
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0)

Direct calculation of the optimal weight for MIS
S.V. Ershov1, A.G. Voloboy1, D.D. Zhdanov2, A.D. Zhdanov2, V.A. Frolov1

voloboy@gin.keldysh.ru
1Keldysh Institute for Applied Mathematics, Moscow, Russia

2National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg, Russia

A Monte-Carlo ray tracing is nowadays standard approach for lighting simulation and generation of realistic images. A widely
used method for noise reduction in Monte-Carlo ray tracing is combing different means of sampling, known as Multiple Importance
Sampling (MIS). For bi-directional Monte-Carlo ray tracing with photon maps (BDPM) the join paths are obtained by merging
camera and light sub-paths. Since several light paths are checked against the same camera path and vice versa, the join paths
obtained are not statistically independent. Thus the noise in this method does not obey the laws which are correct in simple classic
Monte-Carlo with independent samples. And, correspondingly, the MIS weights that minimize that noise must also be calculated
differently. In this paper we calculate these weights for a simple model scene directly minimizing the noise of calculation. This is a
pure direct numerical minimization that does not involve any doubtful hypothesis or approximations. We show that the weights
obtained are qualitatively different from those calculated from classic “balance heuristic” for Monte-Carlo with independent samples.
They depend on the scene distance, but not only on scattering properties of the surfaces and the distribution of light source emission.

Keywords: Monte-Carlo ray tracing, bi-directional ray tracing, photon maps, reduction of noise, multiple importance sampling,
weights.

1. Introduction

A powerful method of solution of the rendering
equations is Monte Carlo ray tracing (MCRT). It is
widely used in calculation of the global illumination [1,
2]. Its main problem is noise, and it strongly depends on
the method of generation of random points. Therefore
there were and are a lot of papers devoted to the optimal
choice of the probability distribution of ray scattering
[3–9]. One of the powerful approaches here is the so-
called Multiple Importance Sampling (MIS). Its idea is
that we generate several random samples (rays)
according to different “strategies” i.e. probability
distributions and then sum with weights their
contributions to image luminance.

The mathematics behind that was produced in the
famous thesis by E Veach [3] where the theorem was
proved about several simple schemes of weight
calculation. It was proved there that the resulting noise
is close to its minimal value. This theorem applies to the
classic MCRT method when successive random points
are absolutely independent.

Lighting simulation meanwhile frequently uses not
that simple MCRT but more advanced methods like bi-
directional Monte-Carlo path tracing (BDPT), bi-
directional Monte-Carlo ray tracing with photon maps
(BDPM) [2], their combination termed sometimes
BDCM [8, 9] etc. Here the successive trajectories are
not quite independent, for example, in the BDPM the
same forward path is “merged” with all the backward
paths. Therefore the resulting joined full trajectories
have common ”tail” and thus are not independent.

As a result, the noise in these methods follows other
rules than in the simple or classic MCRT [6]. Therefore
the weights that minimize this noise are likely different
from those which minimize the noise functional in the
classic MCRT. We shall prove it for the example of a
very simple model scene. In this scene the noise level is
dictated by geometric factors, but not by object optical
properties in form of bi-directional distribution function
(BDF), while the Veach formulae [3, 4] relate weights
to the BDFs along the ray path.

In this paper we calculate the optimal weights
directly, i.e. find the minimum of the sample variance of
the pixel value. This is performed for a simple model
scene. We demonstrate that these weights depend on the
geometry of the scene and on the number of light and
camera rays per iteration, while the known MIS
formulae from [3, 4] include only the BDFs and
distribution of light source emission.

2. BDPM and weights in it
The basic idea of BDPM is that we trace several

camera and several light rays. Then for each pair of
light + camera paths, we try to merge them in a join
trajectory that connects light and camera. If they do join
we increment the accumulated luminance. Then the next
pair is processed. After all light rays had been checked
against all camera rays they all are discarded and new
sets of rays are generated etc. Generation of the sets of
rays and then cycling over all pairs constitute one
iteration of the process. The luminance calculated in
different iterations is statistically independent.

