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Abstract

We describe in this paper the system
submitted by the DH-FBK team to the
HaSpeeDe evaluation task, and dealing
with Italian hate speech detection (Task
A). While we adopt a standard ap-
proach for fine-tuning AIBERTo, the Ital-
ian BERT model trained on tweets, we
propose to improve the final classifica-
tion performance by two additional steps,
i.e. self-training and oversampling. In-
deed, we extend the initial training data
with additional silver data, carefully sam-
pled from domain-specific tweets and ob-
tained after first training our system only
with the task training data. Then, we re-
train the classifier by merging silver and
task training data but oversampling the lat-
ter, so that the obtained model is more
robust to possible inconsistencies in the
silver data. With this configuration, we
obtain a macro-averaged F1 of 0.753 on
tweets, and 0.702 on news headlines.

1 Introduction

Although hate speech detection may seem a solved
task on English, with more than 60 systems partic-
ipating in the last Offenseval edition reaching an
F1 > 0.90 (Zampieri et al., 2020), this goal has
not been reached when moving to other languages
and settings. For example, at the last HaSpeeDe
shared task on Italian (Bosco et al., 2018) the best
systems reached 0.83 F1 on Facebook data and
0.80 on Twitter data (Cimino et al., 2018), but the
performance dropped below 0.70 F1 when dealing
with a cross-domain setting, i.e. training on Face-
book and testing on Twitter (Cimino et al., 2018),
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and vice-versa (Corazza et al., 2018). Other re-
cent studies confirmed that detecting hate speech
on different social media platforms would require
a platform-specific setting, and that just merging
all training data coming from different sources
does not always improve performance, in particu-
lar when testing on Twitter (Corazza et al., 2019).

The problem of developing hate speech detec-
tion systems that are robust when analysing differ-
ent sources or data that vary over time is however
an understudied problem. Therefore, the task of
out-of-domain classification introduced this year
at HaSpeeDe is particularly important and will
hopefully foster the development and evaluation of
classifiers with good generalisation capabilities.

Concerning our classification approach, we
build a standard pipeline based on AIBERTo
(Polignano et al., 2019b), the Italian transformer-
based model trained on Twitter data, since BERT-
like models represent the state of the art for hate
speech detection (Zampieri et al., 2020). We ex-
tend it in two ways: first, we use self-training to
build a first classifier with the task training data
and annotate a large set of tweets collected via
Islam- and immigrant-specific hashtags. The sil-
ver data and the task training set are then merged
to train a second, possibly more robust classifier,
which we use to classify the test set. When re-
training, we introduce over-sampling in one of the
two runs submitted by our team, i.e. we repeat
five times the task training data so that they are
balanced with respect to the silver data. This, to-
gether with self-training, proved to be effective
when evaluated in a five-fold fashion on the train-
ing set, outperforming a standard approach based
only on fine-tuning with AIBERTo.

2 Related Work

While most approaches to hate speech detection
have been proposed for English, other systems
have been recently developed to deal with a num-



ber of other languages, including Turkish, Arabic,
Danish (Zampieri et al., 2020), German (Wiegand
et al.,, 2018) and Spanish (Basile et al., 2019).
Concerning Italian, the first Hate Speech Detec-
tion task (HaSpeeDe) for Italian was organized at
EVALITA-2018 (Bosco et al., 2018). The task
consisted in automatically annotating messages
from Twitter and Facebook, with a boolean value
indicating the presence (or not) of hate speech.
The participating systems adopt a wide range of
approaches, including bi-LSTM (la Pefia Sarracén
et al., 2018), SVM (Santucci et al., 2018), ensem-
ble classifiers (Polignano and Basile, 2018; Bai et
al., 2018), RNN (Fortuna et al., 2018), CNN and
GRU (von Grunigen et al., 2018). The authors of
the best-performing system, ItaliaNLP (Cimino et
al., 2018), experiment with three different classifi-
cation models: one based on linear SVM, another
one based on a 1-layer BiLSTM and a newly-
introduced one based on a 2-layer BiLSTM which
exploits multi-task learning with additional data
from the 2016 SENTIPOLC task (Barbieri et al.,
2016). The same training and test set released for
HaSpeeDe have been recently used also for other
types of evaluation, for example to compare classi-
fier performance and settings across different lan-
guages (Corazza et al., 2020), confirming the im-
portance of domain-specific language models and
the effectiveness of deep learning approaches (in
this case, LSTM + fasttext embeddings). Since
the development of BERT-like transformer-based
models, however, they have become state-of-the-
art approaches in several NLP tasks. This includes
also hate speech detection for Italian, with the
BERT model AIBERTo (Polignano et al., 2019b),
which has recently achieved top-scores in two out
of three HaSpeeDe 2018 tasks (Polignano et al.,
2019a). For this reason, we decided to develop a
classifier using the same model and the same ap-
proach.

