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Abstract
Combinatorial robustness testing (CRT) is an extension of combinatorial testing (CT) to separate test suites with valid and
strong invalid test inputs. Until now, only one controlled experiment using artificial test scenarios was conducted to compare
CRT with CT. The results indicate advantages of CRT when much exception handling is involved. But, it is unclear if these
advantages are also valid in the real-world. In this paper, we present the results of a case study conducted to compare the
fault detection effectiveness of CRT and CT by testing an industrial system with 31 validation rules and 13 injected faults.
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1. Introduction
Robustness is an important property of software. It de-
scribes “the degree to which a system [...] can function
correctly in the presence of [invalid inputs]” [1]. Invalid
inputs are caused by external faults, i.e. faults in other
systems or made by users interacting with a system. Ex-
amples are inputs to the system under test (SUT) that
contain invalid values like a string value when a numeri-
cal value is expected, or invalid value combinations like
a begin date which is after the end date. When invalid
inputs remain undetected, they can propagate to failures
in the SUT resulting in abnormal behavior or crashes [2].

Developers attempt to improve robustness of systems
by implementing exception handling (EH) to detect and
recover from invalid inputs. Unfortunately, EH is itself
a significant source of faults (cf. [3, 4]). Therefore, it is
important to test the exceptional behavior as well.

Combinatorial testing (CT) is a black-box test method
that is based on an input parameter model (IPM) [5].
When considering the exceptional behavior, an IPMmust
describe invalid values and invalid value combinations
that trigger EH. Unfortunately, invalid values and invalid
value combinations can cause input masking (cf. [6, 7, 8]).
When a SUT is stimulated with an invalid input, the EH
is expected to detect it, to respond with an error message,
and to terminate the SUT without resuming the normal
behavior. Consequently, the remaining values and value
combinations of the test input remain untested as they
are masked.
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To avoid input masking, combinatorial robustness test-
ing (CRT) is developed as an extension to CT using a
robustness input parameter model (RIPM) being an ex-
tension of an IPM with additional semantic information
to annotate values and value combinations as invalid [7].
With this semantic information, valid test inputs can be
selected which do not cover any invalid value or invalid
value combination. Further on, strong invalid test inputs
can be selected which contain exactly one invalid value
or one invalid value combination.

Due to the separation of valid and strong invalid test
inputs, the input masking effect can be avoided when
testing the normal behavior and the exceptional behavior.
However, in comparison to CT which does not separate
valid and strong invalid test inputs, CRT requires effort
to model the additional semantic information.

Despite the presence of input masking, CT can still
be effective in detecting faults as a previous controlled
experiment indicates [8]. Nevertheless, the fault detec-
tion effectiveness (FDE) of CT decreases for systems with
much EH. Even for high testing strengths and large test
suites, the FDE of CT deteriorates. For systems with
much EH, CRT is a promising approach that can achieve
a higher FDE while requiring fewer test inputs than CT
[7]. For systems with little EH, CRT is at least as effective
as CT.

Although, the current assessment is solely based on
one controlled experiment with artificial test scenarios (cf.
[7]). Therefore, our objective is to further compare CRT
with CT guided by the following two research questions.

RQ 1 Is the CRT test method applicable in real-world
test scenarios?

RQ 2 How does the CRT test method compare with CT
in real-world test scenarios?
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To answer these research questions, we conducted a
case study. According to Kitchenham et al. [9], a case
study helps to evaluate the benefits of methods and tools
in industrial settings. When applied to compare methods
and tools, a case study is of explanatory nature “seek-
ing an explanation of a situation or a problem” [10]. As
Runeson & Höst state, a case study “will never provide
conclusions with statistical significance” [10]. But it can
provide sufficient information to help you judge if spe-
cific technologies will benefit your own organization or
project” [9]. Since a case study has, by definition, a higher
degree of realism than a controlled experiment [10], a
case study that compares CRT with CT can provide addi-
tional insights that complement and extend the findings
of the previously conducted controlled experiment.

The paper is structured as follows. Section 2 intro-
duces basic concepts of CT and CRT. Related work is
discussed in Section 3. Next, the design of the case study
is introduced (Section 4) and its results are presented
(Section 5). Afterwards, threats to validity are discussed
(Section 6) before the paper is concluded in Section 7.