So, an iteration which uses 𝑁𝑁𝐵𝐵 camera rays (through
given pixel!!) and 𝑁𝑁𝐹𝐹 light rays (for all pixels!)
increases accumulated luminance of a pixel by

𝛥𝛥𝛥𝛥 =
1
𝑁𝑁𝐹𝐹

�
1
𝑁𝑁𝐵𝐵

𝑁𝑁𝐹𝐹

𝑖𝑖=1

�𝐶𝐶𝑖𝑖,𝑗𝑗

𝑁𝑁𝐵𝐵

𝑗𝑗=1

(1)

where 𝐶𝐶𝑖𝑖,𝑗𝑗 is the contribution from the pair of 𝑖𝑖-th light
and 𝑗𝑗-th camera rays. Similarly to it can be written as

𝐶𝐶 = ��𝑤𝑤𝑚𝑚+𝑛𝑛,𝑚𝑚𝐸𝐸(𝑐𝑐)(�⃗�𝑥𝑚𝑚
(𝑐𝑐))𝐸𝐸(𝑙𝑙)(�⃗�𝑥𝑛𝑛

(𝑙𝑙))𝐾𝐾(�⃗�𝑥𝑚𝑚
(𝑐𝑐)

𝑛𝑛𝑚𝑚

− �⃗�𝑥𝑚𝑚
(𝑙𝑙))𝑓𝑓(⋯ ; �⃗�𝑥𝑚𝑚

(𝑐𝑐))

(2)

where 𝑚𝑚 cycles over all camera path vertices and 𝑛𝑛
cycles over all light path vertices, 𝐾𝐾 is the integration
kernel and 𝑓𝑓is BDF in luminance units at the point �⃗�𝑥𝑚𝑚

(𝑐𝑐).
Like in [3, 4], 𝑤𝑤𝑘𝑘,𝑚𝑚 is the weight for junction at the 𝑚𝑚-
th camera vertex when the join path of 𝑘𝑘 vertices (i.e.
the light half of the join path has 𝑘𝑘 − 𝑚𝑚 vertices). It
must be a function of that full path such that

�𝑤𝑤𝑘𝑘,𝑚𝑚

𝑘𝑘−1

𝑚𝑚=0

= 1

Notice that in principle we have different sets of
weights for joint paths of different total length 𝑘𝑘 (this is
obvious because they are functions of 𝑘𝑘 arguments).

3. Direct calculation of optimal weights
It follows from (1) and (2) that the increment of the

pixel luminance from one algorithm iteration is also
linear in weights: it is a sum of weights times some
random functions:

𝛥𝛥𝛥𝛥 =
1

𝑁𝑁𝐹𝐹𝑁𝑁𝐵𝐵
� ��𝑤𝑤𝑘𝑘,𝑚𝑚(𝜁𝜁𝑖𝑖,𝑗𝑗)𝐶𝐶𝑘𝑘,𝑚𝑚(𝜁𝜁𝑖𝑖,𝑗𝑗)

𝑖𝑖,𝑗𝑗

𝑘𝑘

𝑚𝑚=0

∞

𝑘𝑘=1

where 𝑖𝑖 enumerates light rays in one iteration, 𝑗𝑗
enumerates camera rays (through this pixel) in one
iteration and 𝜁𝜁 is the join path from them. 𝐶𝐶𝑘𝑘,𝑚𝑚(𝜁𝜁𝑖𝑖,𝑗𝑗) is
the contribution from the this pair (𝑖𝑖, 𝑗𝑗) constrained to
conditions

1. The paths merge into join path
2. They merge at the 𝑚𝑚-th camera vertex
3. The join path has 𝑘𝑘 vertices
If these conditions are not satisfied 𝐶𝐶𝑘𝑘,𝑚𝑚 vanish. This

resolves ambiguity how to define the join path if the
camera and light halves did not merge.

The sets of join paths from different iterations are
independent. So for this linear form the average over
iterations (= the limiting luminance) is also linear in
weights. The mean square of luminance value
calculated in one iteration is a quadratic form in
weights whose “coefficients” are averages that can be
calculated in ray tracing.

Therefore we can find those weights that minimize
the variance of the pixel luminance, i.e. the noise. These
are the optimal weights. Its direct calculation that does
not include an approximations and hypothesis is
regrettably very expensive numerically. So we shall
perform it for a simple model scene, but even this
example will give us some important conclusions.

