over a regular multi-language
signature SG , (Sg1,Sg2,n). If a : X → A is an assignment function and
h : A → B is an SG-homomorphism, then (h ◦ a)∗ = h ◦ a∗ : F(X) → B (or
equivalently (h ◦ a)∗ = h ◦ a∗ : F (X)→ B).

Theorem 2 (Soundness and Completeness). Let SG be a coherent signature
and AX a set of axioms and t =X t′ any equation. Then AX ` t =X t′, just in
case, for every SG-algebra A we have A � AX implies A � t =X t′.

Soundness is straightforward to prove. In order to prove completeness, we
build a quotient algebra (see [5]) TAX (X) on T(X) such that given terms
t and t′ in the same equivalence class, the equation t =X t′ can be derived
from AX . The S-sorted binary relation ∼AX (X) is defined on the carrier sets
of T(X) as t ∼AX (X),s t

′ if AX ` t =X t′ where t, t′ ∈ T (X)s. Trivially ∼AX (X)

is an equivalence relation and a congruence on T(X). Hence we can build
the quotient algebra TAX (X) , T(X)/∼AX (X). The elements of TAX (X) are
exactly equivalence classes of terms, provably equal from AX . Indeed, it is easy to
prove that [t] = [t′] if and only if AX ` t =X t′. Moreover we have the following
proposition
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Proposition 2. TAX (X) � t =X t′ implies AX ` t =X t′.

The proof of completeness is then immediate if we can show that TAX (X) � AX ,
for then TAX (X) � t =X t′ follows by the assumption in the Theorem.

The class of the multi-language SG-algebras satisfying a set AX of axioms
is denoted byMLModAX , namely the class of models satisfying AX . If we take
all the SG-homomorphisms between them, we have that MLModAX is a full
subcategory ofMLAlgSG . In fact TAX (X) is free inMLModAX , where the freeness
is defined along the lines of Definition 9.

Theorem 3. Let SG be a coherent signature and AX a set of axioms. Then,
the quotient algebra TAX (X) is the free algebra over X inMLModAX .

Since initiality is a special case of the freeness property and T(∅) = T, then
TAX = TAX (∅) is an initial object inMLAlgAX .

5 Concluding Remarks

Others have investigated issues that arise when combining languages: [26, 4, 15,
31, 22] explore the combination of typed and untyped languages (Lua and ML [26],
Java and PLT Scheme [15], or Assembly and a typed functional language [22]),
focusing on typing issues and values exchanging techniques. Several works have
focused on multi-language implementations: [14] provides a type system for a
fragment of Microsoft Intermediate Language (IL) used by the .NET framework,
that allows programmers to write components in several languages (C#, Visual
Basic, VBScript, . . . ) which are then translated to IL. [16] proposes a virtual
machine that can execute the composition of dynamically typed programming
languages (Ruby and JavaScript) and a statically typed one (C). [3, 2] describes
a multi-language runtime mechanism achieved by combining single-language
interpreters of (different versions of) Python and Prolog. Finally, [7] investigates
the mathematical link between signatures and grammars.

There is considerable work to explore in future. One might study language
combinations where the sort (type) and term structure is much richer. Here we
have looked only at equational logic, so the whole area of operational semantics
for multi-languages should be explored. And of course as well as the syntactic
languages we need also to explore suitable semantics (given as algebras in this
paper). Since equational theories give rise to free algebra monads [24], further
studies should investigate the possibility of extending/generalizing the results in
this paper to a more abstract approach based on the notion of monad [20]. Finally,
in recent work we have produced a sound and complete categorical semantics for
multi-languages [8].

As a final remark, we have further results about the categories of set-theoretic
models mentioned within our paper, which are not presented here due to space
limitations. However they would hopefully appear in a journal version.
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