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Abstract. The minimum acceptable word length for the representation of real 
numbers in Fast Fourier Transform (FFT) with undersampled inputs is studied 
in this paper. FFT is a critical module in Orthogonal Frequency Division 
Multiplexing (OFDM) telecommunication infrastructure also used in Internet of 
Things (IoT) environments. The FFT input/output values, the twiddle factors 
and its intermediate results are complex numbers that can be represented either 
in fixed point or floating-point format. A tradeoff has to be made between 
rounding error and complexity. We focus on FFT with sparse inputs such as the 
values generated by many IoT sensors, surveillance cameras, etc. A configurable 
new FFT architecture has been developed to test various FFT sizes, word lengths 
and Quadrature Amplitude Modulations (QAM). The simulation results show 
that 8 bits FFT word length is sufficient in the employed undersampling 
procedure.  
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1   Introduction 

Discrete Fourier Transform (DFT) is used for the representation of periodic 
functions as a sum of sine and cosine functions. Fourier transform is used in several 
scientific domains of mathematics (e.g., for the analysis of differential equations) and 
signal processing (filtering, spectroscopy, etc.) [1]. Fast Fourier Transform (FFT) 
implementations avoid repeating the same operations [2]. One option is to implement 
real numbers in Floating Point format. This format supports wide dynamic range and 
avoids issues like scaling and overflow/underflow. In floating point format standards 
like IEEE-754 [3] a real number is described by one bit for the sign (sgn), a number of 
bits for the significand (c) and a signed exponent (e) for a base b such as 2 or 10. More 
specifically, the real number can be expressed as (-1)sgn×c×be. Floating point format is 
implemented with complicated hardware. In Fixed Point format multiplications and 
divisions by 2 can be implemented with simpler circuits but the outcome of these 
operations may have scaling and overflow/underflow issues. In fixed point format, if 
for example, base b=2 is used, 8 bits are allocated for the whole number and 5 of the 8 
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bits are used for the fraction then 10101101 corresponds to the real number: 
1×22+0×21+1×20+0×2-1+1×2-2+1×2-3+0×2-4+1×25=4+1+1/4+1/8+1/32= 5.40625.  

The representation of the real numbers is very important to computationally 
intensive operations like FFT. Due to the FFT’s high complexity, the real numbers 
have to be implemented preserving a minimum word length, otherwise severe 
rounding errors occur. The limited precision of fixed-point arithmetic for different FFT 
algorithms is studied in [4] where radix-2 Decimation-In-Time (DIT) FFT is examined 
due to its higher accuracy in term of signal-to-quantization-noise ratio. In [5] the 
round-off error of fixed point FFT is investigated while the results of the classic paper 
[6] are reproduced and an error in the results presented in [6] is demonstrated. The 
consequences of the violation of the assumption for almost pure sine waves is also 
investigated in [5]. Radix-4 FFT is used in [7] where input quantization and coefficient 
accuracy is ignored. The error in Radix-2 butterflies is analyzed in [8].  

The analysis for the FFT word length presented here concerns an OFDM transceiver 
that has been recently presented in [9]. In this OFDM transceiver undersampling is 
applied when sparse information is exchanged i.e., some FFT input samples are not 
obtained by the Analog Digital Converter (ADC) on the receiver side and are replaced 
by others that have been previously retrieved. A configurable FFT has been developed 
in synthesizable Very high-speed IC Hardware Description Language (VHDL) in the 
context of this paper in order to test the effect of limited word length in the 
representation of the FFT parameters. These parameters include inputs, outputs, 
twiddles and the intermediate results. The following combinations were studied here: 
FFT size N of 256 or 1024 points, q=16 or q=4 QAM modulation, two subsampling 
frequencies (R2=N/4 and R8=N/16) and sparseness levels up to 10%. Fixed point word 
lengths of 8 or 6 bits are tested. The Normalized Mean Square Error (NMSE) and the 
Symbol Error Rate (SER) are measured. The NMSE and SER are severely degraded if 
6 bits are used. However, if 8 bits are used as FFT word length, the quantization error 
is negligible compared with the one caused by the undersampling procedure.  

The OFDM and FFT architectures as well as the proposed undersampling method 
are described in Section 2. The simulation results are discussed in Section 3. 

