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A widely used method for noise reduction in Monte-Carlo ray tracing is combing different means of sampling, known as multiple 

importance sampling (MIS). For bi-directional Monte-Carlo ray tracing with photon maps (BDPM), the join paths are obtained by 
merging camera and light sub-paths, and since several light paths are checked again the same camera path, and vice versa, the join 
paths obtained are not statistically independent. Thus the noise in this method obeys laws different from those in simple classic Monte-
Carlo with independent samples so the weights that minimize that noise must also be calculated differently. This paper drives that 
weights for the simplest case when we mix contribution from only two vertices of camera ray. It shows that the weights obey an 
integral equation which is qualitatively different from the well-known MIS formulae for uncorrelated samples. Besides that, even if 
forget the integral operator, the weights depend on the integration sphere radius and the number of light rays used. The integral 
equation is solved analytically in a closed form and it is demonstrated how to perform the necessary calculations in BDPM. 

Keywords: Monte-Carlo ray tracing, bi-directional ray tracing, photon maps, reduction of noise, multiple importance sampling, 
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1. Introduction 

Lighting simulation and calculation of global 
illumination is widely applied nowadays in architecture, 
design of new devices and new materials. Mostly 
successive technique is Monte Carlo ray tracing 
(MCRT) [1]. But its main problem is stochastic noise, 
and it strongly depends on the method of ray 
generation. Therefore a lot of studies are devoted to 
choice of the optimal probability distribution of ray 
scattering [2–5]. 

Multiple Importance Sampling (MIS) is a famous 
and powerful approach here. Its base idea is to generate 
several random numbers, one for each strategy (i.e. 
probability density which admits an efficient generation 
of samples), and then sum their contributions to the 
accumulated average with weight (which usually 
depends on the point) [2, 3]. E. Veach produced and 
published the mathematics of this approach [2]. He 
elaborated several efficient heuristics of weight 
calculation and demonstrated that with them the 
resulting noise is close to its minimal value. But his 
study is applied to the classic MCRT method when 
successive random points are absolutely independent. 

Many lighting simulation systems use more 
advanced methods like, for example, bi-directional 
Monte-Carlo path tracing (BDPT), bi-directional 
Monte-Carlo ray tracing with photon maps (BDPM) [6] 
or their combination [7, 8]. In these methods the 
successive trajectories are not independent. For 
example, in the photon map technique (the BDPM 
method) the same forward path is merged with all the 
backward paths and vice versa, so the resulting joined 
full trajectories have common ”tail” and thus they are 
not independent. In [5] it was demonstrated that the 
noise in these methods follows other rules than the rule 
in the simple or classic MCRT. Therefore the optimal 
weights that minimize the resulting noise are different 
from the optimal weights which minimize the noise 
functional in the classic MCRT.  

Since the BDPM noise is a quadratic functional over 
the ray contribution [5], it is also quadratic in weights. 

Thus, basically, calculation of weights that minimize 
that noise functional is mathematically trivial. But only 
“basically” because in any bi-directional MCRT there is 
an infinite set of weights [2], with own set of weights 
for each join path length. The weights from different 
sets are defined in different functional spaces (they have 
different number of arguments, i.e. vertices and so on), 
while all they are “coupled” in the noise functional. 
There are also less important problems with ray 
absorption etc. As a result, the optimal weights obey an 
infinite system of linear integral equations, which are 
extremely tedious. And their kernels must be calculated 
from solving yet other integral equations similar to the 
“rendering equation” and so on.  

2. BDPM with fixed BDD, adaptive BDD and 
MIS 
Meanwhile in practice the BDPM method can be 

used even without MIS, but using a single strategy 
when camera and light sub-paths merge at a pre-defined 
camera vertices. This approach can be called “fixed 
BDD”. BDD means “backward diffuse depth” i.e. the 
maximally allowed number of diffuse scattering events 
for camera ray. Here,  
• Camera ray terminates after BDD diffuse events, 

so we have only BDD+1 vertices for merging 
• The integration sphere around the last camera 

vertex “catches” all light rays 
• The integration sphere around the rest vertices 

“catches” only direct and caustic light rays, i.e. 
those which did not have any diffuse scattering 
before. 

Here it is important that BDD is not adaptive, i.e. it 
is chosen at the camera ray beginning and does not 
depend on the further ray history.  

This rigid approach is not optimal. It seems better to 
choose BDD adaptively, depending on the ray history. 
Roughly speaking, it may not stop at a surface which 
optical properties are presented by too sharp bi-
directional distribution function (BDF). Because 
otherwise we have to collect diffuse illumination here 



and in case of sharp BDF this results in high noise [9]. 
In other words, it would be good to decide whether to 
terminate or continue camera path, i.e. to choose 
between BDD and BDD+1 at each vertex. Then, since 
both strategies are correct, i.e. give the same mean 
luminance, we can use both to increase the number of 
samples and thus reduce noise. 

In this paper we shall consider just this simplified 
problem: “weighting” results from the cases of BDD 
and BDD+1. Instead of termination at BDD we just set 
zero weight for BDD+1. This is an extreme case and 
normally the weight is not exactly 0, thus diffuse 
illumination is collected at both last (as for BDD+1) and 
last but one (as for BDD) vertices. The weights now are 
just two functions. They are calculated so that the 
variance of calculated image luminance should be 
minimal. They depend on the camera sub-path. 

