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Abstract

We describe our approach and experi-
ments to tackle Task A of the second edi-
tion of HaSpeeDe, within the Evalita 2020
evaluation campaign. The proposed model
consists in an ensemble of classifiers built
from three variants of a common neural ar-
chitecture. Each classifier uses contextual
representations from transformers trained
on Italian texts, fine tuned on the train-
ing set of the challenge. We tested the
proposed model on the two official test
sets, the in-domain test set containing just
tweets and the out-of-domain one includ-
ing also news headlines. Our submissions
ranked 4th on the tweets test set and 17th
on the second test set.

1 Introduction

The spreading of hateful messages on social
media has become a serious issue, therefore tech-
niques of hate speech detection have become quite
relevant. The goal of the Hate Speech Detec-
tion task (Sanguinetti et al., 2020) at Evalita
2020 (Basile et al., 2020) is to improve the auto-
matic detection of hate messages in Italian tweets.
The organizers provided to the participants the
dataset HaSpeeDe2, which consists of 6,837 Ital-
ian tweets, containing, besides the raw text, also
hashtags and emojis. The Task A can be cast into
a binary classification task: the model has to pre-
dict whether a given message contains hate speech
or not.

Approaches based on transformer models have
become quite popular recently and have proved ef-
fective in reaching state-of-the-art scores on major
NLP tasks such as those of the GLUE benchmark
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(Wang et al., 2018). With our experiments we try
to assess the effectiveness of transformers trained
on Italian documents in a task involving Italian
texts from different sources. We experiments with
both a transformer model trained specifically on
Italian tweets and one trained on generic web doc-
uments.

We combine several instances of classifiers
based on these transformers, in order to address
the problem of over-fitting due to the small size of
the training set.

For this edition of the Evalita HaSpeeDe task,
the organizers released two test sets, an in-domain
one consisting of tweets and an out-of-domain one
containing also news headlines.

The ensemble model of our official submission
achieved a competitive score of 78.03 Macro-F1
on the in-domain test set but did not perform as
well on the second test set.

We make available the source code for our
experiments as Open Source at https://
github.com/mikelefonty/Haspeede2.

2 Related Work

The first edition of HaSpeeDe was held in 2018.
The results produced during this contest were the
starting point of our research. As described in
(Bosco et al., 2018), most of the systems were
based on neural networks and used word embed-
dings, such as FastText (Grave et al., 2018) or
word2vec (Polignano and Basile, 2018) in the first
layer of their architecture. The embeddings layer
was usually followed by a Recurrent Network or
a Convolutional Neural Network to get an internal
representation of the input text. This hidden repre-
sentation was provided as input to a series of dense
layers to obtain the final classification result.

Over the last couple of years, the trend in ap-
proaches to language analysis has changed con-
siderably, as can be seen by examining the models
used in competitions like SemEval 2020 OffensE-



val 2 (Zampieri et al., 2020). In these new models,
to get a better text representation, the embedding
layer is often replaced by a Transformer (Vaswani
et al., 2017) such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), or Multilingual BERT
(Devlin et al., 2019).

We followed this trend but we also focused our
attention on the problem raised by the small size
of the dataset. As Risch and Krestel (2020) men-
tion, transformer models tend to have a high vari-
ance with respect to the input dataset, that often
leads to overfitting. The authors therefore suggest
to implement an ensemble of classifiers to reduce
the variance and consequently improve the gener-
alization capabilities of the trained model.

In the following, we describe a similar approach
based on the Bagging technique (Breiman, 1996),
where we apply three different transformer-based
classifiers to populate the ensemble and to get the
final prediction.

3 System Architecture

During the design phase of our classifier, we
looked for a transformer trained directly on a sig-
nificantly large collection of Italian texts and par-
ticularly on Italian tweets, in order to compensate
for the small size of the training data. We found
two possible models based on BERT: AlBERTo
(Polignano et al., 2019) 1 and DBMDZ 2. The for-
mer is trained on TWITA (Basile et al., 2018), a
191 GB collection of Italian tweets gathered by
the authors, and tested on the SENTIPOLC task
during the EVALITA 2016 campaign, where it
achieved state-of-the-art accuracy in subjectivity,
polarity, and irony detection on Italian tweets. We
considered this model suitable for hate speech de-
tection, since its source are Italian tweets and the
SENTIPOLC task is a classification task similar
to ours. DBMDZ instead is trained on a more gen-
eral domain, from a 13 GB dataset, which includes
a dump of Italian Wikipedia and texts from web
pages selected from the Opus Corpora. 3 We de-
cided to test both transformer models, assessing
their performance through a validation phase on a
development set.