2. Background
In the following, CT and CRT are briefly introduced. For
more information, please refer to [11, 5, 7].

2.1. Combinatorial Testing
CT is a black-box test method [5]. It is based on an input
parameter model (IPM) which declares 𝑛 parameters
and each parameter is associated with a non-empty set
of values. A schema is a set of parameter-value pairs
for 𝑑 distinct parameters [12]. A schema with 𝑑 = 𝑛
parameter-value pairs is a test input. A schema 𝑎 covers
another schema 𝑏 if and only if schema 𝑎 includes all
parameter-value pairs of schema 𝑏.

Real-world systems are often constrained and certain
values should not be combined to schemata and test in-
puts [5]. These schemata are irrelevant because they are
not of any interest for the test. Test inputs that cover
irrelevant schemata are irrelevant as well and their test
results have no informative value. Hence, they should be
excluded from testing.

Constraint handling is often used to exclude irrelevant
schemata [13]. Therefore, irrelevant schemata are ex-
plicitly modeled by a set of logical expressions (called
exclusion-constraints). A schema is relevant if it sat-
isfies all exclusion-constraints. A schema is irrelevant
if at least one exclusion-constraint remains unsatisfied.

A coverage criterion is a condition that must be sat-
isfied by a test suite. A test selection strategy describes
how values are combined to test inputs such that a given
coverage criterion is satisfied [11]. Test suites resulting

from a test selection strategy that supports constraint
handling, e.g. IPOG-C [13], satisfy the 𝑡-wise relevant
coverage criterion. This criterion is satisfied if the rele-
vant test inputs of a test suite cover all relevant schemata
of degree 𝑑 = 𝑡 that are described by an IPM [11, 5].

2.2. Combinatorial Robustness Testing
To avoid input masking, CRT is developed as an exten-
sion to CT that separates valid and invalid test inputs [7].
To better separate the concepts, we say that CT relies on
IPMs while CRT relies on robustness input parameter
models (RIPM). A RIPM contains additional error-con-
straints which is another set of constraints to annotate
relevant schemata as invalid. A relevant schema is also
a valid schema if it satisfies all error-constraints. A
relevant schema is an invalid schema if at least one
error-constraint remains unsatisfied. Further on, an in-
valid schema is a strong invalid schema if exactly one
error-constraint remains unsatisfied.

Test selection strategies like ROBUSTA [7] not only con-
sider exclusion-constraints to exclude irrelevant schema-
ta, they also consider error-constraints and exclude in-
valid schemata from valid test inputs. Further on, strong
invalid test inputs are selected such that each invalid
value and invalid value combination that is modeled by
error-constraints appears in strong invalid test inputs.

Valid test inputs are selected to satisfy 𝑡-wise valid
coverage. The 𝑡-wise valid coverage criterion is an ex-
tension of the 𝑡-wise relevant coverage criterion. It is
satisfied if all valid schemata with a degree of 𝑑 = 𝑡 that
are described by a RIPM are covered at least once by a
valid test input.

Strong invalid test inputs are selected to satisfy 𝑏-wise
strong invalid coverage where 𝑏 denotes the robust-
ness interaction degree. Without robustness interaction
(𝑏 = 0), the coverage criterion is called single error cover-
age (cf. [11, 7]). It is satisfied if each invalid schema that
is described by an error-constraint appears in a strong
invalid test input. With robustness interaction (𝑏 ≥ 1),
each described invalid schema is combined with all valid
schemata of degree 𝑑 = 𝑏. The coverage criterion is satis-
fied if all combinations of invalid schemata and 𝑏-sized
valid schemata are covered by strong invalid test inputs.

Following these brief introductions of CT and CRT,
the conceptual difference between the two approaches
should become clear. CT and CRT use the same param-
eters and values. But CT does not distinguish between
valid and invalid schemata. Instead, both types of schema-
ta are mixed and the FDE purely relies on the combina-
torics, i.e. different testing strengths 𝑡. In contrast, CRT
distinguishes valid and invalid schemata to avoid the
effect of input masking. Here too the FDE relies on com-
binatorics but the avoidance of input masking has an
additional influence.
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CRT requires the effort to model error-constraints.
Test selection strategies that consider error-constraints
also become more complex. This raises the question
whether the avoidance of input masking outweighs the
additional effort and complexity of CRT. Until now, only
artificial test scenarios are used to compare CT with CRT
(cf. [7]) and it remains unclear if indicated advantages of
CRT can be transferred to real-world scenarios. There-
fore, this case study was conducted.