We derive the integral equation for the weights 
under these assumptions and obtain its solution in a 
closed form. One can see from it that even in this 
simplest case the optimal weights depend on many 
factors which are absent in the “balance” heuristic [2] 
for classic MCRT where they depend on BDFs and light 
source emission only. Then we show how it can be 
calculated from photon maps. 

3. Weighting the contribution in bi-directional 
ray tracing 
General note. Calculations below assume that the 

total flux of all scene lights is unity. For not unit flux, 
𝐼𝐼(… ) and 𝐿𝐿(… ) are irradiance and radiance divided by 
the total flux. 

Regardless of the particular sort of bi-directional 
MCRT, the application of MIS to it is the same. The 
contribution to pixel luminance from a light and camera 
rays is [3] 
𝐶𝐶 = ��𝑊𝑊𝑚𝑚+𝑛𝑛,𝑚𝑚𝐸𝐸(𝑐𝑐)(𝒙𝒙0

(𝑐𝑐), … 𝒙𝒙𝑚𝑚
(𝑐𝑐))𝐸𝐸(𝑙𝑙)(𝒙𝒙0

(𝑙𝑙), … ,𝒙𝒙𝑛𝑛
(𝑙𝑙))

𝑛𝑛𝑚𝑚

 

× 𝐾𝐾(𝒙𝒙𝑚𝑚
(𝑐𝑐) − 𝒙𝒙𝑛𝑛

(𝑙𝑙))𝑓𝑓(⋯ ;𝒙𝒙𝑚𝑚
(𝑐𝑐)) 

where 𝑚𝑚 cycles over all camera path vertices and 𝑛𝑛 
cycles over all light path vertices, 𝐾𝐾 is the integration 
kernel and 𝑓𝑓is BDF in luminance units at the point 𝒙𝒙𝑚𝑚

(𝑐𝑐). 
E is the energy of ray (fig. 1). 

 
Fig. 1. Intersection of camera path (blue) and light path (red). 

Vertices are on diffuse surfaces; the circles are integration 
spheres. The paths join if a light vertex is with an integration 

sphere around a camera vertex 
 

Like in [3] 𝑊𝑊𝑘𝑘,𝑚𝑚 is the weight for junction at the 𝑚𝑚-
th camera vertex when the join path of 𝑘𝑘 vertices (i.e. 

the light part of the join path has 𝑘𝑘 − 𝑚𝑚 vertices). It 
must be a function of that full path such that 

�𝑊𝑊𝑘𝑘,𝑚𝑚

𝑘𝑘−1

𝑚𝑚=0

= 1 (1) 

The weights may depend on all 𝑘𝑘 vertices of the join 
path, though can be also independent from some of 
them so we have a very high-dimensional configuration 
space that it is not good for numerical calculations. 
Happily it is possible to constrain it. This much 
simplifies the problem of finding the optimal weights. 

4. Weights for fixed BDD (single strategy) 
Let us consider the case of fixed BDD=M: direct 

and caustic rays are taken in vertices up to M-th; diffuse 
rays in the M-th vertex only; further vertices do not 
collect rays. For the sake of simplicity we assume that 
there is no specular scattering (caustic rays) in the 
scene. Then, since a direct (light) ray has single 
segment before junction, the weights are: 

𝑊𝑊𝑚𝑚+1,𝑚𝑚 = 1,    𝑚𝑚 = 1, … ,𝑀𝑀 − 1 
𝑊𝑊𝑘𝑘,𝑀𝑀 = 1,   𝑘𝑘 > 𝑀𝑀  

the rest being 0. 
Superimposed tables of weights matrix for BDD=M 

and BDD=M+1 are shown in fig. 2. 

 
Fig. 2. Table of weights: m increases rightwards, k increases 
downwards. If 𝒘𝒘𝒌𝒌,𝒎𝒎 = 𝟎𝟎 for both strategies, the cell is white; 

if 𝒘𝒘𝒌𝒌,𝒎𝒎 = 𝟏𝟏 for BDD=M, the cell is red; if 𝒘𝒘𝒌𝒌,𝒎𝒎 = 𝟏𝟏 for 
BDD=M+1, the cell is green and if 𝒘𝒘𝒌𝒌,𝒎𝒎 = 𝟏𝟏 for both cases, 

the cell is yellow (green+red) 
 

Obviously normalization (1) holds for both 
strategies.  

5. Mixing the two strategies: BDD and BDD+1 
We can now mix the two above strategies using 

weights 

𝑊𝑊𝑘𝑘,𝑚𝑚 = �𝑤𝑤0, 𝑚𝑚 = 𝑀𝑀
𝑤𝑤1 ≡ 1 − 𝑤𝑤0, 𝑚𝑚 = 𝑀𝑀 + 1 ,   𝑘𝑘 ≥ 𝑀𝑀 + 2, …. 

where 𝑤𝑤0 is the same for all 𝑘𝑘 and is an arbitrary 
deterministic function of the join path. Then the average 
pixel luminance calculated with that mixed strategy will 
be correct which can be shown like in [2] or [3]. We 
shall also show this simple derivation below. 