These transformers were used in the input stage
of all our architectures, providing contextual em-
beddings for sentences that were fine tuned during

1https://github.com/marcopoli/AlBERTo-it
2https://huggingface.co/dbmdz/bert-base-italian-uncase
3http://opus.nlpl.eu/

training. We designed three architecture variants,
which were employed as the basic building blocks
to construct the ensembles:

• ALB-SINGLE: It consists of a first layer
provided by the AlBERTo transformer, fol-
lowed by a single neuron with a sigmoid ac-
tivation function.

• DB-SINGLE: It follows the same structure
of ALB-SINGLE; it just replaces AlBERTo
with DBMDZ in the first layer.

• DB-MLP: Compared to DB-SINGLE, it
adds a new dense layer, using a ReLU acti-
vation function, between the transformer and
the output neuron.

The final model is an ensemble consisting of a
number of instances of each of the above architec-
tures. For each architecture, e.g. ALB-SINGLE,
we construct instances in the following way. After
initializing the weights randomly within a given
interval and generating the training data by apply-
ing the bootstrap technique to the original dataset,
we start training the model. When that phase is
over, we insert the resulting model in the ensem-
ble. We repeat this process several times with dif-
ferent random weights initialization. Note that,
due to the random initialization, no two classifiers
in the ensemble are identical to each other. More
formally, the model consists of N elements,

N = NAL +NDB +NMLP

where NAL, NDB , NMLP represent, respectively,
the number of instances of ALB-SINGLE, DB-
SINGLE and DB-MLP classifiers.

In retrospect, it might have been worth while
to consider instances of the architecture obtained
varying them more thoroughly than just in the
initial weights, for example, by changing in the
hyper-parameters or number of layers.

Our classification algorithm is a slight general-
ization of the most classical one, which collects
results from each member of the ensemble and
outputs the class which gets the majority of pre-
dictions over all iterations. The process, described
by Algorithm 1, performs nrun iterations. Dur-
ing the ith iteration, the algorithm starts sampling
randomly from the ensemble a given number of
instances for each type of classifier (line 3-5) and
initializing to 0 the variable class1, which con-
tains the total number of votes that the hate class



Algorithm 1 Classification Algorithm
Input: t: the tweet to classify.
Input: (nAL, nDB, nMLP ): number of classifiers
of each type to be sampled.
Input: (NAL, NDB, NMLP ): number of classi-
fiers of each type in the ensemble.
Input: nrun: number of desired iterations.
Output: cfinal: predicted class

1: preds = []
2: for run = 1 to nrun do
3: albs = sample al(nAL, NAL)
4: dbs = sample db(nDB, NDB)
5: mlps = sample ml(nMLP , NMLP )
6: sampled classif = albs ∪ dbs ∪mlps
7: class1 = 0 // votes for class 1
8: for cl in sampled classif do
9: class1 += cl(t) // cl’s classification

10: end for
11: preds[run] =(

class1 ≥ dnAL+nDB+nMLP
2 e

)
12: end for
13: cfinal =

[(
nrun∑
i

pred[i]

)
≥ dnrun

2 e
]

14: return cfinal

receives during the iteration (line 7). It then col-
lects the predictions of the selected models on the
tweet t (line 8-10). cl(t) ∈ {0, 1} represents the
prediction of classifier cl for the tweet t; in particu-
lar cl(t) = 1 if and only if cl classifies t as hateful.
The output of iteration i is the most predicted class
(line 11). The final result of the algorithm is then
the class cfinal ∈ {0, 1}, which obtained the most
votes over all the nrun iterations (line 13-14). If
cfinal = 1, it means that the tweet t has been clas-
sified as hateful.