3. Related Work
To the best of our knowledge, Sherwood [6] first men-
tioned invalid values in the context of CATS which is a test
selection strategy and tool for CT. Cohen et al. [14] and
Czerwonka [15] also acknowledged the necessity to sep-
arate valid and strong invalid test inputs. They also pub-
lished test selection strategies and tools and the IPMs con-
tain semantic information to distinguish relevant from
irrelevant schemata and to distinguish valid from invalid
values. However, invalid value combinations are not di-
rectly supported. Therefore, we proposed ROBUSTA and
the structure of RIPMs with error-constraints [7].

Many studies exist that demonstrate the usefulness and
effectiveness of CT (cf. [16, 17, 18]). But most studies
do not distinguish between relevance and validness and
focus on testing the normal behavior.

One case study by Wojciak & Tzoref-Brill [19] reports
on applying CT and also considers testing with invalid
inputs. They report that single error coverage was not
sufficient because EH depended on interactions between
invalid and valid values. In particular, “the same [excep-
tion] would often be handled differently depending on
the firmware in control [...] or depending on the config-
uration of the system”. A further remark is concerned
with the ratio of valid versus invalid test inputs: “Since
a lot of attention was given to [robustness] testing [...]
where full recovery in the presence of [exceptions] was
expected, the [test suite] contained a ratio of up to 2:1
[invalid test inputs vs. valid test inputs].”

4. Case Study Design
In this section, the case under analysis and the data col-
lection procedure are introduced.

4.1. Case Under Analysis
The case is a development project conducted by an IT
service provider of an insurance company, where a new
software was developed to manage the life-cycle of life
insurance contracts. One subsystem of the software is
concerned with the validation of insurance application

data according to a set of validation rules and with for-
warding the data when it satisfies the validation rules. It
is the same project which we analyzed in a previous case
study (cf. [18]).

Altogether, 31 validation rules are defined to check
insurance application data. The order of the validation
rules is predefined and all validation rules are traversed
for each insurance application data. Whenever a valida-
tion rule is not satisfied by an insurance application, a
corresponding error code is returned and the remaining
validation rules are skipped. If all validation rules are
satisfied, the subsystem returns SUCCESS and the insur-
ance application data is further processed. Although, the
further processing is out of scope for this case study.

Each validation rule is built as an implication consist-
ing of two parts:

isApplicable(application) ⇒ isValid(application)

The first part determines whether a given validation rule
is applicable to the insurance application data or not. If
a rule is applicable, the insurance application must not
violate the rule, i.e. isValid(application). Otherwise, the
validation rule is ignored.

Because details of the case are confidential, a generic
example is given to provide further illustration of vali-
dation rules. The example depicts two validation rules
to define maximum sums that can be insured depending
on the permissions of the insurance agents. The first
validation rule is applicable to all applications created
by insurance agents with the highest level of permission.
The second validation rule is applicable to all applica-
tions that are created by insurance agents with lower
permission level.

The distinction between the two validation rules is
made by the first part of the implication:

Rule 1: isApplicable(application) ∶
application .agent .permission = highest_level

Rule 2: isApplicable(application) ∶
application .agent .permission ≠ highest_level

The second part of the implication is used to enforce
themaximum insured sum. As an applicationmay consist
of several partial contracts, the individual insured sums
of all partial contracts are collected first. Afterwards,
it is checked whether the total sum exceeds the thresh-
old. While the structure of both rule’s isValid() parts is
the same, different values for the maximum_insured_sum
constant are used:

isValid(application) ∶

total_sum = ∑
partial ∈ application

partial .insured_sum

total_sum ≤ maximum_insured_sum
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This example shows that many parameters may be
involved in a validation rule, that intermediate calcula-
tions may be required, and that intermediate calculations
may be reused in different validation rules. Therefore,
all validation rules should be tested thoroughly.