Since an arbitrary function of the full path suits, we 
can use one which depends only on three vertices 𝒙𝒙𝑀𝑀−1, 
𝒙𝒙𝑀𝑀 and 𝒙𝒙𝑀𝑀+1. With such weights the contribution of 
camera + light trajectories is 

𝐶𝐶 = � 𝐸𝐸(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑚𝑚

(𝑐𝑐))𝐿𝐿0(𝒙𝒙𝑚𝑚 → 𝒙𝒙𝑚𝑚+1;𝒙𝒙𝑚𝑚)
𝑀𝑀

𝑚𝑚=0

 

+𝑤𝑤0(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1

(𝑐𝑐) )𝐸𝐸(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀

(𝑐𝑐)) 

(2) 

𝒙𝒙0
(𝑐𝑐) 

𝒙𝒙0
(𝑙𝑙) 

𝒙𝒙1
(𝑙𝑙) 

𝒙𝒙2
(𝑙𝑙) 

𝒙𝒙3
(𝑙𝑙) 

𝒙𝒙5
(𝑙𝑙) 

𝒙𝒙4
(𝑙𝑙) 

𝒙𝒙1
(𝑐𝑐) 

𝒙𝒙6
(𝑙𝑙) 

𝒙𝒙2
(𝑐𝑐) 

𝒙𝒙3
(𝑐𝑐) 

𝒙𝒙4
(𝑐𝑐) 

k 

m 



× �𝐾𝐾(𝒙𝒙𝑀𝑀
(𝑐𝑐) − 𝒙𝒙𝑛𝑛

(𝑙𝑙))𝑓𝑓(𝒙𝒙𝑛𝑛
(𝑙𝑙) → 𝒙𝒙𝑀𝑀

(𝑐𝑐),𝒙𝒙𝑀𝑀
(𝑐𝑐)

𝑛𝑛>0

→ 𝒙𝒙𝑀𝑀−1
(𝑐𝑐) ;𝒙𝒙𝑀𝑀

(𝑐𝑐)) 
+𝑤𝑤1(𝒙𝒙0

(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1
(𝑐𝑐) )𝐸𝐸(𝒙𝒙0

(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1
(𝑐𝑐) ) 

× �𝐾𝐾(𝒙𝒙𝑀𝑀+1
(𝑐𝑐) − 𝒙𝒙𝑛𝑛

(𝑙𝑙))𝑓𝑓(𝒙𝒙𝑛𝑛
(𝑙𝑙) → 𝒙𝒙𝑀𝑀+1

(𝑐𝑐) ,𝒙𝒙𝑀𝑀+1
(𝑐𝑐)

𝑛𝑛>0

→ 𝒙𝒙𝑀𝑀
(𝑐𝑐);𝒙𝒙𝑀𝑀+1

(𝑐𝑐) ) 
where 𝐿𝐿0(𝒖𝒖;𝒙𝒙) is luminance of a surface point 𝒙𝒙 in 
direction 𝒖𝒖 under direct illumination and 𝒙𝒙𝑀𝑀+1 → 𝒙𝒙𝑀𝑀 
etc. is unit vector connecting the two vertices. 

For the sake of simplicity we assume that FMCRT 
works so that the light ray energy is always 1 and that 
𝐿𝐿0(𝒖𝒖;𝒙𝒙) which we assume is calculated exactly (w/o 
noise!), as it is when there is only a finite number of 
parallel or point light sources. 

6. How all this works in BDPM 
How is (2) applied in practice? The meaning of this 

formula is very simple.  
First, all works like for the case with fixed BDD+1, 

i.e. we always trace the camera ray to the maximal 
depth, because so far we do not know whether this 
vertex will be used or not (because w1=0). The two last 
vertices are 𝒙𝒙𝑀𝑀

(𝑐𝑐) and 𝒙𝒙𝑀𝑀+1
(𝑐𝑐) . 

Then, we take all sources of luminance brought to 
this camera ray. These are  
• photons that hit near 𝒙𝒙𝑀𝑀

(𝑐𝑐) 
• photons near 𝒙𝒙𝑀𝑀+1

(𝑐𝑐)  (if there is direct then it also at 
this point) 
Then, we process photons near 𝒙𝒙𝑀𝑀

(𝑐𝑐) like we would 
do in case of BDD=M, but now the contribution of each 
photon is scaled by 𝑤𝑤0(𝒙𝒙0

(𝑐𝑐), … ,𝒙𝒙𝑀𝑀
(𝑐𝑐),𝒚𝒚𝑝𝑝) taking the last 

argument of the weight function as the previous hit 
point 𝒚𝒚𝑝𝑝 of that photon. In other words 𝒚𝒚𝑝𝑝 is the start of 
the FMCRT ray segment which ended near 𝒙𝒙𝑀𝑀

(𝑐𝑐). Direct 
and caustic photons, if there are those, are taken with 
unit weight. 

Then, we process photons near 𝒙𝒙𝑀𝑀+1
(𝑐𝑐)  like we would 

do in case of BDD=M+1, but now the contribution of 
each photon is scaled by 𝑤𝑤1�𝒙𝒙0

(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1
(𝑐𝑐) �, same for 

all photons. Same scaling is applied to direct and 
caustic photons, if there are ones. 

