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Abstract. Multi-spectral satellite data provides vast resources for im-
portant tasks such as flood detection, but training and fine tuning mod-
els to perform optimally across multi-spectral data remains a significant
research challenge. In light of this problem, we present a systematic ex-
amination of the role of tri-band deep convolutional neural networks
in flood prediction. Using Sentinel-2 data we explore the suitability of
different deep convolutional architectures in a flood detection task; in
particular we examine the utility of VGG16, ResNet18, ResNet50 and
EfficientNet. Importantly our analysis considers the questions of different
band combinations and the issue of pre-trained versus non-pre-trained
model application. Our experiment shows that a 0.96 F1 score is achiev-
able for our task through appropriate combinations of spectral bands
and convolutional neural networks. For flood detection, three-band com-
binations of RB8aB11 and RB11B outperformed 33 other combinations
when trained with pre-trained ResNet18 and other models. Our anal-
ysis further demonstrates a strong performance by pre-trained models
despite the fact that these pre-trained models were originally trained on
different spectral bands.

Keywords: Remote Sensing · Deep Convolutional Neural Network ·
Multi-spectral · Flood Detection · Sentinel-2.

1 Introduction

Floods are natural hazards that occur throughout the year in many different
parts of the world, and can occur for reasons including heavy rainfall, melting
snow or tsunamis. Floods damages properties and agricultural areas, and are also
highly hazardous to human life [10]. These factors together highlight the need
for timely and accurate detection in order to make flood management operation
more effective. To this end satellite data processing has become a vital diagnostic
tool.

Satellite data provides much more than simple RGB (Red-Green-Blue) im-
age data. Instead satellites are multi-spectral instruments (MSI) that generate
multi-spectral and sometimes hyper-spectral data over very different wavebands
to RGB. The importance of this is that different spectral bands are reflected
or absorbed differently depending on geo-physical properties, e.g., short-wave
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infrared (SWIR) bands can discriminate between wet soil and dry soil whereas
near infrared (NIR) wavelength are absorbed by water and reflects by vegetation.
This property of MSI provides volumes of information in terms of reflectance at
specific wavelengths across geographic areas.

Observing and mapping floods using satellite image data is an active area
of research with many promising and effective techniques being developed [18,
15]. The main challenges using satellite data present in urban areas and in areas
of high vegetation coverage. Challenges are due to water having variations in
optical properties across different geographical features such as rivers, lakes,
oceans, ponds and floods due to their different compositions, depths and local
interactions. Local composition issues make shallow waters, for example rivers,
difficult to detect.

Approaches to the multi-spectral imaging processing have evolved in recent
years. Traditional approaches to multi-spectral data processing rely on hand-
crafted features of spectral reluctances. These indexing techniques are known to
be sub-optimal for image processing. Recent trends in Deep Neural Networks
provide an opportunity to learn optimal predictive functions that fully leverage
the potential of available MSI satellite data. While deep networks and CNNs in
particular are highly successful in image classification, they generally requires
large amount of labelled data. For this reason pre-trained models are of great
use, and have shown great performances in several domains.

One challenge with pre-trained models is that they have generally been
trained only on 3 channel image data corresponding to Red, Green and Blue
information. The specific types of features that they have been trained to iden-
tify are dependent on combinations of these spectral bands. It is not obvious
whether the features that have been learned are easily applicable to other com-
binations of spectral bands such as what is required for flood detection.

Given the innate advantage of CNNs in a task such as flood detection, in
this paper we examine the effectiveness of pre-trained vs non-pre-trained CNN
models on multi-spectral satellite image data processing. We do this specifically
for the task of flood detection, using Sentinel-2 data. Three concerns are par-
ticularly interesting here: how well do different pre-trained models trained on
RGB compare to each other when used for to our multi-spectral flood detection
task; is there a notable improvements over models trained from scratch on multi-
spectral input data; and is there a specific three-band combination of spectral
bands that outperforms others (pre-trained models have been trained on three
bands which means that three bands need to be input when using such models).
Before proceeding to introduce the specifics of our investigation, we first review
some key related work.

2 Related Work

It is long known that different wavelengths vary considerably in their reflectances
for different geo-physical properties such as presence of water bodies or vegeta-
tion, and indeed the presence of specific chemicals. Given these reflectance prop-
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erties, many thresholding techniques [2, 12] and water indexing techniques [13,
19, 6] have been proposed in the past to identify pixels corresponding to water
in multi-spectral images.

