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Abstract. Data driven approaches have been used extensively to pre-
dict extreme weather condition and used in conjunction with classical
Numerical Weather Prediction models for a computationally inexpensive
yet precise short-term forecasts. With machine learning advances and
increase in computational power and efficiency, robust and precise short-
term forecasting methods can be developed that finds wide range of usage
from marine warnings to early warnings for extreme weather events. In
this work we address the problem of nowcasting of a cyclone that has been
known to be one of the deadliest extreme weather events. Few previous
research from machine learning perspective have adequately addressed
this issue. Accompanied by strong devastating winds and heavy rain,
they are known to cause heavy damage upon landfall. Cyclone track pre-
diction is important for mitigation of damages and early warnings. We
propose a Joint Learning model that simultaneously predicts the dis-
tance and direction of a cyclone 6 hours in advance, given the past track
data.
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1 Introduction

With the effects of climate change becoming more prevalent, machine learning
plays a pivotal role in not only predicting extreme weather events but also work-
ing in conjunction with other fields [19] to both mitigate and adapt. While
climate modelling remains expensive, deployment of satellites and simulated
models have produced massive amount of data and with increase in computa-
tional efficiency along with improvements in GPUs and TPUs, climate scientists
have adapted machine learning assisted techniques to improve the state-of-the-
art forecasting methods. Cyclones are known to be a major devastating form
of extreme weather event and data-driven methods have proven to successfully
predict the cyclone tracks and intensity.

Cyclones are a strong system of wind rotating inwards towards a low pres-
sure zone and are sometimes also referred to as hurricanes or typhoons. Studies
by NOAA (National Oceanic and Atmospheric Administration) and researchers
[5], [22] have predicted that owing to global warming, in the coming years we
might experience an increase in storm intensity by 1-10%. They mainly form in
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the warm ocean waters near the equator due to strong Coriolis Force and affects
countries in the tropical regions worldwide. With major destructive elements
of the cyclone like high-pressure gradients and consequent strong winds result-
ing in storm surges and heavy rainfall (especially in coastal areas with shallow
bathymetry), cyclones remain a ubiquitous form of hydro-meteorological disaster
with massive destructive power, causing loss of lives and economy.

Thus prediction of cyclone track remains of paramount importance for early
disaster warnings and mitigation purposes. But mercurial traits with the likes
of sudden weakening, rapid intensification or phenomenons such as Fujiwhara
Effect[6] and Trochoidal Effect cause significant change in cyclone trajectory,
making the prediction of cyclone tracks quite arduous.

A crucial task for forecasting such high-impact weather conditions is short-
term prediction (also referred as nowcasting) for extreme consequences of cy-
clones like heavy rainfall and flash floods to optimize protective measures. Now-
casting, as defined by World Metereological Society is ”the detailed description of
the current weather along with forecasts obtained by extrapolation for a period
of 0–6 h ahead”. Thus these predictions needs to be computationally efficient
and fast. Our work addresses nowcasting of a cyclone track by predicting the
distance and direction from it’s last known position, 6 hours in advance by
learning from the past track data of the storm.

Our primary contributions in this work can be summarized as:

– We propose a novel approach addressing the Nowcasting problem of deter-
mining the distance and direction of a cyclone from it’s past location,

– The proposed model is lightweight and easily adaptable to output other
required features like intensity, windspeed etc.

1.1 Related Work

Evolving from single-station approaches to methods involving meteorological
tools, cyclone prediction models have come a long way. But while many cyclone
prediction models like dynamical, statistical, statistical-dynamical and ensem-
ble models have been used by NOAA, they remain either computationally too
demanding or fail to capture the time-sequential dynamics between variables of
natural events. For example, classic statistical models like BCD5 uses only 0D
features like longitude, latitude, windspeed, J-day predictor, etc.

While in most cases statistical model driven approach is used for this pur-
pose, recent disemmination of cyclone data collected from various meteorological
sources coupled with an increased computational power of GPUs and TPUs fa-
cilitates the usage of a more data-driven approach in tackling this issue. Over the
past few years machine learning models have been used to address the cyclone
track prediction problem.