And this is all. We therefore need weight function 
(e.g. w1, because w0 is calculated from it) for the 
following arguments: 

(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1

(𝑐𝑐) ) 
and 

(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀

(𝑐𝑐),𝒚𝒚𝑝𝑝) 
where 𝒚𝒚𝑝𝑝 are the origins of all diffuse FMCRT ray 
segments that ended near 𝒙𝒙𝑀𝑀

(𝑐𝑐). 

7. Calculation of noise 
Now let us for the sake of simplicity suppose that 

the direct illumination is negligible. For small M it is 
really so in rather many scenes. Then contribution is 

𝐶𝐶 = 𝑤𝑤0(… )𝐸𝐸(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀

(𝑐𝑐))�𝐾𝐾(𝒙𝒙𝑀𝑀
(𝑐𝑐) − 𝒙𝒙𝑛𝑛

(𝑙𝑙))
𝑛𝑛>0

 

× 𝑓𝑓(𝒙𝒙𝑛𝑛
(𝑙𝑙) → 𝒙𝒙𝑀𝑀

(𝑐𝑐),𝒙𝒙𝑀𝑀
(𝑐𝑐) → 𝒙𝒙𝑀𝑀−1

(𝑐𝑐) ;𝒙𝒙𝑀𝑀
(𝑐𝑐)) 

+𝑤𝑤1(… )𝐸𝐸(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1

(𝑐𝑐) ) �𝐾𝐾(𝒙𝒙𝑀𝑀+1
(𝑐𝑐) − 𝒙𝒙𝑛𝑛

(𝑙𝑙))
𝑛𝑛>0

 

× 𝑓𝑓(𝒙𝒙𝑛𝑛
(𝑙𝑙) → 𝒙𝒙𝑀𝑀+1

(𝑐𝑐) ,𝒙𝒙𝑀𝑀+1
(𝑐𝑐) → 𝒙𝒙𝑀𝑀

(𝑐𝑐);𝒙𝒙𝑀𝑀+1
(𝑐𝑐) ) 

(3) 

where 𝐸𝐸(𝒙𝒙0
(𝑐𝑐), … ,𝒙𝒙𝑀𝑀

(𝑐𝑐)) is the energy of camera ray 
before it hits 𝒙𝒙𝑀𝑀

(𝑐𝑐). In BMCRT rays starts with 𝐸𝐸(𝒙𝒙0
(𝑐𝑐)) =

1 and then 
𝐸𝐸(𝒙𝒙0

(𝑐𝑐), … ,𝒙𝒙𝑀𝑀+1
(𝑐𝑐) ) = 𝐸𝐸(𝒙𝒙0

(𝑐𝑐), … ,𝒙𝒙𝑀𝑀
(𝑐𝑐))𝜇𝜇(𝒙𝒙𝑀𝑀+1

(𝑐𝑐)

→ 𝒙𝒙𝑀𝑀
(𝑐𝑐),𝒙𝒙𝑀𝑀

(𝑐𝑐)) 
where  

𝜇𝜇(𝒖𝒖,𝒙𝒙) ≡ �𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙)|(𝒗𝒗 ⋅ 𝒏𝒏(𝒙𝒙))|𝑑𝑑2𝒗𝒗 

is the total backward scattering.  
The noise in (2) i.e. the variance of pixel luminance 

calculated with it from NF forward rays and NB 
backward rays (started from the same pixel) obeys the 
general law [5]: 

𝑉𝑉 =
1

𝑁𝑁𝐹𝐹𝑁𝑁𝐵𝐵
(〈〈𝐶𝐶2〉𝐹𝐹〉𝐵𝐵 − 〈〈𝐶𝐶〉〉2)

+
1 − 𝑁𝑁𝐹𝐹−1

𝑁𝑁𝐵𝐵
(〈〈𝐶𝐶〉𝐹𝐹2〉𝐵𝐵 − 〈〈𝐶𝐶〉〉2)

+
1 − 𝑁𝑁𝐵𝐵−1

𝑁𝑁𝐹𝐹
(〈〈𝐶𝐶〉𝐵𝐵2 〉𝐹𝐹 − 〈〈𝐶𝐶〉〉2) 

(4) 

Here 〈⋅〉𝐵𝐵 is the averaging over the BMCRT 
ensemble for the fixed FMCRT ray and 〈⋅〉𝐹𝐹 is the 
averaging over the FMCRT ensemble for the fixed 
camera ray. Notice 〈〈𝐶𝐶〉〉  is independent from weights. 
This linear term is independent from the order of 
averaging so we drop subscripts here. 

