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Abstract. A plant disease diagnosis method based on processing images that 
display a sick plant part, is tested here on four pear diseases. In the original 
classification method employed, an extensible feature ranking method had been 
adopted. Specifically, a discrete grade was assigned to each invariant feature 
depending on whether its value was found within predefined strict or loose 
limits. The potential classes that may correspond to the test sample, were sorted   
according to the sum of the grades of the features. In the current implementation, 
a Gaussian behavior is assumed and an analog feature grade is assigned 
depending on the distance of the extracted feature value from the mean. 
Modeling feature values with Gaussian distribution would eliminate the need of 
heuristic selection of the strict/loose feature limits but would make more difficult 
the extension of the supported set of diseases by the end user. However, the 
experimental results show that the feature values do not follow a Gaussian 
distribution since comparable classification precision results are obtained only 
when a normalization scheme is applied to the input image.  

Keywords: plant disease diagnosis; Gaussian distribution; normalization; image 
processing; smart phone application. 

1   Introduction 

Plant monitoring is important in precision agriculture and similar Internet of Things 
(IoT) applications [1][2]. Plant pathogen diagnostics are reviewed in [3]. A review of 
machine vision techniques employed for the inspection of citrus fruits with accuracy 
ranging between 60% and 100% is presented in [4]. Several monitoring techniques for 
specific plants have been recently proposed for garden strawberry diseases [5], rice 
blast [6], Fusarium infections on wheat [7], etc. Image processing in color scale 
different than Red-Green-Blue (RGB) has also been employed for plant disease 
diagnosis. For example, CIE L*a*b color scale is employed in [8] and a neural network 
achieves 91% classification accuracy. The use of hyperspectral data and neural 
networks in plant disease diagnosis is reviewed in [9]. Mobile phone applications for 
the recognition of plant diseases have also been presented in [10] (Purdue Plant Doctor 
implemented for iOS and Android) and [11] for Android.  
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In this paper, an alternative implementation of the smart phone application 
originally presented in [12] and extended in [13] to support several color normalization 
techniques, is used. At the input of this smart phone application, an image is used of 
the plant part displaying the symptoms of a disease as a number of lesion spots. The 
image is segmented to the background (ignored), the normal leaf or fruit, the spots and 
halo around the spots. A number of invariant features concerning the 3 Regions of 
Interest (ROI) are used for the classification. In the previous versions, a small number 
of representative training images were used for each disease to arbitrarily extract strict 
and loose limits for each feature. During the test phase, the extracted new feature value 
was compared to the extracted limits defined for a specific disease and different grade 
was assigned according to whether the new feature value resided within the strict or 
loose limits. The weighted sum of all feature grades was used to sort the potential 
diseases that may have infected the plant. This method will be called henceforth Limit 
Test (LT).  

The alternative classification method tested here, assumes that the values of each 
feature found in images displaying the same disease, follow a Gaussian Distribution 
(GD). During the training phase, the various values of a specific feature are used to 
estimate its mean and variance that are stored in the signature (recognition rules) of a 
specific disease. The grade assigned to each feature depends, in this case, on the 
distance of the current feature value from the mean. Two cases are examined: a) use 
of the original images without normalization and b) use of Linear Dynamic Range 
Expansion (LDRE normalization) for each one of the RGB colors to moderate the 
differences in the light exposure of each photograph. Sensitivity, specificity, precision 
and accuracy metrics are used to evaluate the LT and GD classification methods. The 
pear diseases tested with the methods described above include: Fire Blight, Pear Scab, 
Mycosphaerella and Powdery Mildew. Fifty photographs displaying the upper surface 
of a pear leaf have been tested from each disease.  

The LT, GD classification methods are described in Section 2. The experimental 
results are presented and discussed in Section 3. 

2   Plant Disease Recognition Methods 

The photographs of plant parts captured by the user must display indicative lesions 
(spots) of a specific disease. The plant parts can be leaves or fruits or even roots, 
branches, flowers, etc. The user initially selects the user interface language, the image 
normalization type and the halo zone around the lesion spots with its thickness 
expressed as a number of pixels (see Fig. 1a). Then, the photograph is analyzed by 
potentially configuring the thresholds for the separation of the background, the normal 
plant part and the lesion. In the present application version, separate thresholds are used 
for each color component of the RGB color scale (red, green, blue) as shown in Fig. 1b. 
Additional information can be given by the user to assist the disease classification (e.g., 
weather data of the specific rural region where the plant exists, located by Global 
Positioning System-GPS). The smart phone application was initially developed for 
Windows Phone and then ported to Android platforms. The classification methods are 
described in detail and the reader can refer to [13] for more implementation details 
concerning the application.  
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(a)        (b)     (c)  (d)   

Fig. 1. The basic application pages. Selection of language, normalization type and halo thickness 
(a), photo selection and analysis (b), updated photo using LDRE normalization (c) and list of 
extracted features (d). 