4. Simple model scene and calculations for it

Scene layout

To simplify our calculations we use a model scene
where all join paths have the same (and small) length. It
consists of 3 parallel planes with diffuse transparency;
planes 1 and 3 have the Lambert BDF. BDF of the
middle plane 2 is arbitrary and can be made very sharp
(when direction of a transmitted ray is close to that of
the incident ray). The planes are orthogonal to Oz and
are positioned at 𝑧𝑧 = 0, 𝑧𝑧 = 𝛥𝛥2 and 𝑧𝑧 = 𝛥𝛥2 + 𝛥𝛥3
respectively. Camera looks at plane 1 at normal
direction. We consider a single pixel such that the
camera ray hits plane 1 at (0, 0, 0) point. The rightmost
plane 3 is illuminated by light source from right side,
see Fig. 1.

Fig. 1: The model scene

The spatial distribution of illumination of plane 3 is

𝐼𝐼(𝑥𝑥, 𝑦𝑦). Since transmittance is the Lambert the angular
distribution of incident light is irrelevant.

Join paths and weights

This scene has no reflection and all paths connecting
the camera and light source are qualitatively the same

camera → �⃗�𝑥1 → �⃗�𝑥2 → �⃗�𝑥3 → light

where �⃗�𝑥1 = 0�⃗ is fixed and the segment between lights
source and plane 3 is ignored because does not affect
the path contribution. Therefore the full path is
completely described by its two variable vertices, �⃗�𝑥2
and �⃗�𝑥3.

The camera and light rays can meet at planes 1, 2
and 3 whose contributions are taken with weights
𝑤𝑤0(�⃗�𝑥2, �⃗�𝑥3), 𝑤𝑤1(�⃗�𝑥2, �⃗�𝑥3) and 𝑤𝑤2(�⃗�𝑥2, �⃗�𝑥3). Because of
normalization 𝑤𝑤0 + 𝑤𝑤1 + 𝑤𝑤2 it suffices to calculate 𝑤𝑤0
and 𝑤𝑤1.

If camera and light ray meet at plane 𝑚𝑚, it is
ambiguous whether �⃗�𝑥𝑚𝑚 is camera or light hit (they can
differ by integration kernel radius). We choose camera
hit then.

Calculation of contribution

Camera path is (�⃗�𝑥1
(𝑐𝑐), �⃗�𝑥2

(𝑐𝑐), �⃗�𝑥3
(𝑐𝑐)) and light path is

(�⃗�𝑥3
(𝑙𝑙), �⃗�𝑥2

(𝑙𝑙), �⃗�𝑥1
(𝑙𝑙)) where �⃗�𝑥𝑚𝑚

(𝑐𝑐) is the hit point of camera ray
at the 𝑚𝑚-th plane, �⃗�𝑥𝑚𝑚

(𝑙𝑙) is the hit point of light ray at the
𝑚𝑚-th plane (light ray goes from plane 3 to plane 2 then
to plane 1), and �⃗�𝑥1

(𝑐𝑐) = 0�⃗ is fixed. As said above we do
not consider the light ray before it hits the plane 3; just
we start the ray by choosing the point �⃗�𝑥3

(𝑙𝑙)at random.
The contribution of these two sub-paths is
𝐶𝐶 = 𝑤𝑤0(�⃗�𝑥2

(𝑙𝑙), �⃗�𝑥3
(𝑙𝑙))𝐸𝐸(𝑐𝑐)(�⃗�𝑥1

(𝑐𝑐))𝐸𝐸(𝑙𝑙)(�⃗�𝑥1
(𝑙𝑙))𝐾𝐾(�⃗�𝑥1

(𝑐𝑐)

− �⃗�𝑥1
(𝑙𝑙))𝑓𝑓1(⋯)

+𝑤𝑤1(�⃗�𝑥2
(𝑐𝑐), �⃗�𝑥3

(𝑙𝑙))𝐸𝐸(𝑐𝑐)(�⃗�𝑥2
(𝑐𝑐))𝐸𝐸(𝑙𝑙)(�⃗�𝑥2

(𝑙𝑙))𝐾𝐾(�⃗�𝑥2
(𝑐𝑐) − �⃗�𝑥2

(𝑙𝑙))𝑓𝑓2(⋯)
+ 𝑤𝑤2(�⃗�𝑥2

(𝑐𝑐), �⃗�𝑥3
(𝑐𝑐))𝐸𝐸(𝑐𝑐)(�⃗�𝑥3

(𝑐𝑐))𝐸𝐸(𝑙𝑙)(�⃗�𝑥3
(𝑙𝑙))𝐾𝐾(�⃗�𝑥3

(𝑐𝑐)