[11] designed Globenet that takes 3D satellite imagery as inputs and has
Complex CNN (Convolutional Neural Network and Inception Units) to predict
the location of a single typhoon center. [14] used Artificial Neural Networks
on satellite images of a cyclone. [4] focused on cyclone eye detection based on
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satellite imagery and used PCA for this purpose. [12] used Convolutional LSTM
based model to predict Cyclone track. [20] used Generative Adverserial Network
on satellite images of typhoons in Korean peninsula to predict the track. [8]
used fusion of 3 different Neural Networks : the Wind CNN and the Pressure
CNN take atmospheric fields as input while Past track + meta NN takes 0D fea-
tures as input. Each network first learns its parameters independently and then
they are combined and retrained again. Grid-Based RNN was proposed by [1]
that employed stacked LSTM over a gridded plane derived from superimposing
finer grids over latitude and longitude. A study using sparse RNN on trajectory
data was tested on 6h and 12h forecast for 4 hurricanes [15]. Another research
used storm tracks and reanalysis maps for a hybrid ConvNet-LSTM network for
learning the coordinates and output 6h forecast result [16].

While numerous aforementioned methods have been employed on cyclone
track data for forecasting, the number of models deployed to address the problem
of nowcasting remains limited. Also the prediction of distance and direction of
a storm simultaneously, thereby giving the precise location of a storm from it’s
last known position has not been addressed directly. The proposed approach thus
aims to address Cyclone nowcasting by predicting the distance and direction of
a cyclone given its past track data. A demand for higher precision and resolution
as compared to traditional forecasting models makes the problem of nowcasting
challenging. To the best of our knowledge this work presents a method to learn
the precise location of a cyclone while learning from it’s past data by a Joint
Learning approach for the first time.

1.2 Overview of proposed approach

While Convolutional LSTMs have been used previously [12], our proposed ap-
proach takes the Joint Learning approach to address the Nowcasting issue with
high precision, predicting the distance and direction of a storm 6 hours in ad-
vance. With the shared parameters in the initial layers, our method employs two
different paths involving LSTMs along with Fully Connected layers to learn the
distance and direction of a cyclone simultaneously. The joint learning approach
lets us not only address the problem of predicting the distance and direction of
a cyclone with high accuracy but also helps us utilize the intricacies of dynamic
behaviour of the cyclones embedded in the data.

2 Dataset

The dataset is taken from [7] and in it’s raw form comprises of more than 3000
tropical and extra-tropical storm tracks from both North and South hemispheres
recorded since 1979, collected from NOAA database IBTrACS (Fig. 1). Each
storm track is sampled at a frequency of 6 hourly centre location in terms of
latitude and longitude. The number of records per storm varies from 2 to 120
time steps, containing more than 90000 time steps overall. Some 0D features are
added to the data and comprises of latitude, longitude, maximum windspeed
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Fig. 1. Global distribution of cyclones in dataset

Fig. 2. Correlation between
Number of Datapoints vs Dis-
tance travelled for cyclones

change in the last 12 hours, Jday predictor (Gaussian function of (Julian day
of storm init - peak day of the hurricane season)), basin of the current location
and distance to land.

The reanalysis data is extracted based on the storm centre’s present location
for every time step t, consisting of: 3 maps at 700hPa level with resolution of
25x25 degrees subsampled to 11x11 pixels where 1 pixel = 2 degrees (altitude
z, u-wind, v-wind), sea surface temperature, sea level pressure, humidity and
vorticity at 700hPa with resolution of 11x11 degrees where 1 pixel = 1 degree.

Predicting the distance and direction of a cyclone can prove to be of immense
help for averting the losses incurred from cyclone landfall. Thus for each storm
we have augmented the distance traveled and direction (angle of travelled path),
as stated in [1].

We observe a correlation between distance travelled and the number of dat-
apoints for each storm (Fig. 2), which although not explicitly evident from the
data, motivated us in utilizing recurrent units to predict direction and distance
of travel.

3 Methodology

3.1 Preprocessing

Besides improving the data quality, preprocessing raw data also helps in remov-
ing outliers and deal with missing values. The dataset comprises of latitude and
longitude but it is easier for a neural network to learn from distance vectors
since these values do not have negative values and also allows the network to
learn from relative rather than absolute parameters. Thus we have added two
new columns in our data with the angle of travel and the distance[1]. This has
in turn also helped us to remove some outliers to give the data a normal distri-
bution, which has been shown to help RNNs to learn faster, generalize better
and converge significantly faster[3].
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We have standardized the data by removing the mean and scaling it to unit
variance, giving it a normal distribution. Standard Scaler [18] from sklearn has
been used for this process. We prefer Standard Scaler over MinMax Scaler so as
not to suppress the effects of outliers in the data.