For this case study, we consider the current set of vali-
dation rules as correct and treat them as our specification.
By browsing the source code repository, we have iden-
tified 13 changes that have been made to the validation
rules in order to correct them. Each change documents a
fault that existed previously but is fixed prior to release.
Based on these 13 changes, we reconstructed 13 imple-
mentation versions of which each contains one fault.

The 13 faults can also be classified according to our ro-
bustness fault classification (cf. [7]). Five faults can only
be detected by invalid test inputs, while eight faults can
be detected by both valid and invalid test inputs. Two of
these five faults can be classified as faults in error-signal-
ing. To reveal them, invalid test inputs must trigger EH
which responds with an incorrect error code. The other
three faults can be classified as faults in error-detection
conditions. The conditions are too weak and do not detect
invalid test inputs. Hence, the SUT incorrectly continues
with its normal behavior.

The remaining eight faults can be detected by both
valid and invalid test inputs. They are faults in error-de-
tection conditions. Four of theses faults have conditions
that are too strong and therefore incorrectly detect ex-
ception occurrences for valid test inputs. The other four
faults have characteristics of being too weak and too
strict at the same time because wrong parameters with
similar characteristics are used in the exception condi-
tion. As a consequence, an invalid test input may not
violate the condition (too weak) while a valid test input
may not satisfy the condition (too strong).

4.2. Data Collection Procedure
Data collection refers to themeasurement and calculation
of metric values from test execution. Therefore, metrics
are defined in this section. Furthermore, the modeling of
the IPM and RIPM as well as the selection and execution
of test inputs is described.

4.2.1. Metrics

The resources available from the software development
project are not directly analyzed and compared. Instead,
they are used to reconstruct the implementation versions
for test execution and to create a RIPM and an IPM that
represent variations of insurance application data.

Based on the RIPM and IPM, test inputs are selected
using a CT and a CRT test selection strategy. Then, the
test inputs are executed on the 13 reconstructed imple-
mentations to assess the effectiveness.

A common metric to assess the effectiveness is fault
detection effectiveness (FDE) [11, 16]. A test suite 𝑇
is denoted as failing for a test scenario 𝑆𝐶 if at least one
of the test inputs 𝜏 ∈ 𝑇 detects the fault in 𝑆𝐶.

failing(𝑇 , 𝑆𝐶) = { 1 if ∃𝜏 ∈ 𝑇 that fails for 𝑆𝐶
0 otherwise

Using the failing function, FDE is defined as the ratio
between the number of test suites 𝑇 of a test suite family
𝑇 ∗ that fail for a test scenario 𝑆𝐶 and the number of all test
suites in the family 𝑇 ∗. In this case study, the family of
test suites contains 20 different variants. In other words,
the FDE is based on 20 randomized test suites that all
satisfy the same coverage criterion for the same IPM or
RIPM. They all test the same test scenario.

FDE(𝑇 ∗, 𝑆𝐶) =
∑𝑇∈𝑇 ∗ failing(𝑇 , 𝑆𝐶)

|𝑇 ∗|

Further on, the average fault detection effective-
ness (AFDE) denotes the average FDE over a family of
test scenarios 𝑆𝐶∗. In our case study, the family of test
scenarios 𝑆𝐶∗ consists of the 13 reconstructed implemen-
tations. The AFDE represents the average effectiveness
of CRT and CT equally distributed over the 13 faults.

AFDE(𝑇 ∗, 𝑆𝐶∗) =
∑𝑆𝐶∈𝑆𝐶∗ FDE(𝑇 ∗, 𝑆𝐶)

|𝑆𝐶∗|

4.2.2. Modeling of IPM and RIPM

Since the FDE and AFDE metrics highly depend on the
quality of the RIPM and IPM, a systematic modeling ap-
proach is necessary. We model the IPM first and later
extend it with error-constraints to get a RIPM.

The IPM is modeled iteratively for one validation rule
at a time. In each iteration, parameters and values are
added to ensure that test inputs with the following three
characteristics can be detected: (1) test inputs that are
not applicable; (2) test inputs that are applicable and
valid; (3) test inputs that are applicable but not valid. In
addition, some exclusion-constraints are introduced to
ensure syntactic correctness of selected test inputs. The
IPM is considered as complete once the IPM contains
all parameters and values necessary to satisfy branch
coverage of each validation rule.