− �⃗�𝑥3
(𝑙𝑙))𝑓𝑓3(⋯)

where 𝑓𝑓1 = 𝑓𝑓2 = 𝜋𝜋−1 while

𝑓𝑓2 =
1

2𝜋𝜋𝛽𝛽2
𝑒𝑒
− 𝜗𝜗2
2𝛽𝛽2

1
cos𝛾𝛾

where 𝜗𝜗 is the angle between the incident and scattered
rays, 𝛾𝛾 is the angle between the scattered ray and the
normal and 𝛽𝛽 is the width. As to the integration kernel,
we use the simplest one:

𝐾𝐾(�⃗�𝑥) =
1
𝜋𝜋𝑅𝑅2

�1, |�⃗�𝑥| ≤ 𝑅𝑅
0, |�⃗�𝑥| > 𝑅𝑅

L2 L3

pl
an

e
1

pl
an

e
2

pl
an

e
3

where 𝑅𝑅 is integration radius. It is small.
Denoting the camera path as 𝜉𝜉 ≡ (�⃗�𝑥1

(𝑐𝑐), �⃗�𝑥2
(𝑐𝑐), �⃗�𝑥3

(𝑐𝑐))
and light path as 𝜂𝜂 ≡ (�⃗�𝑥3

(𝑙𝑙), �⃗�𝑥2
(𝑙𝑙), �⃗�𝑥1

(𝑙𝑙)) we can write

𝐶𝐶(𝜉𝜉, 𝜂𝜂) = �𝑤𝑤𝑚𝑚(�⃗�𝑥2(𝜉𝜉, 𝜂𝜂), �⃗�𝑥3(𝜉𝜉, 𝜂𝜂))𝐶𝐶𝑚𝑚(𝜉𝜉, 𝜂𝜂)
2

𝑚𝑚=0

where
𝐶𝐶𝑚𝑚 ≡ 𝐸𝐸(𝑐𝑐)(�⃗�𝑥𝑚𝑚

(𝑐𝑐))𝐸𝐸(𝑙𝑙)(�⃗�𝑥𝑚𝑚
(𝑙𝑙))𝐾𝐾(�⃗�𝑥𝑚𝑚

(𝑐𝑐) − �⃗�𝑥𝑚𝑚
(𝑙𝑙))𝑓𝑓𝑚𝑚+1(⋯)

are independent from weights. Notice that usually in
MCRT the ray energies can be calculated
deterministically from the path. But even if they are
random this does not affect our derivation, just
𝐶𝐶𝑚𝑚becomes “more random”.

Pixel luminance calculated during 𝑀𝑀 iterations, each
of which uses 𝑁𝑁𝐹𝐹 light rays and 𝑁𝑁𝐵𝐵 camera rays, is

𝛥𝛥 =
1
𝑀𝑀
�𝓒𝓒𝑠𝑠

𝑀𝑀

𝑠𝑠=1

𝓒𝓒𝑠𝑠 ≡
1
𝑁𝑁𝐵𝐵

1
𝑁𝑁𝐹𝐹

��𝐶𝐶(𝜉𝜉𝑠𝑠,𝑗𝑗 , 𝜂𝜂𝑠𝑠,𝑖𝑖)
𝑁𝑁𝐵𝐵

𝑗𝑗=1

𝑁𝑁𝐹𝐹

𝑖𝑖=1

(3)

The contribution from each iteration (3) is random
variable and contributions from different iteration.
Therefore the variance of calculated luminance is

𝑉𝑉𝑉𝑉𝑉𝑉(𝛥𝛥) =
1
𝑀𝑀
𝑉𝑉𝑉𝑉𝑉𝑉(𝓒𝓒)

𝑉𝑉𝑉𝑉𝑉𝑉(𝓒𝓒) = ⟨𝓒𝓒2⟩ − ⟨𝓒𝓒⟩2
The averages are over the ray ensembles. They can

be approximately estimated from the sum over
iterations (the usual practice called sample mean and
sample variance).

