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Abstract. Because it depends on multiple atmospheric and oceanographic variables interacting
with each other at the sea surface, accurately forecasting offshore surface wind speed is challenging
for oceanographers. However, with the expansion of today’s Big Ocean Data, the same offshore
site can now be monitored by multiple sensors such as hydrophones, satellites or weather buoys.
These data are highly heterogeneous, but each of them can potentially bring complementary
information on an ocean process. In this paper, a deep generative model is designed to jointly
represent Underwater Passive Acoustics (UPA) and Synthetic Aperture Radar (SAR) images into
the same latent space to describe surface wind speed located in the Ligurian Sea (North Western
Mediterranean Sea). Qualitative and quantitative results obtained demonstrate that SAR images
are able to refine the estimation of UPA for low wind speeds.
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1 Introduction

1.1 Context

Winds over the ocean help transfer heat, moisture, gases and particulates into and out of the ocean.
Modulation of these transfers regulate the interaction between the atmosphere and the ocean, which
establishes and maintains both global and regional climates. In definitive, wind is the largest source of
momentum for the ocean surface, impacting individual surface waves and complete current systems.
Thus, knowledge of the wind characteristics over the vast space of oceans is important to weather
forecasting, ocean navigation, and climate study.

Wind measurements are primarily obtained in-situ from anemometers located at small island
weather stations, on ships, and on buoys floating in the ocean. Complementarily, remote sensing has
also been widely used (see e.g. [2]). One of active microwave radar instruments is Synthetic Aperture
Radar (SAR). SAR ocean surface wind retrieval has been originally based on a single observed quan-
tity; the co-polarized Normalized Radar Cross Section (NRCS). This variable represents the normalized
amount of electromagnetic waves backscattered by the sea surface roughness. At first order, it depends
on the incidence angle of the electromagnetic (EM) waves, the wind speed and relative direction with
respect to the emitting EM waves. This relation can be modelled by tranfer function called the Geo-
physical Model Function (GMF) or CMOD (C-band MODel) when applied to C-band scatterometer
(e.g. CMOD 4 [17], CMOD5n [7]). The traditional inversion scheme is derived from the scatterometry
community [15]. The RMSE of the wind speed generated by C-band SAR image is in the order of 1.5
m/s. The NRCS can be significantly polluted by non-wind related features, especially for low wind
situation where oceanic signatures may appear (oceanic front, biological slicks, ...).

Much more marginally, Underwater Passive Acoustics (UPA) has also been used to estimate wind
speed above ocean surface. The so-called acoustic meteorology discipline has been an active research
field since the pioneering work of Nystuen et al. [12], which consists in analyzing ocean ambient noise
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to infer above-surface meteorological conditions such as wind speed and/or rainfall precipitation. It has
been performed both with fixed hydrophones [9,13], and more recently with mobile acoustic platforms
such as ARGO profilers [18], gliders [5,4] and free-ranging biologged marine mammals [6].

1.2 Motivations and objectives

Our current study aims to develop original deep learning-based frameworks for wind speed estima-
tion following a multi-modal approach. Such an approach consists in fusing different data modalities
(coming a fortiori from different sensor types) at an early stage level during the estimation process,
which distinguishes it from cross-validation procedures (e.g. between in-situ sensor and remote sens-
ing estimations) that are widely used in oceanography. From a more signal processing point of view,
though the information present in a specific sensor compared to another has completely different sta-
tistical properties altogether, the spatio-temporal co-occurrence of their observation should guarantee
the existence of an intrinsic relation and common underlying factors between them. For a long time
now, a whole branch of machine learning has developed models to better capture such relations that
span multiple data modalities (including the recent multimodal deep learning branch [11,1]). Such
multi-modal learning representations are investigated with the goal of generating more performing and
generalisable representations than uni-modal ones for downstream tasks, where it is now recognized
that better decomposed representations [10] are more amenable for use on a wider variety of tasks.

In this paper, we propose to learn a joint representation using the MMVAE model by Shi et al.
[16] between two different data modalities, namely UPA time series and SAR images, which will be
applied to ocean wind speed estimation in open ocean. A successful learning representation on this
task will be measured by improving classification performance through the multi-modal representation
w.r.t. uni-modal representations.

2 Material & Method

2.1 Material

Study area Our study area has been centred around the W1-M3A monitoring platform [3], held by the
National Research Council of Italy5. It is located in the Ligurian Sea off the coast of Genoa (43◦83’N
9◦11’E).The climatic and geophysical characteristics common to the region are described in further
detail by [14].

UPA data UPA data were collected from a Passive Acoustic Listener (PAL) attached to the W1-M3A
platform at a depth of 36 m. Each data block consists of 4.5 seconds long time series of ambient
noise sampled at 100 kHz. PAL subsampled each record eight times in order to create sequences of
1024 points corresponding to 10.24 ms that are Fast Fourier transformed to generate 512-point spectra
compressed to 64 frequency bins with a resolution of 200 Hz from 100 to 3000 Hz and of 1 kHz from 3
to 50 kHz.