Simplified expression of noise 

By experience, in the absolute majority of practical 
cases the first two terms heavily dominate so we can 
drop the 3rd. Then, 𝑁𝑁𝐹𝐹 ≫ 1 and we can write the 
approximate simplified noise law as 

𝑉𝑉 =
1
𝑁𝑁𝐵𝐵

〈𝑁𝑁𝐹𝐹−1(〈𝐶𝐶2〉𝐹𝐹 − 〈〈𝐶𝐶〉〉2)

+ (〈𝐶𝐶〉𝐹𝐹2 − 〈〈𝐶𝐶〉〉2)〉𝐵𝐵 
(5) 

Averaging over the illuminating FMCRT rays is 
simple: 

〈(⋅)〉𝐹𝐹 = �(⋅)|(𝒗𝒗 ⋅ 𝒏𝒏(𝒛𝒛))|𝐼𝐼(𝒗𝒗, 𝒛𝒛)𝑑𝑑2𝒗𝒗 

where z is the space point where we calculate it and I is 
irradiance. Applying it to the ray contribution (3) gives 

〈𝐶𝐶〉𝐹𝐹
= 𝐸𝐸(𝑿𝑿)�𝑤𝑤0(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀) 𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗 

+𝐸𝐸(𝑿𝑿)𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)𝑤𝑤1(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1) 

(6) 

where here and below 𝒙𝒙𝑀𝑀+1 is the vertex of the join 
path after 𝒙𝒙𝑀𝑀 so it is light vertex in the first line and 
camera vertex in the second line;  

𝑿𝑿 ≡ (𝒙𝒙0, … ,𝒙𝒙𝑀𝑀) 
denotes the camera path common for BDD and BDD+1, 
and we dropped the superscript (c) because there are no 
light ray vertices.  

Also here and below 𝒖𝒖 is the direction of camera ray 



before and 𝒙𝒙𝑀𝑀 and 𝒗𝒗 is the direction of the join path 
segment after 𝒙𝒙𝑀𝑀 (see Figure 3), 

𝒖𝒖 ≡ 𝒙𝒙𝑀𝑀 → 𝒙𝒙𝑀𝑀−1 
𝒗𝒗 ≡ 𝒙𝒙𝑀𝑀+1 → 𝒙𝒙𝑀𝑀 

𝐽𝐽(𝒗𝒗,𝒙𝒙) ≡ |(𝒗𝒗 ⋅ 𝒏𝒏(𝒙𝒙))|𝐼𝐼(𝒗𝒗,𝒙𝒙) 
𝐼𝐼(𝒗𝒗,𝒙𝒙) is irradiance of 𝒙𝒙 in direction 𝒗𝒗 and 𝐿𝐿(𝒗𝒗,𝒙𝒙) is 
radiance from 𝒙𝒙 in direction 𝒗𝒗. 

Then, assuming that the kernel K is S–1 within the 
integration sphere and 0 outside so 𝐾𝐾2 = 𝑆𝑆−1𝐾𝐾 we have 
in the limit 𝑆𝑆 → 0  

〈𝐶𝐶2〉𝐹𝐹 =
𝐸𝐸2(𝑿𝑿)
𝑆𝑆

 

× �𝑤𝑤02(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑓𝑓2(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒙𝒙𝑀𝑀+1 

+
𝐸𝐸2(𝑿𝑿)
𝑆𝑆

𝜇𝜇2(𝒖𝒖,𝒙𝒙𝑀𝑀)𝑤𝑤12(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑏𝑏(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀+1) 

(7) 

while the cross term is 𝑜𝑜(𝑆𝑆−1). Here 

𝑏𝑏(𝒙𝒙𝑀𝑀 ,𝒙𝒙𝑀𝑀+1) ≡ �𝑓𝑓2(𝝎𝝎,𝒙𝒙𝑀𝑀+1
→ 𝒙𝒙𝑀𝑀;𝒙𝒙𝑀𝑀+1)𝐽𝐽(𝝎𝝎,𝒙𝒙𝑀𝑀+1)𝑑𝑑2𝝎𝝎 

Now we must average over the ensemble of camera 
rays. Let us denote the probability density of M first 
vertices of camera ray as 

𝑝𝑝𝐵𝐵
(𝑀𝑀)(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀) 

In a usual BMCRT the distribution of the scattered 
direction is proportional to BDF in the hit point, so: 

𝑝𝑝𝐵𝐵
(𝑀𝑀+1)(𝑿𝑿,𝒙𝒙𝑀𝑀+1) = 𝑝𝑝𝐵𝐵

(𝑀𝑀)(𝑿𝑿)
𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)��𝒗𝒗 ⋅ 𝒏𝒏(𝒙𝒙𝑀𝑀)��

𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)  

× 𝑠𝑠(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1) 
where 𝑠𝑠(… ) transforms angular density into spatial, see 
[2]: 

𝑠𝑠(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1) ≡
��𝒗𝒗 ⋅ 𝒏𝒏(𝒙𝒙𝑀𝑀)��
|𝒙𝒙𝑀𝑀 − 𝒙𝒙𝑀𝑀+1|2

=
��(𝒙𝒙𝑀𝑀 − 𝒙𝒙𝑀𝑀+1) ⋅ 𝒏𝒏(𝒙𝒙𝑀𝑀)��

|𝒙𝒙𝑀𝑀 − 𝒙𝒙𝑀𝑀+1|3  

Substituting (6) and (7) into (5) and integrating over 
𝑝𝑝𝐵𝐵

(𝑀𝑀+1)(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀+1) we arrive at 

𝑁𝑁𝐵𝐵𝑉𝑉 = 𝑛𝑛𝐹𝐹−1 �𝑤𝑤02(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑓𝑓2(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀) 

× 𝜌𝜌(𝑿𝑿)𝑑𝑑2𝑿𝑿𝑑𝑑2𝒙𝒙𝑀𝑀+1 

+𝑛𝑛𝐹𝐹−1 �𝑤𝑤12(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)𝑏𝑏(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1) 

