
An Evaluation of Machine Learning Methods for
Predicting Flaky Tests
Azeem Ahmada, Ola Lei�era and Kristian Sandahla

aLinköping University, 581 83 Linköping, Sweden

Abstract
In this paper we have investigated as a means of prevention the feasibility of using machine learning (ML) classi�ers for �aky
test prediction in project written with Python. This study compares the predictive accuracy of the three machine learning
classi�ers (Naive Bayes, Support Vector Machines, and Random Forests) with each other. We compared our �ndings with the
earlier investigation of similar ML classi�ers for projects written in Java. Authors in this study investigated if test smells
are good predictors of test �akiness. As developers need to trust the predictions of ML classi�ers, they wish to know which
types of input data or test smells cause more false negatives and false positives. We concluded that RF performed better when
it comes to precision (> 90%) but provided very low recall (< 10%) as compared to NB (i.e., precision < 70% and recall >30%)
and SVM (i.e., precision < 70% and recall >60%).

Keywords
Improve Software Quality, Flaky Test Detection, Machine Learning Classi�ers, Experimentation, Test Smells

1. Introduction
Developers need to ensure that their changes to the
code base do not break existing functionality. If test
cases fail, developers expect test failures to be con-
nected to the changes. Unfortunately, some test fail-
ures have nothing to do with the code changes. Devel-
opers spend time analyzing changes trying to identify
the source of the test failure, only to �nd out that the
cause of the failure is test �akiness (TF). Many stud-
ies [1, 2, 3, 4] have been conducted to determine the
root causes of test �akiness. These studies concluded
that the main root cause of TF is the test smells. Test
smells are poorly written test cases and their presence
negatively a�ect the test suites and production code
or even the software functionality [5]. Another de�-
nition is "poor design or implementation choices applied
by programmers or testers during the development of test
cases" [2] . Asynchronous wait, input/output calls, and
test order dependency are some of the test smells that
have been found to be the most common causes of TF
[1]. The results presented by Luo et al. [1] were par-
tially replicated by Palomba and Zaidman [2], leading
to the conclusion that the most prominent causes of
TF are test smells such as asynchronous wait, concur-
rency, and input output issues. There is strong evi-

8th International Workshop on Quantitative Approaches to Software
Quality in conjunction with the 27th Asia-Paci�c Software
Engineering Conference (APSEC 2020) Singapore, 1st December 2020
� azeem.ahmad@liu.se (A. Ahmad); ola.lei�er@liu.se (O. Lei�er);
kristian.sandahl@liu.se (K. Sandahl)
� 0000-0003-3049-1261 (A. Ahmad)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

dence that the main reasons for test �akiness are spe-
ci�c test smells. Luo et al. suggested that "developers
should avoid speci�c test smells that lead to test �ak-
iness". Authors in [2] investigated the question: "To
what extent can �aky tests be explained by the presence
of test smells?" They concluded that the "cause of 54%
of the �aky tests can be attributed to the characteristics
of the co-occurring test smell".

Mapping test smells to �aky test resemble the prob-
lem of mapping words to spam/ham email. Certain
words (i.e., sale, discount etc.) are more frequent in
spam emails. Many studies [6, 7, 8, 9, 10, 11, 12, 13,
14, 15] have been conducted to predict email class (i.e.,
spam or ham) based on email contents. We adopted a
similar approach in this study to determine the �ak-
iness of test cases based on the test case code. Ma-
chine Learning approaches have been widely studied
and there are lots of algorithms that can be used in
e-mail classi�cation including Naive Bayes [16][17],
Support Vector Machines [18][19][15, 14], Neural Net-
works [20][21], K-nearest neighbor [22].

Recently, Pinto et al. evaluated �ve machine learn-
ing classi�ers (Random Forest, Decision Tree, Naive
Bayes, Support Vector Machine, and Nearest Neigh-
bour) to generate �aky test vocabulary [23]. They con-
cluded that Random Forest and Support Vector Ma-
chine provided best prediction of �aky tests. The in-
vestigated test cases were written in Java and the au-
thors concluded that: "future work will have to investi-
gate to what extent their �ndings generalize to software
written in other programming languages [23].