The following invariant features are extracted by the segmented photograph: 
number of lesion spots, their area, the average gray level of each region (normal plant 
part, spots, halo). A separate histogram is generated for each color component (red, 
green, blue) and each ROI (normal, spots, halo). It is assumed that photographs 
displaying the same disease would have similar features like the ones listed above. 
Instead of attempting to match full histograms, their similarity is simply checked by 
comparing where they start, where they end and the where their peak is (the histograms 
usually consist of a single lobe).  

When the input photograph is analyzed two triplets of thresholds are used to 
separate the background and the spots. If all the red, green, blue values of a pixel (pr, 
pg, pb, respectively) are higher than the corresponding background thresholds (BGr, 
BGg, BGb) then, this pixel is mapped to the background since the background in this 
implementation is simply assumed to be much brighter than the plant part. The rest of 
the pixels are initially mapped as normal plant part (e.g., the leaf in the cases examined 
here). The lesion spots can either be darker or brighter (the user indicates this fact to 
the application through the Invert checkbox shown in Fig. 1b), than the normal leaf. If 
all the pr, pg, pb values of a leaf pixel are lower than the corresponding thresholds THr, 
THg, THb and the lesion is darker than the normal leaf color, this pixel is mapped to 
the lesion region. If the pr, pg, pb values of a leaf pixel are higher than the corresponding 
thresholds THr, THg, THb and the lesion is brighter than the normal leaf, again this 
pixel is mapped to the lesion region. Finally, the pixels existing in a zone around the 
spots with thickness defined by the corresponding field shown in Fig. 1a, are mapped 
to the halo region. The user can also select an image normalization method from the 
page shown in Fig. 1a. The supported normalization methods are described in detail in 
[13]. In this paper, the normalization Type 1 (no normalization) and Type 2 (LDRE in 
all RGB colors) are tested since Type 2 seems to achieve a better classification 
accuracy [13] compared with the other supported normalization schemes. 

The matrix BGW1 is defined with the same size as the original image and each one 
of its cells can have four distinct values corresponding to normal leaf, spot, hallo and 
background. Matrix BGW2 can be derived from BGW1 by marking pixels belonging 
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to the same spot with the same identity. BGW2 can be used to estimate all of the 
features used, in a simple way. The maximum spot identity is the number of spots 
while the area covered by the spots is estimated by the number of spot pixels divided 
by the total number of pixels belonging to the plant part. The average gray level of 
each region can be estimated by averaging the gray level of the pixels mapped to this 
region in BGW2. Spots consisting of a very small number of pixels (less than the 
threshold “Min Area” of Fig. 1a) are considered as noise and are not taken into 
consideration.  

During the training phase of the application for a new disease, a small number of 
representative photos with similar sick plant parts can be analyzed even by an end user 
that is not aware of the application architecture and implementation details. The range 
of each feature fi as determined by the training photographs is used to define the strict 
limits [fi_s1..fi_s2]. This narrow range can be heuristically extended in order to define the 
loose limits [fi_l1..fi_l2] of this feature for a specific disease. The application lists all these 
limits to the end user as shown in Fig. 1d, to assist the definition of new diseases or for 
the customization of the existing diseases. All the feature strict and loose limits are 
stored in a disease signature exploited during the test phase. When a new photograph is 
examined in the test phase, all the features fi are extracted and are compared to the 
predefined limits stored in each disease signature. A rank Gr is estimated for each 
potential disease using the following equation: 

𝐺𝑟 =$𝑥!_#𝑤!_#
!

+$𝑥!_$𝑤!_$
!

 (1) 

𝑥!_# = (1, 𝑖𝑓	𝑓!_#% ≤ 𝑓! ≤ 𝑓!_#&
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . (2) 

𝑥!_$ = (1, 𝑖𝑓	𝑓!_$% ≤ 𝑓! ≤ 𝑓!_$&
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . (3) 

The parameters wi_l and wi_s are the individual grades (weights) assigned to feature 
fi if it is found within the loose or strict limits, respectively of a specific disease. The 
diseases are sorted according to the rank Gr that they have received for a specific 
photograph. The three diseases with the highest rank are listed. The simple classification 
method described above is the LT. 

The new classification method (GD) tested in this paper assumes that the feature 
values that are extracted from the photographs of a disease training set, follow a 
Gaussian distribution. The mean feature value fm,i, is estimated by the training samples. 
The rank Gi given for this feature is inversely proportional to the distance of the value 
of this feature from fm,i. If σ2 is the variance for this feature (also estimated by the 
training samples), then the disease rank Gr can be estimated by: 
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"

")" . 
(4) 

The LDRE normalization employed in the experiments performed in the context of 
this paper, stretches the values of each color component in the RGB scale according to 
the following equation: 
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𝑁𝑒𝑤𝐶𝑜𝑙 =
𝑃𝑟𝑒𝑣𝐶𝑜𝑙 −𝑀𝑖𝑛𝐺𝑟𝑎𝑦
𝑀𝑎𝑥𝐺𝑟𝑎𝑦 −𝑀𝑖𝑛𝐺𝑟𝑎𝑦𝑅𝑎𝑛𝑔𝑒 + 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑙 

(5) 

PrevCol is the original color value, MinGray and MaxGray are the minimum and 
maximum pixel values of the gray version of the image (excluding the background), 
Range is the desired final range and StartCol is the desired offset where Range starts. 