2   OFDM and FFT Architectures 

In [9], wired and wireless OFDM transceivers are described and undersampling is 
supported during sparse information exchange: some input samples of the receiver FFT 
can be omitted and replaced by others. In this work, we use the wired OFDM transceiver 
model in order to study the rounding effect in the FFT. The input of the OFDM 
transmitter is encoded generating a parity bit stream. If q-QAM modulation is used, 
log2(q) bits from the interleaved parity/data bit streams are mapped to the corresponding 
constellation symbol Xk (0≤k<N). At the input of the N-point IFFT, q-QAM symbols 
are arranged in a proper order and the symbols xn (0≤n<N) are generated at the IFFT 
output. The reverse procedure is followed on the receiver where the symbols yn=xn+zn 
form the N-pointt FFT input. The symbol zn is Additive White Gaussian Noise (AWGN) 
noise. The output of the FFT are N, Yk symbols. An appropriate error decoder such as 
Viterbi corrects a number of errors using the parity bits, avoiding packet retransmission 
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The parameters yn, Yk are the N, DFT input, output symbols and Xk, xn are the N, 
Inverse DFT (IDFT) input, output symbols respectively. The twiddle factors w are 
defined as 𝑤!" = 𝑒#$"/!. The xn symbols of the OFDM transmitter IDFT output are sent 
over the communication channel and they are received as yn at the input of the receiver 
DFT module. FFT reduces the O(N2) operations required by DFT to O(N∙logN). FFT 
building blocks are the Radix-r butterflies. Radix-2 butterflies operate on a pair of inputs 
(y1 and y2) that are defined as follows [10] for Decimation in Time (DIT) FFT: 

𝑌(2𝑚) = ∑ (𝑦#&_((𝑛) + 𝑦#&_)(𝑛))𝑤!/#&*
!
"+,
*-. . 

(1) 

𝑌(2𝑚 + 1) = ∑ (𝑦(#&0,)_((𝑛) − 𝑦(#&0,)_)(𝑛))𝑤!/#2*
!
"+,
*-. . 

(2) 

The FFT input yk is split in two parts: yk_a and yk_b. In Radix-4 butterflies, 4 pairs of 
inputs are used and radices that are not powers of 2 (such as Radix-3, Radix-5) can 
also be employed. Decimation in Frequency (DIF) differs from DIT in the fact that the 
order of the butterfly inputs and outputs is bit reversed. The FFT software 
implementations are slow and thus, most of the modern telecommunication systems are 
based on hardware implementations. 

There are log2(N) stages in the N-point FFT implemented in this paper. The real and 
imaginary parts of the stage p inputs are stored in a pair of buffers. A pair of operands 
are accessed through ports rp1 and rp2 while a pair of values can be stored to the buffer 
through write ports wp1, wp2. Each one of these read or write ports has size d. The 
twiddle factors w, are retrieved from a ROM with N/2p+1 size at stage p. Each Butterfly 
block performs the following calculations: 

𝑅𝑒1𝑤(3+,),2 = 𝑅𝑒1𝑟3,2 + 𝑅𝑒1𝑟3#2 ∙ 𝑅𝑒{𝑡𝑤} − 𝐼𝑚{𝑟3#} ∙ 𝐼𝑚{𝑡𝑤}. (3) 

𝐼𝑚1𝑤(3+,),2 = 𝐼𝑚1𝑟3,2 + 𝑅𝑒1𝑟3#2 ∙ 𝐼𝑚{𝑡𝑤} + 𝐼𝑚{𝑟3#} ∙ 𝑅𝑒{𝑡𝑤}. (4) 

𝑅𝑒1𝑤(3+,)#2 = 𝑅𝑒1𝑟3,2 − 𝑅𝑒1𝑟3#2 ∙ 𝑅𝑒{𝑡𝑤} + 𝐼𝑚{𝑟3#} ∙ 𝐼𝑚{𝑡𝑤}. (5) 

𝐼𝑚1𝑤(3+,)#2 = 𝐼𝑚1𝑟3,2 − 𝑅𝑒1𝑟3#2 ∙ 𝐼𝑚{𝑡𝑤} − 𝐼𝑚{𝑟3#} ∙ 𝐼𝑚{𝑡𝑤}. (6) 

The sparseness level S is the fraction of the non-zero bits in the input data stream 
and is expected to be small (e.g., 1%-2%) if the input data are sparse. Many q-QAM 
symbols are expected to be equal (Xc) due to data sparsity and they form an IFFT input 
set with appropriate structure. A number of samples in this FFT input set are expected 
to be equal (due to the input sparseness) and they can replace each other. The ADC in 
does not need to sample all the values since some of them can be replaced by others 
already received. The ADC sampling rate can thus be reduced on the receiver for lower 
power. The OFDM undersampling method proposed for wired channels is based on 
the following DFT property: 

𝑥* =
,
!
(∑ 𝑋2𝑤!2*!+#

2-.,#,.. +∑ (𝑋2 − 𝑋20!"
)𝑤!2*

!
"+,
2-,,6.. ). 

(7) 
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𝑥*0!"
= ,

!
(∑ 𝑋2𝑤!2*!+#

2-.,#, −∑ (𝑋2 − 𝑋20!"
)𝑤!2*

!
"+,
2-,,6, ). 