Tabulated weights

For numerical calculations let us subdivide the
whole admissible area in (�⃗�𝑥2, �⃗�𝑥3) space in cells. The
weight is constant 𝑤𝑤𝑚𝑚,𝛼𝛼 within cell. Since formally �⃗�𝑥2
and �⃗�𝑥3 can be infinite we take some finite area and
subdivide it in a usual way, unbounded space outside it
constituting “the last cell”. Let 𝜒𝜒𝛼𝛼(�⃗�𝑥2, �⃗�𝑥3) be 1 inside
the 𝛼𝛼-th cell and 0 outside it. Then the contribution
from the 𝑠𝑠-th iteration (3) becomes

𝐴𝐴𝛼𝛼,𝑠𝑠
(𝑚𝑚) ≡ 𝓒𝓒𝛼𝛼,𝑠𝑠

(𝑚𝑚) − 𝓒𝓒𝛼𝛼,𝑠𝑠
(2)

𝐵𝐵𝑠𝑠 ≡�𝓒𝓒𝛼𝛼,𝑠𝑠
(2)

𝛼𝛼

𝓒𝓒𝛼𝛼,𝑠𝑠
(𝑚𝑚) ≡

1
𝑁𝑁𝐵𝐵

1
𝑁𝑁𝐹𝐹

��𝜒𝜒𝛼𝛼(𝜉𝜉𝑠𝑠,𝑗𝑗 , 𝜂𝜂𝑠𝑠,𝑖𝑖)𝐶𝐶𝑚𝑚(𝜉𝜉𝑠𝑠,𝑗𝑗 , 𝜂𝜂𝑠𝑠,𝑖𝑖)
𝑁𝑁𝐵𝐵

𝑗𝑗=1

𝑁𝑁𝐹𝐹

𝑖𝑖=1

Combining the tables that relate to the weights 𝑤𝑤0
and 𝑤𝑤1 into single array:

𝑊𝑊 ≡ �
𝑤𝑤0
𝑤𝑤1�

𝐹𝐹𝑠𝑠 ≡ �
𝐹𝐹𝑠𝑠

(0)

𝐹𝐹𝑠𝑠
(1)�

𝐴𝐴𝑠𝑠 ≡ �
𝐴𝐴𝑠𝑠

(0)

𝐴𝐴𝑠𝑠
(1)�

we can write
𝓒𝓒𝑠𝑠 = ⟨𝐴𝐴𝑠𝑠|| 𝑊𝑊⟩ + 𝐵𝐵𝑠𝑠

Then, since the values for different 𝑠𝑠 are
independent the average value and the mean square are

𝓒𝓒 = �𝐴𝐴�|𝑊𝑊⟩ + 𝐵𝐵
𝓒𝓒2 = ⟨𝑊𝑊|𝐷𝐷|𝑊𝑊⟩ + 2�𝐹𝐹�|𝑊𝑊⟩ + 𝐵𝐵2

where the overbar denotes the average, and
𝐷𝐷 ≡ |𝐴𝐴⟩⟨𝐴𝐴|
⟨𝐹𝐹| ≡ 𝐵𝐵⟨𝐴𝐴|

The mathematical expectation of pixel luminance is
the same for all weights, thus the limiting average
�𝐴𝐴� = 0. But for a finite number of iterations, when
convergence is incomplete, the sample average can be
slightly depending on weights. Thus the sample average
�𝐴𝐴� ≠ 0 and while calculating the sample variance over
a finite number of iterations we must account for this
dependence. This sample variance over 𝑀𝑀 iterations is
thus

𝑉𝑉𝑉𝑉𝑉𝑉(𝛥𝛥) =
1
𝑀𝑀
�⟨𝑊𝑊|𝐷𝐷|𝑊𝑊⟩ + 2�𝐹𝐹�|𝑊𝑊⟩ + 𝐵𝐵2

− ��𝐴𝐴�|𝑊𝑊⟩ + 𝐵𝐵�
2
�

so the weights which minimize it satisfy
�𝐷𝐷 − �𝐴𝐴��𝐴𝐴��|𝑊𝑊⟩ = −|𝐹𝐹⟩ + ⟨𝐵𝐵⟩�𝐴𝐴�

which is just a system of simultaneous linear equations.
However numerical experiments shown that the

solution can be rather ragged. To improve the situation a
regularization term can be added to the minimization
equation which is a penalty for high gradients.