A simpler variant of the algorithm would be to
just add the counts of each class by all classifiers in
all iterations and return the class with the highest
count. We plan to compare these two approaches
in a future work.

4 Experiments

In this section we describe the experiments we
performed to tune the hyper-parameters of our
model. We will focus on the search to choose
the best values for nDB , nAL, nMLP , that is how
many instances to select at each iteration in the
classification algorithm.

Before starting the experiments, we divided the

Classifier Macro-F1 Std

ALB-SINGLE 76.896 0.7266
DB-SINGLE 77.613 0.3251
DB-MLP 78.562 0.521

Table 1: Results of the experiments comparing
the baseline architectures. We report the expected
value and the standard deviation of the F1 score
computed with respect to the 3 validation folds.

dataset into two disjoint subsets, a development
and an internal test set, in the proportion of 80%
and 20%, respectively. The split was done by
means of Stratified Sampling, according to the dis-
tribution of the target variable hs. We applied
the Stratified 3-fold-CV technique to validate our
model. Given that we are solving a binary classi-
fication problem, we picked the Binary Cross En-
tropy as our loss. We chose AdamW as our op-
timizer; we set the first 10% of the total steps as
warmup steps. We conducted the experiences on a
GPU offered by Google Colab 4. Our models are
implemented in PyTorch (Paszke et al., 2019). To
extract as much information as possible from input
texts, we preprocessed them through hashtag seg-
mentation by means of Tweet Preprocessor.5 We
also converted emojis into their Italian description
by using the emoji 6 and Google Translate 7 li-
braries.

We analyzed the behaviour of the three baseline
architectures we planned to include in the ensem-
ble.

We trained each model for a maximum of 4
epochs, using a batch of size 16 and setting the
maximum text length to 100. A grid search re-
vealed that the optimal learning rate for DB-MLP
is 5 · 10−5, and 6 · 10−5 for the remaining mod-
els. The optimal number of neurons in the hidden
layer of DB-MLP is 50.

Table 1 highlights the following aspect: DB-
SINGLE achieves better performance than ALB-
SINGLE, even though the dataset used to train
AlBERTo was composed by a large collection of
tweets. The obtained values of the macro-F1 are
the baselines of our work.

We then describe the results obtained through

4https://colab.research.google.com/
5https://pypi.org/project/tweet-preprocessor/
6https://pypi.org/project/emoji
7https://pypi.org/project/googletrans/



nDB nMLP nAL Macro-F1 Std

20 25 30 80.057 0.534
15 20 25 80.038 0.580
15 30 30 80.036 0.585
15 25 30 80.026 0.563
15 30 15 80.020 0.481

Table 2: Ranking of the 5 best configurations we
found, varying the number the number of instances
selected from the ensemble. nDB stands for the
number of instances of the DB-SINGLE model,
and similarly for nMLP and nAL. We report the
expected value and the standard deviation of the
F1 score computed with respect to the 3 validation
folds.

nDB nMLP nAL Macro-F1 Std

30 0 0 79.074 0.300
0 30 0 79.581 0.3787
0 0 30 79.482 0.596
30 30 30 79.832 0.525

Table 3: Scores by each architecture, both indi-
vidually and together in the ensemble. We report
the average value and the standard deviation of the
F1 score computed with respect to the 3 validation
folds.

the ensemble model. To build the classifier, we
trained 30 instances of each architecture, keeping
the same hyper-parameters obtained from the pre-
vious grid search. We thus set:

NAL = NDB = NMLP = 30

We noted that the generalization capability
of the ensemble is strictly related to the triple
(nDB, nMLP , nAL), so we performed another grid
search, looking for the optimal combination of the
three parameters. Table 2 shows the five best con-
figurations found by this search. The optimal val-
ues for the triple, (20, 25, 30), allow the ensemble
to achieve an F1-score of 80.0%, with a gain of
about 2 points with respect to the score by a single
DB-MLP (see Table 1).

We analyzed the contribution of each architec-
ture individually to the ensemble combination. As
shown in Table 3, the best results are obtained with
instances of all three architectures. Nevertheless,
the results presented in Table 2, show that a more
balanced combination achieves better accuracy.