  
(a)                                                           (b) 

  
(c)                                                          (d) 

Fig. 2. Indicative photographs from the tested pear diseases: fire blight (a), pear scab (b), 
mycosphaerella leaf spot (c) and powdery mildew (d). 

3   Experimental Results 

Indicative photographs from the pear diseases that have been tested in the framework 
of this paper are shown in Fig. 2. The metrics used to compare the LT and GD 
classification methods are the sensitivity, specificity, precision and accuracy. Let True 
Positives (TP) be the number of photographs that are correctly recognized as positive 
to a disease. True Negatives (TN) are the number of photographs that are correctly 
recognized as negative to a disease. False Positives (FP) are the photographs that are 
falsely recognized as positives and False Negatives (FN), the ones that are falsely 
recognized as negatives to a disease. The aforementioned four metrics are defined as: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	
(7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(8) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	
(9) 

As already mentioned, 50 photographs of each pear disease have been tested. They 
have been retrieved from pear trees in the Achaia prefecture of Greece. About half of 
these photographs have been captured under sunlight and the rest, under a canopy in 
order to test different light exposure. Eight representative (training) photographs have 
been used to extract the disease recognition signatures in either LT (containing the 
loose and strict limits of each feature), or GD (containing the mean and variance of 
each feature). In the first test case, the photographs have not been normalized. The 
experimental results for this case are shown in Tables 1 and 2.  

Table 1.  LT classification method without normalization.  

Disease Sensitivity Specificity Precision Accuracy 
Fire blight 0.89 0.92 0.78 0.91 
Pear scab 0.44 1 1 0.86 
Mycosphaerella leaf spot 1 0.85 0.69 0.89 
Powdery Mildew 0.98 1 1 0.99 
Average 0.83 0.94 0.87 0.91 

Table 2.  GD classification method without normalization.  

Disease Sensitivity Specificity Precision Accuracy 
Fire blight 0 0.75 0 0.57 
Pear scab 0.96 0.67 0.51 0.87 
Mycosphaerella leaf spot 0.88 0.99 0.96 0.96 
Powdery Mildew 0.06 0.97 0.43 0.73 
Average 0.48 0.85 0.47 0.78 
 
As can be seen from the results listed in Tables 1 and 2, GD is much worse than 

LT since 2 of the 4 diseases (fire blight and powdery mildew) cannot be recognized at 
all: their sensitivity is 0 although the specificity achieved is more acceptable. Using 
LT as the classification method, only pear scab has a low sensitivity but all the average 
metrics are better than GD.  

If image normalization with LDRE is used, the results obtained are listed in Tables 
3 and 4. Although the average values of the 4 metrics obtained for GD are still worse 
than the ones achieved by LT, they are much closer with LDRE normalization. In any 
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case, these results show that although Gaussian seems a more natural way to describe 
the distribution of the various feature values, the classification accuracy achieved by 
GD is worse than the one achieved by LT. The positive aspect of this conclusion is 
that the rules in the disease signatures used by LT can be defined in a simpler way by 
an end-user that is not familiar with the implementation details of the developed 
application: it is easier for an end-user to determine the limits in a list of feature values 
than estimate the mean values and variances required by the GD. For this reason, the 
employed LT classification method allows the extension of the supported set of 
diseases by an end user that is not particularly qualified in computer science or 
statistics. 

Table 3.  LT classification method with LDRE normalization.  

Disease Sensitivity Specificity Precision Accuracy 
Fire blight 0.92 0.85 0.67 0.87 
Pear scab 0.56 0.97 0.87 0.87 
Mycosphaerella leaf spot 0.96 1 1 0.99 
Powdery Mildew 1 0.99 0.96 0.99 
Average 0.86 0.95 0.87 0.93 

Table 4.  GD classification method with LDRE normalization.  

Disease Sensitivity Specificity Precision Accuracy 
Fire blight 0.83 0.87 0.67 0.86 
Pear scab 0.58 0.93 0.74 0.84 
Mycosphaerella leaf spot 0.89 1.00 1.00 0.97 
Powdery Mildew 0.88 0.98 0.93 0.96 
Average 0.79 0.95 0.83 0.91 

5   Conclusions 

Two classification methods are tested in the framework of a mobile phone 
application capable of recognizing pear diseases. The experimental results showed that 
the classification method based on the assumption that the invariant image feature 
values follow a Gaussian distribution in images displaying the same disease, does not 
achieve a better accuracy than the heuristic classification method that compares if the 
feature values reside within predefined strict and loose limits. The benefit from the 
classification method based on Gaussian distribution is that it favors the extensibility 
of the supported set of diseases by a non-expert. Image normalization significantly 
improves the accuracy of this classification method. 

Based on the experimental results presented in this paper, future work may focus 
on supporting multiple ranges of feature values for comparison e.g., too strict, strict, 
loose, too loose, etc, in order to improve further the accuracy. 
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