5. Results
We performed the calculations for the case when

• plane positions 𝛥𝛥2 = 1, 𝛥𝛥3 = 3,
• BDF of plane 2 has width 𝛽𝛽 = 3∘
• illumination density 𝐼𝐼 is

𝐼𝐼(𝑉𝑉3) = �

1
300

�
𝑉𝑉𝐿𝐿𝐿𝐿
𝑉𝑉
�
2

= 3333 𝑉𝑉3 ≤ 𝑉𝑉

1 𝑉𝑉 < 𝑉𝑉3 < 𝑉𝑉𝐿𝐿𝐿𝐿
0 𝑉𝑉3 ≥ 𝑉𝑉𝐿𝐿𝐿𝐿

where 𝑉𝑉𝐿𝐿𝐿𝐿 = 20 is the radius of illuminated area and
𝑉𝑉 = 0.02 is the “aperture” (radius) of its bright central
part
• integration radius 𝑅𝑅 = 0.003
• the number of rays 𝑁𝑁𝐵𝐵 = 100, 𝑁𝑁𝐹𝐹 = 107

The scene is axisymmetrical. Therefore all functions
of (�⃗�𝑥2, �⃗�𝑥3) actually depend on 3, not 4 variables:
(𝑉𝑉2, 𝑉𝑉3,𝜑𝜑) where 𝜑𝜑 is the angle between vectors �⃗�𝑥2 and
�⃗�𝑥3 (notice that 𝜑𝜑 and 2𝜋𝜋 − 𝜑𝜑 give the same result!).
BTW one can prove that the optimal weights are
independent from 𝜑𝜑.

As said above rays fill the area with 𝑉𝑉2 and 𝑉𝑉3 up to
infinity. So we chose a finite area for each, now 0 ≤
𝑉𝑉2 ≤

1
2
, 0 ≤ 𝑉𝑉3 ≤ 0.05, subdivided it into equal cells and

then added the last cell which completes to the whole
infinite domain, e.g. 1

2
< 𝑉𝑉2 < ∞.

Trial calculations were done for several numbers of
cells. It happened that although the calculated weights
differ, the noise level is nearly the same (as it is
common for optimization). Since the weights are not
needed per se, but only the noise reduction by them, we
can use as small cells as enough to saturate the noise
level.

It happened that it was enough 1 cell in 𝜑𝜑 (i.e.
weights actually do not depend on it!), 2 cells in 𝑉𝑉2 (0 ≤
𝑉𝑉2 ≤

1
2
 and 1

2
< 𝑉𝑉2 < ∞) and 26 cells in 𝑉𝑉3 (the first 25 of

size 0.002 and the last 0.05 < 𝑉𝑉3 < ∞).
The noise was calculated for the following cases.

The calculation results are shown in Table 1:
1. rays meet at plane 1 only
2. rays meet at plane 2 only
3. rays meet at plane 3 only
4. rays meet at plane 3 only
5. optimal weights are used

Table 1. The calculation results
case 𝒘𝒘𝟎𝟎 𝒘𝒘𝟏𝟏 𝒘𝒘𝟐𝟐 𝑳𝑳×105 RMS,%

1 1 0 0 26.484 208%
2 0 1 0 26.352 254%
3 0 0 1 25.997 146%

4 0 �1, 𝑉𝑉3 ≤ 𝑉𝑉
0, 𝑉𝑉3 > 𝑉𝑉 �0, 𝑉𝑉3 ≤ 𝑉𝑉

1, 𝑉𝑉3 > 𝑉𝑉 26.352 61%

5 0 optimal 25.961 54%

Optimal weights were calculated from statistic

accumulated in 10000 iterations (Fig. 2). Optimization
was constrained to 𝑤𝑤0 = 0.

Fig. 2: The optimal weight 𝑤𝑤1 as a function of 𝑉𝑉2;

𝑤𝑤2 = 1 − 𝑤𝑤1 ; 𝑤𝑤0 was constrained to 0

6. Conclusions
We see that even in case of a direct optimization

(which gives the best result without false minima,
approximations etc.) the gain is moderate; it is about
3fold as compared to the best “fixed BDD” strategy.
This is not bad because 3fold in noise is equivalent to a
9fold increase of speed.