For the RIPM, the modeling of additional error-con-
straints is required. The error-constraints are modeled
iteratively and we add new or update existing ones until
the separation of valid and strong invalid test inputs con-
forms to the responses of the SUT, i.e. the SUT returns
SUCCESS for each valid test input and the SUT returns an
error code for each strong invalid test input.

In total, the IPM and RIPM consist of 32 parameters
and 106 values. Most parameters have two, three, or four
values each. But two parameters have six values each
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and one parameter has even nine values. Three exclu-
sion-constraints of which each restricts combinations of
two parameters are required to ensure syntactical cor-
rectness of the insurance applications. Furthermore, the
RIPM contains 31 error-constraints. 15 error-constraints
annotate single values as invalid. The remaining 16 er-
ror-constraints annotate schemata with 2, 3, or 5 values.

The complete IPM and RIPM are described below in ex-
ponential notation. For parameters and values, 𝑥𝑦 refers
to 𝑦 parameters with 𝑥 values. For exclusion- and error-
constraints, 𝑥𝑦 refers to 𝑦 constraints with 𝑥 parameters.

Parameters & Values: 9162514838212

Exclusion-Constraints: 23

Error-Constraints: 523628115

4.2.3. Selecting and Executing Test Inputs

After creating the IPM and RIPM, both models are used to
select sets of test inputs. Since we compare CRT with CT,
two different test selection strategies are used. ROBUSTA
is used to select test inputs for the RIPM and IPOG-C is
used to select test inputs for the IPM.

To compare the FDE and AFDE of CRT with CT, test
suites that satisfy different coverage criteria are used.
We apply IPOG-C to select test suites that satisfy 𝑡-wise
relevant coverage for 𝑡 ∈ {1, ..., 5}. Furthermore, we ap-
ply ROBUSTA to select test suites that satisfy 𝑡-wise valid
coverage with 𝑡 ∈ {1, ..., 3} and that satisfy 𝑏-wise strong
invalid coverage with 𝑏 ∈ {0, 1}.

To reduce the effect of accidental fault detection caused
by ordering, the order of parameters and values of the
input parameter models is randomly reordered and 20
different model variants are used to select test suites for
each coverage criteria.

Table 1 depicts the average sizes of test suites that
satisfy the different coverage criteria. Since ROBUSTA en-
compasses two coverage criteria (𝑡-wise valid coverage
and 𝑏-wise strong invalid coverage), the test suites are
considered both, separately and combined.

The largest test suite is selected by IPOG-C which is
required to satisfy 𝑡-wise relevant coverage with 𝑡 = 5
(15023.70 test inputs). The second-largest test suite is also
selected by IPOG-C to satisfy 𝑡-wise relevant coveragewith
𝑡 = 4 (2813.45 test inputs). The third-largest test suite
is selected by ROBUSTA and satisfies 𝑡-wise valid coverage
with 𝑡 = 3 and 𝑏-wise strong invalid coverage with 𝑏 = 1
(2224.30 test inputs).

When comparing the test suite sizes of 𝑡-wise relevant
coverage of IPOG-C with 𝑡-wise valid coverage of ROBUSTA ,
it can be seen that the error-constraints drastically reduce
the number of valid test inputs.

After test input selection, the test suites are used to
stimulate the SUT in 13 different versions. Therefore, the
13 reconstructed implementations of which each contains

Table 1
Test suite sizes of test suites for different coverage criteria

Coverage Criteria t b Size
𝑡-wise relevant 1 - 9.00
coverage 2 - 68.10

3 - 480.10
4 - 2813.45
5 - 15023.70

𝑡-wise valid coverage 1 - 7.00
2 - 48.30
3 - 267.95

𝑏-wise strong - 0 301.00
invalid coverage - 1 1956.35
𝑡-wise valid coverage 1 0 308.00
and 𝑏-wise strong 1 1 1963.35
invalid coverage 2 0 349.30

2 1 2004.65
3 0 568.95
3 1 2224.30

one fault are tested to determine which test suite is able
to detect which fault. The results are discussed in the
following section.