Since these handcrafted indexing techniques have been developed to detect
water bodies in general, they are not useful for distinguishing flood water from
permanent water bodies. One of the reasons for their inefficiency is that flood
water is usually shallow and possesses a similar reflectance value as built-up areas
or cloud shadows, and that their images contain mixed pixel values due to sedi-
ments and other objects [3]. Ideally, in order to detect a flood these techniques
require pre-flood and post-flood images, which may not be always available.
Since water indices are based on the bands capabilities of highlighting certain
geological properties, it is reasonable to analyse different combinations of bands.
Additionally, this provides a wider and more robust detection criteria, using au-
tomatic detection without any handcrafted features or static thresholding, as
these are highly sensitive to several factors such as region, and similar spectral
signature.

Rather than having to rely on handcrafted features, in recent years it has
been shown that deep learning based CNNs provide great performance in sev-
eral remote sensing tasks, for example scene classification, building mapping
or detection of passable roads [8, 1]. There have been many variants on CNN
architectures over the last few years with models such as VGG [16], ResNet
[7], EfficientNet [17] on the forefront. Unfortunately, there is no universal CNN
architecture that could be applied to every task, and a model that is state-of-
the-art in one domain, is not necessarily guaranteed to be effective in another
domain. Since CNNs have the ability to learn spatial as well as spectral fea-
tures of the images [20], this is valuable in multi-spectral satellite imaging where
spatial variance is also important. For example, EuroSat data contains a large
amount of high resolution images for land cover classification. ResNet50 is the
most successful model on this data, classifying with 98.57% accuracy [8].

Training a residual network requires a large amount of data, which may not
be available. Transfer learning, which means pre-training the network on huge
amount of available datasets such as ImageNet on the ILSVRC challenge [5], and
then adjusting the model by inputting domain specific data, may be the solution
in those cases and have demonstrated very good performance in the past [9, 11].
The drawback of transfer learning is that all available pre-trained models use
three channels, i.e. RGB. As multi-spectral satellite data typically offers around
10-13 bands, specific three band combinations need to be found that are suitable
for flood detection from satellite images, which is where this work seeks to make a
contribution. It is currently unclear whether wavelength dependent deep learning
models generalise well to other wavelength combinations.

3 Study Design

Below we set out the detail of our study including the selection of data, the selec-
tion of candidate CNN models, the training processing, and evaluation methods.
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3.1 Data

SENTINEL-2 provides high-resolution, multi-spectral images, and monitors land,
vegetation, soil and water cover, as well as observation of inland waterways and
coastal areas. It has multi-spectral instrument (MSI) samples with 13 spectral
bands. Among the 13 spectral bands, four bands are at 10 metres, six bands at
20 metres and three bands at 60 metres spatial resolution.

We leverage the annotated dataset provided by the MediaEval1 2019 compe-
tition [4]. The data consists of 335 image sets with 267 identified as development
sets and 68 as test sets. Each set consists of between 1 to 24 day time series
images of before and after flood events; this provides a total of 2,770 images.
We filtered images which did not had full coverage or had full cloud coverage,
which made our dataset total with 2180 images. The data has 12 bands instead
of the 13 bands available on SENTINEL-2, which comes in three different sets
of resolutions: 10 metres, 20 metres and 60 metres. Each 10 metre resolution
images 512 X 512 pixels in size, 20 metre resolution images are of 256 X 256
pixels, and 60 metre images are of 128 X 128 pixels in size. Among 12 bands, we
excluded 60m band images, which left us with 10 bands in total.

The development dataset is split into three parts: training, validation, and
test, in the ratio of 80:10:10. The split was done based on location that is 267
set of images, to remove any learning bias in our test data. Although the data
provides us with time-series data but we haven’t utilise the temporal information
in our current work. Additionally, we performed image augmentation by shifting,
rotating, and flipping the images with batch sizes of 16 and 8 in order to increase
our training dataset and remove any biases.

3.2 Image Pre-Processing and Processing

Sentinel-2 bands Wavelength (nm) Resolution(m)
B – Blue 492 10
G – Green 559 10
R – Red 664 10
B5 – Vegetation red edge 704 20
B6 – Vegetation red edge 740 20
B7 – Vegetation red edge 782 20
B8 – NIR 832 10
B8a – Narrow NIR 864 20
B11 – SWIR 1613 20
B12 – SWIR 2202 20

Table 1: Band Notations Used and their Wavelength
and Spatial Resolution

As the reflectance value range
varies considerably for different
bands, we normalised image’s each
band’s pixel or reflectance value to
a standard range from 0-255. Fur-
thermore, we up-scaled the 20m
resolution band images to 10m res-
olution images due to the fact
that images were provided with
two different spatial resolutions.
After normalising and up-scaling
we stacked three different bands to-
gether to form various three chan-
nel combinations. The process of
selecting the three band combina-
tions was based on the selection of bands rather than sequence they are stacked.

1 http://www.multimediaeval.org/mediaeval2019/
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This made 120 combinations from 10 base bands, out of which we showed only
33 combinations in this work, whose overall F1 score was greater than threshold
value of 75.