3 Task Description

For the 2020 edition of EVALITA (Basile et al.,
2020), the HaSpeeDe task (Sanguinetti et al.,
2020) has focused on three main phenomena rele-
vant to online hate speech detection by proposing
three different tasks:

e Task A (main task): binary classification task
aimed at determining whether a message con-
tains hate speech or not

e Task B: binary classification task aimed at de-
termining whether a message contains stereo-
types or not

e Task C: sequence labeling task aimed at rec-
ognizing nominal utterances in hateful tweets

We participate in Task A, which in 2020 has
the goal also to investigate variation in language
and time concerning hate speech detection. To this
purpose, the training set contains Twitter data, ac-
companied by a test set including both in-domain
and out-of-domain data (tweets + news headlines),
as well as from different time periods.

4 Data

In our experiments we use two types of data, the
HaSpeeDe?2 dataset provided by the task organis-
ers, and domain-specific data collected from Twit-
ter, that we include as silver data. The two datasets
are described below.

4.1 HaSpeeDe2 Dataset

This dataset contains the training data provided
by the organizers. These data specifically focus
on the presence or the absence of hateful con-
tent towards immigrants, muslims or roma people.
It consists of 6,839 annotated tweets, with 2,766
messages annotated as hateful and 4,073 as non-
hateful.

4.2 Silver data description

Since the task is focused on hate speech against
immigrants and minorities, we decided to exploit
a set of tweets in Italian that covers similar topics
and that was collected within the European project
Hatemeter! (Ferret et al., 2019). For this project,
conducted between February 2018 and January
2020, we downloaded tweets using hashtags of
hate towards the Islam community, for example
#nomoschee, #stoplslam, etc. Even if the dataset
mainly covers Islam, references to other minorities
like Roma or generic Immigrants are also present.
To ensure that also other minorities are well rep-
resented, we randomly select from this dataset
tweets that contain the most common words as
chosen from the training data provided by task or-
ganizers, i.e. Rom, nomade, migrante, straniero,
profugo, islam, mussulmano (musulmano), terror-
ista. Overall, around 20,400 additional tweets
were selected. We then perform a first round of

'http://hatemeter.eu/



classification of the “new” tweets using the avail-
able data provided by organizers as training. This
results in a new silver dataset composed of 11,129
hate and 9,254 non-hate tweets. This additional
dataset is then merged with the task gold data and
used to re-train the classifier. Details are reported
in the following Section.

S System Description

The classifier developed for both runs submitted
by our team is based on the Italian BERT model
trained on tweets, called AIBERTo (Polignano et
al., 2019b). After fine-tuning it on the task train-
ing data, we use the obtained classifier to automat-
ically annotate the additional dataset described in
Section 4.2. These silver data are then merged
with the task training data and used to fine-tune
AIBERTo a second time. For one of the two sub-
mitted runs, we also experiment with oversam-
pling as follows:

e Runl: we add the silver data to the tweets
provided by the organizers for the training,
keeping 500 of the released tweets for vali-
dation. In this setting, the training set size is
~27,000 tweets, including 20,400 silver in-
stances.

e Run2: we add the silver data to the tweets
provided by the organizers as in Runl, but
the tweet from organizers are oversampled by
repeating them five times (and shuffling) in
the training set, while tweets from the silver
dataset occur only once. In this setting, the
training set includes ~52,000 tweets, with
39% of them being silver data.