5. Results & Discussion
In this section, the case study results regarding the com-
puted FDE and AFDE values are reported and discussed.

5.1. Fault Detection Effectiveness
Table 2 lists the FDE values of all test suites families
applied to all 13 implementations. For better readability,
+ is used to indicate an FDE value of 1.00. The faults nos.
1 to 8 can all be detected by both valid and invalid test
inputs, while the faults nos. 9 to 13 can only be detected
by invalid test inputs. Again, the shown FDE value is an
average value for one test suite family with 20 different
test suites that are created by randomizing the order of
parameters and values before selecting test inputs. As
an example, in the first row for fault no. 3, an FDE value
of 0.05 means that one out of 20 test suites detected the
fault at least once per test suite.

As can be observed, 𝑡-wise relevant coverage is not
able to detect all faults reliably. The FDE values increase
when testing strength 𝑡 grows. But even with 𝑡 = 5
(15023.70 test inputs), only 7 faults are detected reliably
(FDE value of 1.00). Further on, fault no. 10 remains
undetected (FDE value of 0) and faults nos. 9 and 13 are
only detected by one out of 20 test suites (FDE value of
0.05).

The CRT coverage criteria are characterized by avoid-
ing the invalid input masking effect. Since all invalid
schemata are excluded by 𝑡-wise valid coverage, the faults
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Table 2
FDE values for different coverage criteria

Coverage FDE values for faults nos. 1 to 13 AFDE
Criteria t b 1 2 3 4 5 6 7 8 9 10 11 12 13 values
𝑡-wise relevant 1 - 0 0 0.05 0.05 0 0 0 0 0 0 0.25 0.05 0 0.03
coverage 2 - 0.10 0.10 0.45 0.20 0.10 0 0 0 0 0 0.65 0.20 0 0.14

3 - 0.75 0.75 + + 0.65 0.05 0.10 0.05 0.05 0 + 0.65 0 0.47
4 - + + + + + 0.15 0.10 0.05 0 0 + + 0 0.56
5 - + + + + + 0.50 0.35 0.15 0.05 0 + + 0.05 0.62

𝑡-wise valid 1 - 0.75 0.75 + + 0.50 0.50 + 0.80 0 0 0 0 0 0.48
coverage 2 - + + + + + + + + 0 0 0 0 0 0.62

3 - + + + + + + + + 0 0 0 0 0 0.62
b-wise strong - 0 + + + + + + 0.90 0.80 + + + + + 0.98
invalid - 1 + + + + + + + + + + + + + +
𝑡-wise valid 1 0 + + + + + + + + + + + + + +
coverage and 1 1 + + + + + + + + + + + + + +
b-wise 2 0 + + + + + + + + + + + + + +
strong invalid 2 1 + + + + + + + + + + + + + +
coverage 3 0 + + + + + + + + + + + + + +

3 1 + + + + + + + + + + + + + +

nos. 9 to 13 cannot be detected. But for all other faults,
𝑡-wise valid coverage has higher FDE values for the same
testing strength 𝑡 when compared to 𝑡-wise relevant cov-
erage. Because invalid input masking is avoided, a testing
strength of 𝑡 = 2 is sufficient to detect faults nos. 1 to 8
reliably (FDE values of 1.00).

Using 𝑏-wise strong invalid coverage with 𝑏 = 0, 11
out of 13 faults can already be detected reliably and the
two remaining faults have high FDE values of 0.90 and
0.80. The effectiveness of robustness interactions is even
higher and all faults can be detected reliably with 𝑏 = 1.

Four faults that have too strong error detection con-
ditions and that actually require valid test inputs to be
detected are also reliably detected by 𝑏-wise strong in-
valid coverage. We could observe that a strong invalid
test input that is expected to violate the error detection
condition of the 𝑙-th validation rule is also expected to
satisfy all prior validation rules from 1 to 𝑙 − 1. Therefore,
strong invalid test inputs can be considered as “partially-
valid” test inputs that are able to accidentally detect faults
that require valid test inputs. This effect is strengthened
by robustness interactions because more test inputs are
selected and more interactions are covered by them.