The two major components used in this model are as follows:

3.2 Convolutional Neural Network

At its heart is the convolution operation which is a linear operation of multi-
plying a set of weights with the input. Using a filter size smaller than the input
data, detection of a specific type of pattern across the input becomes easy. This
operation produces an abstraction of the input called a feature map.

Convolution has the advantage of sparse interactions, parameter sharing and
equivalent representation. The network can efficiently learn complicated inter-
actions between variables, making it more efficient than matrix multiplication
and learn different features appearing in the input from a timeline, produced by
convolution [9]. We thus utilize this feature extracting property of Convolutional
Layer to act as a mediator for shared parameters in two separate networks to
learn distance and direction.

3.3 LSTM / Recurrent element

Operating over a sequence of vectors, recurrent units have the property of con-
serving information within states and has proven to be conducive in modelling
temporal dynamic behaviour for time sequences by utilizing their memory (in-
ternal states). But vanilla RNNs tend to work well for shorter sequences or de-
pendencies and are unable to connect information over long term dependencies.
Hence LSTMs come to the rescue with it’s inherent design to handle long-term
dependencies [10] while avoiding vanishing and exploding gradients. The major
advantage of LSTM is the memory cell ct that accumulates state information.
It comprises of: Forget Gate : Essentially a sigmoid layer, this decides on the
information to be conserved from previous states

ft = σ (Wf · [ht−1, xt] + bf ) (1)

Input Gate : This step decides what new information is to be stored in the
cell state. It comprises of two parts : first a sigmoid layer, also called input gate
layer gives the values to be updated. This is followed by a tanh layer that creates
a vector C̃t of a new candidate value that is to be added to the next state.

it = σ (Wi · [ht−1, xt] + bi) (2)

C̃t = tanh (Wi · [ht−1, xt] + bi) (3)

Update stage : This step updates the old state [Ct−1] into the new state [Ct].

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)
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Output stage : We obtain the output based on our cell state.

ot = σ (W0 · [ht−1, xt] + b0) (5)

ht = ot ∗ tanh(Ct) (6)

LSTMs have found widespread application in tasks involving sequence learn-
ing. In our model, this forms an essential element in learning the trajectory from
the past records of a given storm.

3.4 Joint Learning

Fig. 3. Joint Learning Model for Cyclone track Nowcasting by predicting Distance and
Direction of a Cyclone together

While handling complicated tasks, deep architectures perform much better
when compared to shallow networks[2] because of multiple levels of non-linear
operations.

LSTMs performs temporal modelling on the input features directly. It has
been shown by [17] that LSTM learns better temporal structure from a higher
level of abstraction. The major drawback of Fully Connected-LSTM while deal-
ing with spatiotemporal data is the usage of full connections in input-to-state
and state-to-state transitions in which no spatial information is encoded [23].
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Therefore to reduce variance in frequency as stated in [21], we feed the data into
CNN before passing it to LSTM, thus enabling a better modelling of the spa-
tiotemporal relation. The proposed model has a Convolutional Layer for feature
extraction from the input data while LSTM handles the sequence prediction task
across time steps. Sharing a part of the model across tasks constrains that part
towards better values and thus a better generalization, as stated in [9].

The model can be segmented primarily into two parts: Task specific parame-
ters (LSTM + Dense Layer) and Generic parameters, shared across all the tasks
(Convolution Layer).

The input data contains storm track of 1481 storms (filtered out of 3000 storm
tracks) and reshaped to contain 6193 samples, 6 time steps and 856 features.

The proposed model starts by passing Input data (x) into CNN. The Con-
volution layer has 512 filters (with each filter of size 5), kernel size of 2 and a
stride of 1. The activation is defaulted to linear as it allows multiple outputs
when compared to other types of activation in the model and works more as a
linear regressor. This provides us a generic embedding of the input features.

This output Cout is then fed into two separate LSTMs (R1 and R2), each
with 200 cell states. The activation is kept as tanh(hyperbolic tangent), that
bounds the output within (-1, 1). LSTM instead of working on raw time steps is
now operating on a higher level of abstraction of input time steps. These LSTM
cells are now able to structure the temporal behaviour of the data.

x1 = σ (W0 ~ [ht−1, Cout] + b0) (7)

x2 = σ (W0 ~ [ht−1, Cout] + b0) (8)

. ~ denotes the Convolution operator.
Finally we keep two Fully Connected layers, with size 64 and 128 respectively

followed by two separate Dense Layers of size 1 for the output.
We finally obtain the Distance and Direction from the two separate paths

respectively.