Available spectral bands, their names, and shorthand notations for each band
are provided in Table 1; here we used R, G, B as is, while other bands no-
tations were used as per their wavelength positions. Given this notation, and
the 10 bands, we analysed 33 band combinations as follows: RB8aB11, RB11B,
B7B11B, B7GB11, B8B11R, B6GB, B8aGB, RB8aB, B7GB, B7GB8, RGB11,
B7B8aB11, B7B8aB, B8GB, RB8B, RB8aB7, RGB8, B7B8B, B11GB, B7B8B11,
RB11B7, RB7B, B8aB11B, B8aGB11, B5GB, B7GB8a, RGB7, RGB8a, RB12B,
B8GB11, RB8B7, RGB and B8B11B.

3.3 CNN based Training Models

The basic building block of a CNN is a multi-tier network which includes convo-
lution layer, pooling layer, and fully connected layer, which extracts the features
such as lines and edges. Over time CNNs have evolved and are now able to learn
more features by increasing the depth and width of the network, which we call
a deep CNN. There are many variants of CNN architectures available. We ex-
amine three important variants: VGG [16], Deep Residual Network ResNet [7],
and EfficientNet [17]. These networks are popular due to their performance in
image classification tasks. All considered networks are very deep and released in
several depth variants. For example, VGG has an architecture with 16 and an
architecture with 19 layers.

Fig. 1: Experiment Design

This study uses ImageNet pre-trained variants of VGG16, ResNet18, ResNet50
and EfficientNetB0. Global average pooling was used at the output of each pre-
trained model, which then fed to a fully connected layer of 512 units with a ReLU
activation function. In order to avoid over-fitting during training, a dropout of
0.5 was used. The final output layer used a sigmoid function for binary classifi-
cation.

Pre-trained models are compared with their respective versions trained from
scratch on our available dataset, described above. A VGG16, ResNet18 and
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ResNet50 models was trained. For both pre-trained and ’from scratch’ models,
rectified linear unit (ReLU) has been used as activation function and the Adam
optimiser was applied to guide the training process. Flood detection is a bi-
nary classification problem, i.e. flood present and flood not present. Therefore,
a binary cross entropy loss function was used in order to calculate the loss. For
training of the model an initial learning rate of 5e-6 was used. All pre-trained
models were trained for 100 epochs with a batch size of 16. For VGG16, ResNet18
and ResNet50 models from scratch, a batch size of 8 was used and training oc-
curred for a variable number of epochs, as per their best performance. For the
training phase an NVIDIA Tesla K40m GPU was used.

3.4 Evaluation Method

For evaluation of the binary classification i.e. flooded and non-flooded region, F1
score and Kappa coefficient are used. The F1 score is a harmonic mean of the
precision and recall performance metrics. Cohen’s Kappa meanwhile compares
observed accuracy with expected accuracy. Kappa provides the fair comparison
when the classes are imbalanced as in the case for our data.

4 Results

Results focus on the top 10 waveband combinations, an analysis of the top 2
performing results across the pre-trained CNN variants, and finally, an analysis
of pre-trained models versus those trained from scratch.

4.1 Three-Band Combinations

Fig. 2: Comparative Results of 33 Combinations from VGG16, ResNet18, ResNet50, and Efficient-
NetB0



Tri-Band Assessment of Multi-Spectral Satellite Data 7

In order to have the best performing combinations for detecting flood events,
33 different waveband combinations were run. Although each pre-trained model
has its own best combination, some combinations performed better overall on all
the models. Figure 2 shows the boxplot result for each combination’s F1 score
spread across the four pre-trained models. Along with boxplot, mean lines are
included to clearly show the average for each combination. Overall competitive
results are produced by RB11B, RB8aB11, and B7B11B. While RGB, RB12B,
and B8B11B under-perform across all models. This is consistent with previous
research demonstrating that NIR and SWIR bands both are good at highlighting
water pixels [13, 14, 19]. The performance of RB8aB11 shows that the NNIR band
is also capable of providing good results when combined with Red and SWIR
bands. Furthermore, with respect to the performance of RB11B, the Blue band
is useful for mapping depths and shapes of underwater terrain, and distinguishes
soil from vegetation. This highlights water pixels in vegetated and urban areas
specifically when combined with the other successful bands.