(8) 

The outputs and of the IDFT are equal, only if = and k is odd. 

In this case (and thus: ) can be replaced by xn (yn). On the receiver, up to 

half of the symbols placed in odd positions with n>N/2, can be substituted by others. 
The ADC on the receiver can operate at half speed, 50% of the time in this case. The 
maximum number of substituted samples is R2=N/4 but this value would make sense 
only if all inputs are 0, otherwise a high error floor occurs. If the value of R is smaller, 
the error may be acceptable.  

4   Simulation 

The effect of the rounding error caused by the limited FFT word length is studied 
through simulations. The two metrics used, are the Normalized Mean Square Error 
(NMSE) and the Symbol Error Rate (SER). If it is assumed that an FFT output Y 
corresponds to IFFT input X, its NMSE error can be expressed as 𝜀 = ‖𝑌 − 𝑋‖##/‖𝑋‖##. 
There is an area on the QAM constellation plane where Y is recognized as X due to 
shorter distance compared with the neighboring constellations. Although the NMSE is 
not 0 in this case this error does not affect SER. If e.g., Y is recognized as a different 
16QAM symbol than X, only one of the 4 data bits that correspond to this constellation 
would be inverted. Thus, the effect of this error on the Bit Error Rate (BER) would be 
4 times lower than on the SER. 

    
(a)         (b)    

Fig. 1. Sparse images used to define the IFFT input structures tested in this paper.  
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(a)          (b) 

  
(c)         (d) 

Fig. 2. Combination C1. NMSE (a), SER (b) with 6 and NMSE (c), SER (d) with 8-bits word.  

If two numbers of nb bits are multiplied, the rounding error is between . If 

and if the error probability is uniform (1/ds), then the error variance is: 

. The rounding noise for N-point FFT is up to [11]: 𝑃78 =
9#"

:
(𝑙𝑜𝑔#𝑁 − 2). The 

undersampling error for 16QAM as explained in [9] is 𝑃;8 = (𝑅 ∙ 𝑆 ∙ √2DE𝑞 −
1G𝑙𝑜𝑔#𝑞)#. The simulation results presented in this section highlight the cases where 
selecting appropriate number of bits nb makes PRE<<PUE. Three representative 
combinations are examined: C1) N=256, 16QAM, C2) N=256, 4QAM (Quadrature 
Phase Shift Keying-QPSK) and C3) N=1024, 16QAM. Data are taken from sparse 
images like the ones shown in Fig. 1. The IFFT input packets formed have sparseness 
S between 5% and 30%. This is too high for the proposed undersampling procedure as 
explained in [9] but these IFFT input packets will merge with several others consisting 
of only Xc symbols (S=0). Thus, a projection is also used to display how NMSE and 
SER changes according to S. 

Fig. 2 shows the simulation results for combination C1. When 6 bits (with 3 bits 
fraction) are used, truncation (“Trunc”) caused by limited word length plus 
undersampling error makes the quantization error much higher than the undersampling 
error alone (“NoTrunc” cases). However, the error is almost identical and equal to the 
undersampling error when 8 bits (with 5 bits fraction) are used i.e., the quantization 
error is small in this case.  

2
2 )1( --

±
bn

)1(2 --= bn
sd 12/2sd
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(a)          (b) 

  
(c)         (d) 

Fig. 3. Combination C2. NMSE (a), SER (b) with 6 and NMSE (c), SER (d) with 8-bits word.   

  
(a)         (b) 

 
(c)         (d) 

Fig. 4. Combination C3. NMSE (a), SER (b) with 6 and NMSE (c), SER (d) with 8-bits word.  

Similar conclusions can be drawn from Fig. 3 and 4 for combinations C2 and C3, 
respectively. It should be noticed that the undersampling error is quite small with 
QPSK (C2) especially with R8, making the quantization error relatively high even 
when 8-bit word length is used. In the C3 combination, different NMSE values lead to 
similar SER behavior. NMSE can be drastically reduced when 8-bit word length is 
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selected. Fig. 5 shows how the NMSE, SER can be projected in the range S=[0..10%] 
for one of the cases (C3). Similar plots can be retrieved for C1 and C2. 

  
(a)         (b) 

Fig. 5. NMSE (a) and SER (b) projection for C3 in the range S=[0..10%]. 

5   Conclusions 

The effect of the selected FFT word length in an OFDM transceiver supporting 
undersampling when sparse information is exchanged as in the case of IoT sensors, 
surveillance cameras, etc. was studied. Simulation on three combinations of FFT size 
and QAM modulations, showed that the use of 8-bits in the FFT word length was 
adequate in order to keep the power consumption and complexity low. 
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