SAR images NRCS SAR images have been acquired by Sentinel-1A/B satellites. For the sake of this
study, the averaged effect of the incidence angle is compensated for (hereafter called “detrend NRCS”).
Even tough the relative wind direction can impact the radar roughness, this variable is omitted for this
proof of concept. Detrend NRCS images are calculated over a grid of 100 by 100 km centered on the
W1-M3A station, with a spatial resolution of 1 km/pixel. They span over 5 years from 2015 to 2020.
As we are interested in local wind speed estimation (i.e. km scale), we further split our images in five
4 × 4 pixels sub-images around the W1-M3A station, which also allowed us to get more SAR samples.
In total, n = 1, 291 SAR images were retrieved.
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Wind speed Wind speed data used as ground-truth in our study were retrieved from the ERA-Interim
data set of the European Center for Medium-Range Weather Forecasting (ECMWF), based on the
global atmosphere model reanalysis developed at the ECMWF. All wind measurements were converted
on the Beaufort scale. This scale is an empirical measure that relates wind speed to observed conditions
at sea or on land6.

Dataset distribution On Fig. 1, the distribution of UPA and SAR samples over the Beaufort scale
is shown. The unbalanced between Beaufort classes for both modalities will be compensated during
evaluation using well-known stratified cross-validation procedures and balanced accuracy.

(a) SAR (b) UPA

Fig. 1: SAR and UPA data Beaufort scale distribution

2.2 MMVAE architecture

Fig. 2: MMVAE diagram

The MMVAE model proposed by Shi et al. [16] was implemented to learn the joint representation of
UPA and SAR modalities. Each modality is fed into a specific VAE [8] and then combined. Therefore,
the obtained multi-modal latent space is built by linear combination of uni-modal latent spaces [16].
This learning process is described in Fig. 2. Each modality is projected into a joint latent space
before being decoded by every modality’s decoder. This architecture generates a latent space robust
to missing or deteriorated modalities, since uni-modal projections share the same networks to decode
their features.

6 See the wikipedia page https://en.wikipedia.org/wiki/Beaufort_scale for more information.
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This model was re-implemented in Tensorflow 2.0 based on the original pytorch code7. We trained
the model for 500 epochs with a batch size of 64 using Adams optimizer.

3 Numerical experiments and discussion

3.1 Embedding visualization

An MMVAE was trained with random pairs of SAR and UPA over the same Beaufort scale. For
visualization purposes, we tuned the model to fit a 2-dimensional latent space. Fig. 3 shows the obtained
results from the multi-modal training. On Fig. 3, uni-modal and multi-modal latent spaces were plotted.
We observed that the multi-modal representation was more distended than uni-modal ones, with a less
dense but still continuous latent space, making it more visually interpretable with class clusters more
distinguishable.

3.2 Wind speed classification

We performed a classification task on multi-modal and both uni-modal latent spaces to predict wind
speed on the Beaufort scale. We computed multi-class classification performance from each latent
space using an SVM with an RBF kernel following a two-fold cross-validation. The multi-modal model
obtained the best performance with an overall balanced accuracy of 52.0% (±1.0), outperforming both
uni-modal model performance, by about 14% for UPA (38.1% ± 1.1) and by 10% for SAR (38.1% ±
1.1). Our multi-modal representation was thus able to find complementary features between UPA and
SAR modalities as illustrated by the distension of the multi-modal latent space represented on Fig. 3.

3.3 Cross-modality transfer knowledge

To illustrate cross-modality transfer knowledge between the UPA and SAR modalities in finer details,
we took a closer look at low wind speed values (Beaufort class ≤ 1) that were misclassified using the
UPA-only representation. Indeed, it is known that UPA-based meteorological systems tend to over-
estimate low wind speed occurrences as during these periods wind speed noise-generated is no longer
the predominant source in the ocean, and other sources such as breaking waves or passing boats can
then easily fool UPA estimations [6].

These misclassified samples have been drawn as pink dots in the different latent spaces of Fig.
3. It is quite clear to observe graphically that the regions of pink dots are much closer to their true
“location” in the SAR’s latent space than in the UPA’s one. And the interesting part of this result is
that this knowledge from the SAR modality, which allows to correct a UPA bias on low wind speed,
has been directly transferred to the UPA modality when embedded in the multi-modal representation.

To illustrate this more quantitatively, we computed confusion matrices for each modality separately
and for the multi-modal model (Fig. 4). For example, when looking at the true Beaufort class 0, we
can see that UPA alone misclassified a significant proportion of samples, with more than 65 % of them
predicted in a class superior or equal to 2, while this proportion decreased to 43 % for SAR alone and
to 41 % for UPA+SAR. This provides experimental evidence that our multi-modal model is able to
leverage complementarity between the modalities to overcome individual weaknesses, here in the case
of low-wind speed events where UPA-based estimation of wind speed may easily be corrupted by other
acoustic sources.

4 Conclusion and perspectives

To conclude, we are paving the way to unlock the potential of multi-modal wind speed classification,
which could offer unique opportunities to improve our knowledge of wind speed based on heterogeneous

7 https://github.com/iffsid/mmvae
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(a) UPA latent space

(b) SAR latent space

(c) Multi-modal latent space

Fig. 3: Multi-modal and uni-modal latent spaces
visualization

(a) UPA

(b) SAR

(c) UPA + SAR

Fig. 4: Multi-modal and uni-modal confusion ma-
trices (prediction percentage per true Beaufort
scale)
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measures. Our results showed that wind speed at an offshore site could be better estimated by using
both UPA and SAR images as inputs of a multi-modal neural network. Moreover, we demonstrated
that these two modalities are complementary. They both learn different but useful representations that
capture underlying aspects of wind speed. Because we essentially focused our work on the multi-modal
joint representation, we did not optimize our uni-modal architectures, and preferred to use dense layers
over RNNs and CNNs. Future work may be the development of better uni-modal models that can
better integrate and exploit the richness of our different modalities.
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