Fig. 3: Comparison of VGG16, ResNet18,
ResNet50, and EfficientNetB0 model’s F1 Score
Across All the Combinations

Combination Model F1 Kappa TN TP

RB8aB11 ResNet18 96 91.3 95 97
RB11B ResNet18 96 91.2 97 94
B7B11B ResNet18 95.4 90.5 95 95
RB8aB ResNet50 95.4 90 96 94
B11GB ResNet50 95 89 95 94
B7GB11 ResNet18 95 89 96 93
B8aGB ResNet50 94.5 88.4 95 94
RB8B11 ResNet18 94.4 88.2 92 98
B7B8B11 VGG16 94.4 88 97 90
B7B8aB11 EfficientNetB0 94.3 88 94 95

Table 2: Top-10 Best Performing Combina-
tions in Terms of F1 and Kappa

4.2 Pre-Trained Model Performance

Four pre-trained models are run across 33 different three-band combinations:
VGG16, ResNet18, ResNet50 and EfficientNetB0. According to figure 3, VGG16
and EfficientNetB0 performed relatively poorly in comparison to ResNet18 and
ResNet50. ResNet50 achieved slightly higher median and average compared to
ResNet18 but ResNet18 has the more compact spread compared to ResNet50. In-
creasing the layers improves the performance. However, ResNet18 and ResNet50
perform among the top 3 in terms of accuracy, as illustrated in table 2. This
indicates that the water identification process may not necessarily require much
deeper models than 18, which has the added benefit of being detected at earlier
stages as the model finishes faster.

4.3 Pre-Trained vs Models from Scratch
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Model F1 Kappa Epoch
ResNet18 89 76.5 500
ResNet50 93 84 500
VGG16 89 76 300
VGG16 86.4 71.6 400

Table 3: Results for Models Trained
from Scratch on RB8aB11

Given that RB8aB11 showed overall best
results, VGG16, ResNet18 and ResNet50
models were trained from scratch for this
specific target combination. The number of
epochs varied depending on performance of
the model. Result are illustrated in table
3. Among the three models trained from
scratch, ResNet50 showed the overall best re-
sults but it could not compete with pre-trained models. Moreover, ResNet50’s
accuracy for training and validation flat-lined after 500 epochs.

As seen earlier in table 2, the top-3 accuracy was achieved by the ResNet18
pre-trained model, while ResNet50 shows the best result among the ’from scratch’
models. It could be argued that pre-trained models require less depth, while
training from scratch requires deeper models in order to achieve the competitive
results. This also highlights that it could be possible to improve the accuracy
by training networks deeper than Resnet50 from scratch in order to compete
with pre-trained model performance. This affects computational cost. Among
the four models VGG16 takes the longest time to train while ResNet18 and
EfficientNetB0 were the fastest.

5 Discussion

SWIR is known for its ability to penetrate thin clouds, smoke and haze better
than visible bands. Considering the low reflectance property of water in SWIR
bands, it is perhaps not a surprise that SWIR1 is the most common band seen
in the Top-10 accuracy results in table 2. Consequently, SWIR1 (B11) is a good
separator of water when bands with different or similar reflectance properties
are combined. It is also noticeable, that not all combinations with SWIR1 (B11)
perform well, as B8B11B achieved the poorest result. This could be due to the
fact that none of the three bands distinguish vegetation. Instead, they provide
predominantly water and cloud identifiers. This also indicates the need for bal-
ance among bands in order to highlight a particular feature. Therefore, it is
crucial for further analysis to choose the right combination of bands.

6 Conclusion

This study illustrates that some particular spectral bands combinations excel
with almost all deep CNN models in the flood classification task. The best three
combinations observed were RB8aB11, RB11B and B7B11B. We suggest that
this is due to their spectral sensitivity to distinguish water and soil/vegetation
clearly. Significantly, our analysis also showed that pre-trained models easily
outperform models trained from scratch. Amongst the examined architectures
ResNet18 performed best in the case of pre-trained data, while ResNet50 per-
formed best in the case of training models from scratch. On hand hand this
is unsurprising since pre-trained models trained on large volumes of data are
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(a) RGB (b) RB8aB11 (c) RB11B (d) B7B11B

(e) RGB (f) RB8aB11 (g) RB11B (h) B7B11B

Fig. 4: Pre and Post Flood Images for RGB and Top-3 Band Combination , where (a),(b),(c),(d)
are Pre-Flood images and (e),(f),(g),(h) are Post-Flood images

known to give benefit to domains with low volumes of data. On the other hand
it is somewhat surprising that the differences in wavebands and not only training
task does not provide a greater limitation when the pre-trained models are ap-
plied to new domains. We suggest that this will be due to the relative dominance
of spatial features rather than specific spectral combinations in the pre-trained
networks.

One limitation of this study is that only three-band combinations were con-
sidered. This is due to our goal of examining pre-trained networks that to this
point are by definition trained using three channels and consequently expect
three channels as input data. Examining larger combinations of spectral bands
is naturally important. A natural extension of this work is to investigate the
use of actual MSI data in the construction of suitable pre-trained networks that
can be applied to multi-spectral tasks. While we leave some of these issues for
future work, we see the current work as a useful contribution in confirming the
overall applicability of pre-trained networks in satellite based imaging tasks such
as flood detection.
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