Accuracy Precision Recall F1

79.313 78.510 78.685 78.592

Table 4: Results of the final model on the internal
test set.

We picked the first configuration from Table 2
for our final model and tested it on the internal test
set, obtaining the results shown in Table 4.

5 Results and Discussion

The results of our final model applied to the data
of the two official test sets of the competition are
shown in Table 5. The model performs pretty well
on the in-domain dataset, reaching the 4th posi-
tion in the rankings. However, it did not rank as
well in detecting hate speech on the out-of-domain
dataset, obtaining an F1-score of just 65.46. The
low recall for the hate class highlights that the
model fails too often to identify news headlines
containing some form of hate speech. In compar-
ison with the official top rankings, listed in Table
6, our model achieved about 12 points below the
top score of 77.44% F1.

Surprised by this fact, we investigated more
deeply, looking for an explanation for such poor
result on the out-of-domain dataset.

We randomly sampled from the test set some
hateful headlines missed by the model, some of
which are shown in Table 7.

In these headlines, the qualification as hate is
implicit and harder to recognize, since it seems
due more to the presence of stereotypes (nomads,
asylum seekers, Muslims, foreigners), than to the
presence of explicit hate expressions.

Broadly speaking, we identified some possible
reasons for the difference in performance across
the two test sets:

• Linguistic register: Tweets often exhibit a
more informal and colloquial language, while
headlines employ a more formal lexicon and
a more objective tone. This is a crucial differ-
ence in identifying hateful messages: while
in tweets the feeling of hatred transpires
clearly and directly, in headlines this message
is conveyed in a more subtle way, often allud-
ing to concepts from political propaganda or
common stereotypes. Prior knowledge about
the subject and inference might be necessary



NOT HATE HATE
Precision Recall F1 Precision Recall F1 Macro-F1 Position

Tweets 81.93 72.85 77.12 74.89 83.44 78.94 78.03 4
News 71.88 99.37 83.42 96.61 31.49 47.50 65.46 17

Table 5: Results of the submitted model on the official blind test sets.

Tweets News

Position F1 score Position F1 score

1 80.88 1 77.44
2 78.97 2 73.14
3 78.93 3 72.56
4 78.03 (ours) 4 71.83
5 77.82 5 70.2
6 77.66 17 65.46 (ours)

Table 6: Comparison between our final results and
the top-5 F1-scores. The values are taken from the
official rankings.

Hateful News Headlines

anziana rapinata sull’autobus, i due no-
madi in fuga si rifugiano al campo di via
Candoni
(elderly woman robbed on the bus, the two
fleeing nomads take refuge at the camp on
via Candoni)

Expo: Bordonali, richiedenti asilo in
campo base simbolo fallimento governo.
(Expo: Bordonali, asylum seekers in base
camp government failure symbol.)

Il cardinale Müller: ”non possiamo pre-
gare come o con i musulmani”
(”we cannot pray like nor with Muslims”)

Salvini: ”Il calcio? Rimpiango i tre
stranieri in campo”
(Salvini: ”Soccer? I regret the three for-
eigners on the field”)

Table 7: Examples of hateful headlines, randomly
picked from the out-of-domain test set, that are
misclassified by our model.

to decipher the presence of hate. Examining
the entire body of the article might have been
helpful.

• Length of text: Tweets are usually longer

than news headlines. Thus, the model has
fewer elements to exploit to correctly classify
a piece of news.

These difficulties seem to be shared with other
submissions which all got lower scores on the out-
of-domain dataset. We expected that pretrained
contextual embedding would be more effective in
addressing the domain adaptation issue. Further
experiments would be needed to improve the re-
silience of our model.

6 Conclusions

We described an ensemble of neural classifiers,
relying on contextual embeddings from transform-
ers, for automated detection of hateful content in
Italian texts. We presented the general architec-
ture of our base classification models and how
they were combined into an ensemble through a
bagging technique. We performed extensive ex-
periments to tune our models and the ensemble
on a validation test set. The results achieved by
our ensemble model on the in-domain test set con-
firm its ability in detecting hateful tweets; however
the same model performed poorly on the out-of-
domain dataset, showing particularly an inability
to adapt to handling news headlines. We plan to
investigate this issue in future research.
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