× 𝑞𝑞(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑑𝑑2𝑿𝑿𝑑𝑑2𝒙𝒙𝑀𝑀+1 

+�𝐺𝐺02(𝑿𝑿)𝜌𝜌(𝑿𝑿)𝑑𝑑2𝑿𝑿 

+�𝑤𝑤12(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)𝐿𝐿2(𝒗𝒗,𝒙𝒙𝑀𝑀+1) 

× 𝑞𝑞(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑑𝑑2𝑿𝑿𝑑𝑑2𝒙𝒙𝑀𝑀+1 

+2�𝑤𝑤1(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1)𝐺𝐺0(𝑿𝑿) 

× 𝑞𝑞(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑑𝑑2𝑿𝑿𝑑𝑑2𝒙𝒙𝑀𝑀+1 + 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑐𝑐 
where the “const” is independent from weights, 

𝑛𝑛𝐹𝐹 ≡ 𝑆𝑆𝑁𝑁𝐹𝐹 , 
𝐺𝐺𝑚𝑚(𝑿𝑿)

≡ �𝑤𝑤𝑚𝑚(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀) 𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑠𝑠(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1)𝑑𝑑2𝒙𝒙𝑀𝑀+1 

and 
𝜌𝜌(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀)
≡ 𝐸𝐸2(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀)𝑝𝑝𝐵𝐵

(𝑀𝑀)(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀)𝑠𝑠(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1) 

𝑞𝑞(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀+1) ≡ 𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)|(𝒗𝒗
⋅ 𝒏𝒏(𝒙𝒙𝑀𝑀))|𝜌𝜌(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀) 

8. Optimal weights 
By definition, the optimal weights are those which 

produce extreme value of noise. Recalling that 𝑤𝑤0 =
1 −𝑤𝑤1 we calculate the variation of this quadratic 
expression in response to the change 𝑤𝑤1 ↦ 𝑤𝑤1 + 𝛿𝛿𝑤𝑤1: 
𝛿𝛿𝑉𝑉

= 2
𝑁𝑁𝐵𝐵
�𝛿𝛿𝑤𝑤1(𝑿𝑿,𝒙𝒙𝑀𝑀+1)Φ(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑞𝑞(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑑𝑑2𝑿𝑿𝑑𝑑2𝒙𝒙𝑀𝑀+1 

where 
Φ(𝑿𝑿,𝒙𝒙𝑀𝑀+1) = −𝑛𝑛𝐹𝐹−1𝑤𝑤0(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝐼𝐼(𝒗𝒗,𝒙𝒙𝑀𝑀) 

+𝑛𝑛𝐹𝐹−1𝑤𝑤1(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)𝑏𝑏(𝒙𝒙𝑀𝑀 ,𝒙𝒙𝑀𝑀+1) 
+𝑤𝑤1(𝑿𝑿,𝒙𝒙𝑀𝑀+1)𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)𝐿𝐿2(𝒗𝒗,𝒙𝒙𝑀𝑀+1) 
+𝐺𝐺0(𝑿𝑿)(𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1) − 𝐼𝐼(𝒗𝒗,𝒙𝒙𝑀𝑀)) 

−𝐼𝐼(𝒗𝒗,𝒙𝒙𝑀𝑀)�𝑤𝑤1(𝑿𝑿,𝒙𝒙𝑀𝑀+1′ )𝐿𝐿(𝒗𝒗′,𝒙𝒙𝑀𝑀+1′ ) 

× 𝑓𝑓(𝒗𝒗′,𝒖𝒖;𝒙𝒙𝑀𝑀)|(𝒗𝒗′ ⋅ 𝒏𝒏(𝒙𝒙𝑀𝑀))|𝑑𝑑2𝒙𝒙𝑀𝑀+1′  
Obviously the extremum condition: 𝛿𝛿𝑉𝑉 = 0 for an 

arbitrary 𝛿𝛿𝑤𝑤1 is satisfied if and only if Φ(𝑿𝑿,𝒙𝒙𝑀𝑀+1) = 0. 
Obviously diffuse irradiance of a point equals 

radiance of the surface seen from this point at that 
direction 

𝐼𝐼(𝒗𝒗,𝒙𝒙𝑀𝑀) = 𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1) 
so Φ(𝑿𝑿,𝒙𝒙𝑀𝑀+1) = 0 implies 

𝑎𝑎(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝑤𝑤1(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀+1) −
𝐺𝐺1(𝒙𝒙0, … ,𝒙𝒙𝑀𝑀)
𝜇𝜇(𝒖𝒖,𝒙𝒙𝑀𝑀)

= 𝑛𝑛𝐹𝐹−1𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀) 
where 

𝑎𝑎(𝒗𝒗,𝒖𝒖;𝒙𝒙) ≡ 𝑛𝑛𝐹𝐹−1𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙) + 𝑛𝑛𝐹𝐹−1
𝑏𝑏(𝒙𝒙,𝒚𝒚)
𝐿𝐿(𝒗𝒗,𝒚𝒚) + 𝐿𝐿(𝒗𝒗,𝒚𝒚) 

𝒚𝒚 being the hit point of ray fired from 𝒙𝒙 in direction −𝒗𝒗 
and 

𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙) ≡
𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙)