At qualitative level we see that the optimal weights
are not local i.e. we cannot calculate the weight (which
is as we remember a function of the vertices of join
path) from that path only. Indeed, in the above
calculation illumination of the rightmost plane was
3333 times lower for 𝑉𝑉3 > 𝑉𝑉. Let us compare it with the
case of uniform illumination. In this case the optimal
weight is very close to 𝑤𝑤2 = 1 (for all paths), so for a
join path with |𝒙𝒙3| ≤ 𝑉𝑉 the optimal weight is different
for the uniform and not uniform illumination. In other
words, the weight for this path depends on illumination
outside it.

Surely the optimal weight is still a function of the
join path but this function depends on the global scene

characteristics.
Meanwhile in the “balance heuristic” or “power

heuristic” [3, 4] this function is known in advance. Very
roughly, it calculates the weight from the ratio of BDF
at junction point to the sum of BDFs at all the vertices
of the join path. We therefore conclude that the
balance/power heuristic, derived for the usual MCRT, is
not truly optimal for BDPM because there the
“samples” (join paths) are correlated because use the
same light and/or camera path several times.

Acknowledgments
The study was carried out within the framework of

the RFBR grants 18-01-00569, 18-31-20032 and 20-01-
00547.

References:
[1] Matt Pharr and Greg Humphreys. 2010. Physically Based

Rendering, Second Edition: From Theory to
Implementation (2nd ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[2] H. W. Jensen, Global illumination using photon maps, in
Proceedings of the Eurographics Workshop on Rendering
Techniques '96, (London, UK, UK), pp. 21–30, Springer-
Verlag, 1996.

[3] Eric Veach. A dissertation: Robust Monte-Carlo methods
for light transport simulation, 1997.

[4] Jiri Vorba. Bidirectional photon mapping. In Proceedings
of CESCG 2011: The 15th Central European Seminar on
Computer Graphics, Prague, 2011.

[5] I. Georgiev, J. Křivánek, T. Davidovič, and Ph. Slusallek.
2012. Light transport simulation with vertex connection
and merging. ACM Trans. Graph. 31, 6, Article 192
(November 2012)

[6] S. Ershov, D. Zhdanov, and A. Voloboy. Estimation of
noise in calculation of scattering medium luminance by
MCRT. Mathematica Montisnigri, XLV: 60–73, 2019.

[7] S. Ershov, D. Zhdanov, A. Voloboy, M. Sorokin. Treating
diffuse elements as quasi-specular to reduce noise in bi-
directional ray tracing // Keldysh Institute Preprints.
2018. No. 122. 30 p. doi:10.20948/prepr-2018-122-e

[8] S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis,
Probabilistic Connections for Bidirectional Path Tracing,
Computer Graphics Forum, 2015.

[9] N. Dodik, Implementing probabilistic connections for
bidirectional path tracing in the Mitsuba Renderer, Sept.
2017.

About the authors
Sergey V. Ershov, PhD, senior researcher in the Keldysh

Institute of Applied Math of RAS. E-mail:
measure@spp.keldysh.ru

Alexey G. Voloboy, Doctor of Science in physics and
mathematics, leading researcher in the Keldysh Institute of
Applied Math of RAS. E-mail: voloboy@gin.keldysh.ru

Dmitry D. Zhdanov, PhD, associate professor in the
Information Technologies, Mechanics and Optics (ITMO)
University. E-mail: ddzhdanov@mail.ru

Andrey D. Zhdanov, PhD student in the Information
Technologies, Mechanics and Optics (ITMO) University. E-
mail: adzhdanov@itmo.ru

Vladimir A. Frolov, PhD, senior researcher in the Keldysh
Institute of Applied Math of RAS. E-mail: vova@frolov.pp.ru

	1. Introduction
	2. BDPM and weights in it
	3. Direct calculation of optimal weights
	4. Simple model scene and calculations for it
	Scene layout
	Join paths and weights
	Calculation of contribution
	Tabulated weights

	5. Results
	6. Conclusions
	Acknowledgments
	References:
	About the authors