We tested also the option to automatically as-
sign a tag to each tweet, stressing the presence of
a certain topic (immigrants/roma people/islam) us-
ing a keyword-based approach. However, with this
additional information the classifier performed
worse than without any topic indicator, so we re-
moved it from the final runs. Below we report
a detailed description of the process to select the
best classification model, and of the preprocessing
steps.

5.1 Model selection

The best performance in a wide variety of NLP
tasks is currently obtained with approaches based
on BERT (Devlin et al., 2019), a pre-trained

transformed-based language model that can be
fine-tuned and adapted to specific tasks by adding
just one additional output layer to the neural net-
work. As different BERT models exist, we first
evaluated whether to use a multilingual version
of BERT or the Italian version trained on Twitter
data, called AIBERTo (Polignano et al., 2019b).

The comparison and evaluation of the differ-
ent models and approaches is done with a 6-fold
cross-validation using the task training set. Each
fold consists of about 1,000 tweets as test while
the others are used as train and validation (500
tweets). The performance score is obtained as the
average of the six folds, so that the final evaluation
is unbiased and independent as much as possible
from the specific splits into train, validation and
test.

In our setup we tested two models, first Mul-
tilingual BERT, covering 104 languages including
Italian % and then AIBERTo, which was trained us-
ing the official BERT source code on 200M tweets
in the Italian language. For the fine-tuning of Al-
BERTo we run it for 15 epochs, using a learning
rate of 2e-5 with 1000 steps per loops on batches
of 64 examples. Since AIBERTo performed bet-
ter than multilingual BERT on each fold, it was
included in the final system configuration for the
task. The cross-validation over 6 folds using only
the task training set with AIBERTo resulted in an
average Macro-F1 of 83.12 for Runl and 82.15 for
Run2.

5.2 Data Preprocessing

The data, both from the dataset provided by the
organisers and the silver one, are preprocessed as
follows. First we split hashtags by adapting to
Italian the Ekphrasis tool (Gimpel et al., 2010),
which recognises the tokens in a hashtag based
on Google n-grams. With the same tool we also
normalise the text to replace all mentions to users
and urls with <user> and <url> respectively. We
also replace with a dedicated tag all the instances
of “money”, “time”, “date” and in general any
“number*. The emojis are replaced with their de-
scriptions? in order to have a textual representation
to be used with AIBERTo.

2with 12-layer, 768-hidden, 12-heads, 110M parameters

Smanually translated to Italian from the English descrip-
tion at rhttps://unicode.org/emoji/charts/
full-emoji-list.html.



Hate class Non-hate class Macro Avg.
DocType. | System Precision ‘ Recall ‘ F1 Precision ‘ Recall ‘ F1 F1
Runl 0.7237 | 0.7958 | 0.758 0.7806 | 0.7051 | 0.7409 0.7495
Run2 0.727 0.8006 | 0.762 0.7855 | 0.7083 | 0.7448 0.7534
Tweets | baselineMF 0 0 0 0.5075 1.000 | 0.6733 0.3366
baselineSVM | 0.7096 | 0.7347 | 0.7219 | 0.7334 | 0.7082 | 0.7206 0.7212
best system 0.8088
Runl 0.6833 0.453 | 0.5448 | 0.7395 | 0.8808 | 0.804 0.6744
Run2 0.6911 | 0.5193 | 0.593 0.7609 | 0.8683 | 0.8111 0.702
News baselineMF 0 0 0 0.638 1.000 | 0.7789 0.3894
baselineSVM | 0.6071 | 0.3756 | 0.4641 | 0.7087 0.862 | 0.7779 0.621
best system 0.7744

Table 1: Results of the two submitted runs for Task A on tweets and on news headlines. BaselineMF =
most-frequent baseline; baselineSVM = linear SVM with unigrams, char-grams and TF-IDF representa-

tion

6 Evaluation

We submitted two runs each for the in-domain
(tweets) and out-of-domain (news headlines) text
types in Task A. The results obtained on the test
set are reported in Table 1 and compared with two
baselines provided by the task organisers, one ob-
tained by always assigning the most frequent la-
bel (i.e. non-hateful), and the other by training
an SVM classifier with unigrams, char-grams and
TF-IDF representation as features. We also com-
pare our results with the top-ranked system in each
subtask (additional details on such systems have
not been disclosed at the moment of writing).