ROBUSTA combines 𝑡-wise valid coverage and 𝑏-wise
strong invalid coverage and the FDE values show that test
suites for both coverage criteria complement each other.
Since valid and strong invalid test inputs are able to detect
faults nos. 1 to 8, the FDE values are complemented by
the combination of both test suites. For faults nos. 9 to 13,
the FDE values are not complemented by the combination
of both test suites. This is because test suites that only
satisfy 𝑡-wise valid coverage cannot detect these faults.
Therefore, the FDE values of the combined test suites are
the same as the FDE values of the test suites that satisfy
𝑏-wise strong invalid coverage.

In order to detect all faults reliably, the 𝑏-wise strong
invalid coverage must be selected because faults nos. 9
to 13 remain undetected otherwise. Either robustness
interaction (𝑏 > 0) or the combination of 𝑏-wise strong
invalid coverage with 𝑡-wise valid coverage is required
to reliably detect faults nos. 1 to 8. Even though 𝑡 = 1
is only sufficient to detect three of the first eight faults
reliably, the combination with 𝑏-wise strong invalid cov-
erage improves the FDE and all faults can be detected
reliably.

The discussion of the FDE shows which coverage cri-
teria are appropriate to reliably detect different types of
faults. Next, we discuss the AFDE over all 13 faults.

5.2. Average Fault Detection
Effectiveness

Because AFDE values are average values over a set of
faults, AFDE allows making general statements about
both the effectiveness and the efficiency of coverage cri-
teria. First, we discuss the effectiveness in terms of AFDE
values of different coverage criteria. Therefore, Table 2
lists the AFDE values for test suites that satisfy different
coverage criteria. Afterwards, we discuss the efficiency
in terms of AFDE values in relation to test suite sizes
(listed in Table 1).

The AFDE values reflect what we discussed before
since they aggregate FDE values. Because of the invalid
input masking effect, test suites that satisfy 𝑡-wise rele-
vant coverage only reach an AFDE value of 0.62.

In direct comparison, test suites that satisfy 𝑡-wise
valid coverage reach a maximum AFDE value of 0.62 as
well. The same AFDE value can be reached because they
prevent invalid input masking. However, the AFDE value
cannot be further improved by increasing the testing
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strength because faults nos. 1 to 8 are already detected
reliably and faults nos. 9 to 13 cannot be detected by valid
test inputs. Comparing the two coverage criteria for each
testing strength individually shows that the AFDE value
of 𝑡-wise valid coverage is always higher than the AFDE
value of 𝑡-wise relevant coverage.

For 𝑏-wise strong invalid coverage, the lowest AFDE
value is 0.98 (no robustness interactions) which is always
higher than the AFDE values of 𝑡-wise relevant and valid
coverage. Furthermore, 𝑏-wise strong invalid coverage
with robustness interactions has an AFDE value of 1 and
therefore detects all faults reliably.

Overall, the combination of 𝑡-wise valid coverage and
𝑏-wise strong invalid coverage performs the best and
always detects all faults reliably.

When putting the AFDE values in relation to test suite
sizes, it can be noted that 𝑡-wise relevant coverage has
the worst efficiency as it requires 15023.70 test inputs for
an AFDE value of 0.62. In contrast, 𝑡-wise valid coverage
only requires 48.30 test inputs for an AFDE value of 0.62.

The best efficiency is offered by the combination of
𝑡-wise valid coverage with 𝑡 = 1 and 𝑏-wise strong invalid
coverage with 𝑏 = 0 which requires 308.00 test inputs
for an AFDE value of 1.00. When using an AFDE value
of 0.92 as a lower boundary (12 out of 13 faults), 𝑏-wise
strong invalid coverage with 𝑏 = 0 is sufficient and only
requires 301.00 test inputs for an AFDE value of 0.98.

This discussion about efficiency is, of course, influ-
enced by the characteristics of the 13 faults and cannot
be generalized. But as more general statements, it can be
observed that 𝑡-wise relevant coverage requires more test
inputs to reach a similar AFDE value than 𝑡-wise valid
coverage, 𝑏-wise strong invalid coverage, or the combi-
nation of both. At the same time, the combination of
𝑡-wise valid coverage and 𝑏-wise strong invalid coverage
always has an AFDE value of 1.00 while at most 2224.30
test inputs are used. This finding is also consistent with
our prior experimental evaluation (cf. [7]).