∫ 𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙)|(𝒗𝒗 ⋅ 𝒏𝒏(𝒙𝒙))|𝑑𝑑2𝒗𝒗
 

is “backward normalized” BDF. 
This equation admits solution which depends only 

on 𝒙𝒙𝑀𝑀 and camera ray directions before and after it: 
𝑤𝑤1 = 𝑤𝑤1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) 

because then 
𝐺𝐺1(𝒖𝒖,𝒙𝒙𝑀𝑀)

≡ �𝑤𝑤1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗 (8) 

and 𝒙𝒙𝑀𝑀+1 can be calculated from 𝒙𝒙𝑀𝑀 and 𝒗𝒗. So 

𝑤𝑤1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) =
𝑛𝑛𝐹𝐹−1𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)
𝑎𝑎(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)  

+
∫𝑤𝑤1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀) 𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗

𝑎𝑎(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)  
(9) 

This is an integral equation, unlike the “balanced 
heuristic” from [2]. In practical cases its solution is very 
expensive although it is mathematically trivial. 
Substituting 𝑤𝑤1 from (9) into (8) we obtain 

𝐺𝐺1(𝒖𝒖,𝒙𝒙𝑀𝑀) =
∫𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗

1 − 𝑛𝑛𝐹𝐹 ∫𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗
 

where 

𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) ≡
𝑛𝑛𝐹𝐹−1𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)
𝑎𝑎(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)  

is the weight “calculated neglecting G1”. 



Finally, 

𝑤𝑤1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) = 𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) +

𝐴𝐴
1 − 𝑛𝑛𝐹𝐹𝐵𝐵
𝑎𝑎(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)  (10) 

where  

𝐴𝐴 ≡ �𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀)𝑓𝑓(𝒗𝒗,𝒖𝒖;𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗 

𝐵𝐵 ≡ �𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀)𝐽𝐽(𝒗𝒗,𝒙𝒙𝑀𝑀)𝑑𝑑2𝒗𝒗 

Recall that as usual 𝒖𝒖 is the direction of camera ray 
before and 𝒙𝒙𝑀𝑀 and 𝒗𝒗 is the direction of the join path 
segment after 𝒙𝒙𝑀𝑀. 

9. Calculation of weight in ray tracing 
The general idea is that all the integrals that enter 

the weight formula are calculated with Monte-Carlo 
method from photon maps. 

In ray tracing 𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1) and 𝑏𝑏(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1) (which 
is rather similar to 𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1), just BDF is squared) are 
calculated as sums over photon hits in the integration 
sphere. 

𝑏𝑏(𝒗𝒗,𝒙𝒙𝑀𝑀+1) ≈
1
𝑆𝑆𝑁𝑁𝐹𝐹

�𝑓𝑓2�𝒗𝒗𝑝𝑝,𝒗𝒗;𝒙𝒙𝑀𝑀+1�
𝑝𝑝

 

𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1) ≈
1
𝑆𝑆𝑁𝑁𝐹𝐹

�𝑓𝑓�𝒗𝒗𝑝𝑝,𝒗𝒗;𝒙𝒙𝑀𝑀+1�
𝑝𝑝

 
(11) 

where the sums are over the FMCRT hits (𝒙𝒙𝑝𝑝,𝒗𝒗𝑝𝑝) 
inside the integration sphere around 𝒙𝒙𝑀𝑀+1.  

Notice we need weight for directions 𝒗𝒗 of: 
1. All FMCRT photons in the integration sphere 

about 𝒙𝒙𝑀𝑀 
2. Camera ray after scattering 
Thus we calculate 𝐿𝐿(𝒗𝒗,𝒙𝒙𝑀𝑀+1) and 𝑏𝑏(𝒙𝒙𝑀𝑀,𝒙𝒙𝑀𝑀+1) 

(which is in fact 𝑏𝑏(𝒗𝒗,𝒙𝒙𝑀𝑀+1)) for all that directions (or 
all that 𝒙𝒙𝑀𝑀+1, because 𝒗𝒗 = 𝒙𝒙𝑀𝑀+1 → 𝒙𝒙𝑀𝑀), see Figure 3). 
Then we have 𝑊𝑊1(𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) for all that directions. 

Approximate calculation of the integrals A and B is 
rather simple. We estimate them as 

𝐴𝐴 ≈
1
𝑆𝑆𝑁𝑁𝐹𝐹

�𝑊𝑊1�𝒗𝒗𝑝𝑝,𝒖𝒖,𝒙𝒙𝑀𝑀�𝑓𝑓�𝒗𝒗𝑝𝑝,𝒖𝒖;𝒙𝒙𝑀𝑀�
𝑝𝑝

 

𝐵𝐵 ≈
1
𝑆𝑆𝑁𝑁𝐹𝐹

�𝑊𝑊1�𝒗𝒗𝑝𝑝,𝒖𝒖,𝒙𝒙𝑀𝑀�
𝑝𝑝

 
(12) 

where the sums are over the FMCRT hits (𝒙𝒙𝑝𝑝,𝒗𝒗𝑝𝑝) 
inside the integration sphere around 𝒙𝒙𝑀𝑀. 𝑊𝑊1 for those 
directions have been all the same calculated above. 
Notice that direction of the scattered camera ray is not 
included in that sum although we know W1 for it, 
because it has another angular distribution than one 
needed to estimate this integral. 