As expected, on out-of-domain data (news
headlines) we obtain lower results than on tweets,
since the training set is retrieved exclusively from
Twitter. Furthermore, our approach does not in-
clude any specific tuning aimed at treating news
headlines differently from tweets. On the con-
trary, the additional data used for self-training are
all gathered from Twitter, which may negatively
affect performance on out-of-domain data.

On both document types, Run2 performs better
than Runl, showing that our oversampling strat-
egy to reduce the weight of silver data is effec-
tive. However, results obtained with 6-fold cross-
validation only on the training set were signifi-
cantly higher, both with macro F1 > 0.80. This
may be explained by the fact that, as pointed out
by the task organisers, tweets from the test set
were collected in a different time period than those

in the training set. This will likely make the two
sets different in terms of topics.

Actual Values

Run 1
non-hate | hate
. non-hate 452 127
Predicted | | e 189 | 495
Run 2 Actual Values
non-hate | hate
. non-hate 454 124
Predicted | | e 187 | 498

Table 2: Confusion matrix on tweets results

We report in Table 2 and 3 the confusion ma-
trix showing the number of true positives and neg-
atives, and false positives and negatives obtained
with the two runs on tweets and news headlines.
While on tweets the performance on the hate class
is overall better, in particular concerning recall,
this does not apply to news headlines, with a low
recall for the hate class. The reason for this low
score lies in the different linguistic expressions
connected with hate between tweets and head-
lines: while in tweets they are more direct, and
more frequently connected with profanities that a
classifier can easily recognise, hateful content in
news headlines is usually expressed in more subtle
ways. As an example, we report below two head-
lines misclassified by our system. The first one
(i) was classified as non-hateful, even if it conveys
hateful content. The second one (ii) was instead
classified as hateful, although it is not:




Actual Values
Run 1

non-hate | hate

. non-hate 281 99
Predicted hate 33 22
Run 2 Actual Values
non-hate | hate

. non-hate 277 87
Predicted hate 42 4

Table 3: Confusion matrix on news headlines re-
sults

1) Sea Watch, I'ultima presa in giro degli immi-
grati all’ltalia: i minori nati tutti lo stesso
giorno (EN: Sea Watch, migrants making fun
of Italy: all underage migrants born on the
same day)

1) Matera, Salvini contestato durante il
comizio. E lui risponde: “Bravi, avete vinto
dieci immigrati da mantenere” (EN: Matera,
Salvini challenged at a rally, and he replies:
“Congratulations, you won ten migrants to
pay for”)

Both examples have a similar structure, are
written in standard Italian and mention migrants.
Furthermore, the second example reports a hateful
direct speech, but since it is only reported it does
not mean that the journalist agrees with what was
said by the politician Matteo Salvini.

7 Conclusions

In this paper we described the system devel-
oped by the DH-FBK team to participate in the
HaSpeeDe shared Task A. We submitted two runs,
both based on AIBERTo and using in-domain
silver data as additional training data in a self-
learning framework. The only difference between
the two configurations is that, for Run2, the task
training data were repeated five times, to balance
the weight of silver data.

Our evaluation shows that, both in a cross-
validation setting and on the task test set, over-
sampling has a positive effect on the classification
results. As expected, performance on in-domain
data (i.e. training and testing on tweets) is better
than on out-of-domain data (i.e. training on tweets
and testing on news headlines). In the future, we
may try to address this issue by including as silver
data also news headlines, so that also the speci-
ficity of this kind of text is taken into account. For

a better data quality, it may be useful to select only
the silver instances that have been automatically
classified with high confidence.
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