Distance = tanh(w12(tanh(w11x1 + b11)) + b12) (9)

Direction = tanh(w22(tanh(w21x2 + b21)) + b22) (10)

We feed the network data from previous 5 time steps to forecast the next
location of the cyclone.

From the same set of weights and shared parameters, a model cannot be
expected to perform well for predicting two separate outputs. That is why we
keep two separate networks to give a generalized embedding which helps in
predicting two different outputs i.e. distance and direction.

4 Results

4.1 Experimental Setup

For realizing the proposed method we have used Keras, that is an API integrat-
ing lower-level languages like Tensorflow. With over 250000 users as of mid-2018,
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Keras has been used in research and industry alike and is been used in Uber, Net-
flix, Yelp, etc including large organizations with the likes of CERN and NASA.
By using Keras, the designed model is pretty quick to train thus saving a lot of
time for hyperparameter tuning.

The learning rate has been kept as 0.0001. Adam optimizer is used for the
model; as stated in [13], it is well suited for non-stationary objectives and com-
putationally efficient. This model was trained on a machine with 8 GB RAM and
4 GB NVIDIA Ge1050Ti and has taken 119.639 seconds to train successfully.

Huber Loss is being used to evaluate the model’s performance. We have
taken both Mean Squared Error and Minimum Absolute Error as a performance
metric to evaluate our model. The dataset was split into 75% for training purpose
while 25% data was kept for validation purpose. The test dataset comprised of
739 storm track data. The number of trainable parameters are 2,056,642.

4.2 Comparison

Since the joint prediction of distance and direction of a storm has not been
adequately addressed before, we primarily keep our comparisons to a few models
we tried out. We have also used the Stacked LSTM concept proposed in [1] in the
essence that the outputs are modified to have 2 outputs simultaneously (thereby
avoiding the error inherent from resolution of 1x1 degrees latitude by longitude).

We show a table of the aforementioned methods in comparison to ours.

Table 1. Model Comparison

Distance Direction

Methods MSE MAE MSE MAE

Conv + Stacked GRU 6.982 2.454 2.539 1.181

Conv + Stacked LSTM 10.355 2.816 4.494 1.832

Stacked LSTM 0.550 0.580 1.663 0.978

Joint Learning 0.270 0.390 1.561 0.928

Our model can be observed to give significant better performance when com-
pared to other methods from Table 1.

As an adage it can also be seen that stacking multiple recurrent units re-
quire more trainable parameters and are more susceptible to vanishing gradient,
thus unable to produce good result over this dataset. The proposed model is
computationally more efficient as compared to other models.

5 Conclusion

In this work we focused on the nowcasting problem for a cyclone track. The
model can be integrated with present consensus methods for providing a more
accurate yet computationally efficient short-term forecasting method. With some
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Fig. 4. Distance and Direction MAE obtained

significant improvement over some past methods used in predicting the cyclone
track, the proposed model is computationally less expensive and shows more
promising result in predicting the precise location of a cyclone 6 hours ahead,
given it’s past trajectory record.

While our method takes a joint learning approach, further enhancements to
the method might be possible with physics guided model that are consistent
with physical laws.
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Climate Change Analysis” project undertaken by Department of Computer Sci-
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normalization. arXiv preprint arXiv:1603.09025 (2016)

4. DeMaria, R., Chirokova, G., Knaff, J., Dostalek, J.: P189 machine learning algo-
rithms for tropical cyclone center fixing and eye detection

5. Emanuel, K.: Will global warming make hurricane forecasting more difficult? Bul-
letin of the American Meteorological Society 98(3), 495–501 (2017)

6. Fujiwhara, S.: The natural tendency towards symmetry of motion and its applica-
tion as a principle in meteorology. Quarterly Journal of the Royal Meteorological
Society 47(200), 287–292 (1921)



10 Abhijit Mukherjee and Pabitra Mitra

7. Giffard-Roisin, S., Gagne, D., Boucaud, A., Kégl, B., Yang, M., Charpiat, G., Mon-
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