Therefore, we draw the conclusion that 𝑡-wise valid
coverage, 𝑏-wise strong invalid coverage, and the combi-
nation of both perform as well as or better than 𝑡-wise
relevant coverage in terms of effectiveness and efficiency.
Although, the findings are only derived from one partic-
ular case. Therefore, we do not consider this to be true
for all SUTs but for SUTs with many validation rules.

6. Threats to Validity
We compare the effectiveness of CRT using an imple-
mentation of the ROBUSTA test selection strategy with CT
using an implementation of the IPOG-C test selection strat-
egy. To ensure an unbiased implementation, both imple-
mentations follow the guidelines of Kleine & Simos [20].
Further on, the source code of the test selection strate-

gies is published as part of the coffee4j open-source test
automation framework1.

The effectiveness of CRT and CT highly depend on the
IPM and RIPM. Furthermore, the effectiveness depends
on the faults that are considered in this case study.

Unfortunately, details of the case, i.e. source code
of the validation rules and detailed descriptions of the
faults, are confidential. To improve transparency and
reproducibility, we describe the faults and make the char-
acteristics of the IPM and RIPM explicit.

To avoid any bias, both the IPM and RIPM are modeled
systematically and share the same set of parameters and
values. To prevent falsified results due to accidental fault
triggering, the orders of parameters and values are ran-
domized and 20 different variants are used in test input
selection. All presented FDE values are average values.

Since this is a case study with only one case, it is diffi-
cult to generalize the findings [10]. Further on, it has to
be noted that the archival data of this case study is only a
snapshot and the ground truth, i.e. the existing and pre-
viously existing faults, is unknown. Hence, the data can
be biased towards simpler faults that are easier to detect.
To prevent too far-reaching conclusions, we describe the
characteristics of the SUT and also limit our conclusions
to similar systems with many validation rules.

7. Conclusion
CRT extends CT to generate separate test suites with
valid and strong invalid test inputs in order to avoid input
masking that is caused by EH. Therefore, CRT requires
additional effort to model error-constraints and intro-
duces additional complexity to test selection strategies
because error-constraints must be considered. This raises
the question about the usefulness of CRT and whether
the avoidance of input masking outweighs the additional
effort and complexity. Until now, only artificial test sce-
narios are used to compare CT with CRT and it remains
unclear if indicated advantages of CRT can be transferred
to real-world scenarios.

In this paper, we therefore present the results of a case
study based on a real-world system with 31 validation
rules and 13 previously existing faults. To compare CT
with CRT, we construct a IPM and a RIPM, select test
inputs, and stimulate 13 implementations of the real-
world system of which each implementation contains one
of the 13 previously existing faults. For the subsequent
discussion, we introduce the FDE and AFDE metrics.

To summarize the findings of this case study, we dis-
cuss both research questions individually.

Research Question 1: Our results indicate that the
CRT test method is applicable in real-world test scenar-
ios. This case study demonstrated that RIPMs with 32

1See https://coffee4j.github.io for more information.
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parameters and 31 error-constraints can be constructed.
Further on, the ROBUSTA test selection strategy is capable
of selecting test suites for RIPMs with 32 parameters and
31 error-constraints.

Research Question 2: The comparison of CRT with
CT is consistent with the findings of our previously con-
ducted controlled experiment with artificial test scenarios
(cf. [7]). Since the case under analysis has much EH, CRT
performs better than CT in terms of FDE. Further on, it
requires fewer test inputs to achieve better AFDE values
than CT.

Therefore, we draw the conclusion that 𝑡-wise valid
coverage, 𝑏-wise strong invalid coverage, and the combi-
nation of both perform as well as or better than 𝑡-wise
relevant coverage in terms of effectiveness and efficiency.

Although, the FDE and AFDE values are influenced by
the characteristics of the 13 faults and cannot be general-
ized. Therefore, we do not consider this to be true for all
SUTs but for SUTs with much EH.

In future work, we plan to conduct further case studies
to learn more about the FDE of CRT and CT.
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