The scheme of calculation is shown in Figure 3. 
Knowing A and B and W1 for all direction of the join 

path past 𝒙𝒙𝑀𝑀, we calculate 𝑤𝑤1 for them and thus weight 
contributions from continuation of camera ray past 𝒙𝒙𝑀𝑀 
(with weight w1) and photons near 𝒙𝒙𝑀𝑀 (with weight 1–
w1). 

As said in the very beginning weights must be 
deterministic functions of the join path. In other words 
for given (𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) the weight must be calculated the 
same during all the MCRT process.  

But if we calculate the integrals from photon map 

the result will differ from iteration to iteration because 
photon maps are changed. The remedy is to freeze the 
photon map used for calculation of integrals in the 
weight formula so that it is the same for all iterations. 
For example, we can always use photon map from the 
1st iteration. 

Notice that the calculation of luminance brought by 
the camera ray, described in Section 6, works as usual, 
i.e. it uses “the main” photon map (from current 
iteration). The set of arguments (𝒗𝒗,𝒖𝒖,𝒙𝒙𝑀𝑀) for which we 
need weights is therefore also taken from this photon 
map. It is only the sums (11) and (12) which are over 
the FMCRT hits (𝒙𝒙𝑝𝑝,𝒗𝒗𝑝𝑝) from the frozen photon map. 
Meanwhile positions of the integration spheres (that 
collect those hits) are from the current, iteration-
dependent photon map. This is natural because they 
determine only the ray segment we calculate the weight 
function for. And if in some next iteration we face the 
same ray, the weight calculated for it will be exactly the 
same, thus satisfying the conditions of unbiased 
estimation. 

Fig. 3 illustrates how the calculations are performed. 

 

 
Fig. 3. Calculation of weights for FMCRT rays that brought 
luminance to given camera ray. Blue color relates to camera 

ray, red color relates to light ray from current photon map and 
green color relates to light ray from frozen photon map. u is 

direction of the join path segment before xM, and v or v is 
direction after it; xM+1 or xM+1 is the next (counting from 

camera) vertex of the join path. In each integration sphere we 
compute L from the current photon map (used for luminance 
calculation) and b, L from the frozen photon map (used for 

weight calculation) 

10. Conclusion 
Classic MIS requires that all vertices in the join path 

be used for intersection of light and camera rays, taking 
contribution from intersection with different weights. 
The optimal weights minimize the noise functional 
which in case of BDPM differs from that in the 
“classic” MCRT [5], so the formulae for the optimal 
weights are different from those in [2,3]. But they are 
very sophisticated and it is difficult to apply them in 
practice. 
 This paper is an attempt to find a compromise: use 
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sub-optimal weights to simplify their calculation. Our 
idea is to weight just two strategies: terminate camera 
ray at this vertex or continue it by yet one segment. In 
this case there are only two weights and they are 
independent from the “early part” of light path. They 
are “sub-optimal” because the weights in all vertices but 
two are fixed and independent of the “early part” of 
light path. So the minimum of noise achieved with them 
can be reduced further (we hope not much). 
 We show that in this case the optimal weights obey a 
linear integral equation that admits solution in close 
form, i.e. solution is calculated analytically from some 
integrals that must be calculated numerically. We 
explain how they can be calculated using FMCRT.  
 From (10) we see that the optimal weights for this 
situation  
• Are not local i.e. depend on scene properties in 

points other that current path (via integrals 𝑏𝑏,𝐴𝐴,𝐵𝐵); 
• Depend on BDFs and irradiance; 
• Depend on the number of forward (light) paths 

traced in iteration; 
• Depend of the area of integration sphere, 
while the “balanced/power heuristic” i.e. the formulae 
for weights in classic bi-directional ray tracing [2, 3] 
depend only on BDFs and distribution of light source 
emission. 

In simple extreme cases the weights give 
“intuitively obvious” result.  
• If BDF at 𝒙𝒙𝑀𝑀 is very sharp, 𝑤𝑤1 = 1, i.e. we go to 

𝒙𝒙𝑀𝑀+1 to collect diffuse illumination.  
• If BDF at 𝒙𝒙𝑀𝑀 is smooth while at 𝒙𝒙𝑀𝑀+1 either BDF is 

sharp or illumination has highly nonhomogeneous in 
space, 𝑤𝑤1 = 0, i.e. we stop at 𝒙𝒙𝑀𝑀 and collect all 
illumination there.  

• If the number of lights paths 𝑁𝑁𝐹𝐹 (or integration area 
S) is very large then also 𝑤𝑤1 = 0, i.e. we stop at 𝒙𝒙𝑀𝑀. 

• If integration area is very small, 𝑤𝑤1 = 1, i.e. we go 
to 𝒙𝒙𝑀𝑀+1 and collect diffuse illumination there. 
But not contrast cases, e.g. for BDF at 𝒙𝒙𝑀𝑀 and 

nonhomogeneous illumination at  𝒙𝒙𝑀𝑀+1 the weight is 
neither 0 nor 1 and can’t be predicted that simply and 
(11) is needed. 
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