In this study, we implemented supervisedML classi-
�ers to detect if the test case is �aky or not based on the

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

37



contents of a test cases written in Python. We com-
pared our �ndings with what was presented by Pinto
et al. [23]. We looked for evidence if machine learning
classi�ers are applicable in predicting �aky tests and
the results can be generalized to test cases written in
other languages. In addition to this, our unique contri-
bution is to investigate if test smells are good predic-
tors of test �akiness. Through manual investigation of
false positives and false negatives, we concluded a list
of test smells that are strong and weak predictors of
test �akiness. We investigated the following research
questions in this study.

RQ1: What are the predictive accuracy of Naive Bayes,
Support Vector Machine and Random Forest concerning
�aky test detection and prediction?
RQ2: To what extent the predicting power of machine

learning classi�ers vary when applied on software writ-
ten in other programming language?
RQ3: What can we learn about the predictive power of

test smells using machine learning classi�ers mentioned
in RQ1?

2. Data Set Description and
Prepossessing

We wrote a script to extract the contents of all test
cases from open-source projects, mentioned in Table
1. After the test case content’s extraction, we checked
which of the test cases, in our database, has been men-
tioned in [24] as �aky. After this mapping, we �nalized
a database with the project name, test case name, test
case content and a label. There are many keywords in
the test case code that are irrelevant for the identi�-
cation of test �akiness. We performed extensive data
cleaning such as removing punctuation marks, digits
and speci�c keywords (i.e., int, string, array, assert*)
as well as converting text to lower case.

2.1. Classifiers:
AnNBC, �rst proposed in 1998, is a probabilisticmodel
which can determine the outcome (i.e., �aky or not
�aky) of an instance (i.e., test case) based on the con-
tents of its features (i.e., test case code). In our case,
the outcome of NBC is binary. NBC is widely applied
in classi�cation and known to obtain excellent results.
[25].
The attractive feature of SVM is that it eliminates

the need for feature selections, whichmakes spam clas-
si�cation easy and faster [14]. SVM deals with the dual

categories of classi�cation and can �nd the best hyper-
plane to partition a sample space [15].

RF is an ensemble classi�cationmethod (a technique
that combines several base models to produce an opti-
mal predictive model) suitable for handling problems
that involve grouping data into di�erent classes. RF
predicts by using decision trees. Trees are constructed
during training which can later be used for class pre-
diction. There is a vote associated with each tree and
once the class vote has been produced for all individ-
ual trees, the class with the highest vote is considered
to be the output.

2.2. Performance Metrics and
Parameters Tuning

To evaluate the predictive accuracy of classi�ers, accu-
racy as the only performance indices is not su�cient
[16]. Wemust consider precision, recall, F1-score, ROC
curve, false positives and false negatives [16]. There is
always some cost associated with false positives and
false negatives. When a non �aky test wrongly clas-
si�ed as �aky, it gives rise to a some what insigni�-
cant problem, because an experienced user can bypass
the warning by looking at test case code. In contrast,
when a �aky test is wrongly classi�ed as non �aky test,
this is obnoxious, because it indicates the test suite still
have test cases whose outcome cannot be trusted.

The experiment started with the implementation of
simple NBwithout Laplace smoothing. The results did
not provide good accuracy or precision, because with-
out Laplace smoothing, the probability of appearing a
rare test smell (i.e., test smell that was not in the train-
ing set) in the test set is set to 0, given the formula�� = ���/��
where the � is the probability that an individual test
smell is present in a �aky test, ��� represents the num-
ber of times that particular test smell appeared in a
test case and �� represents the number of times that
test smell appeared in any test case. Laplace smooth-
ing refers to the modi�cation in the equation:�� = (��� + �)/(�� + �)
where we set the � = 1 so that classi�er adds 1 to the
probability of rare test smells that were not present in
the training set. Another step is to identify the thresh-
old (i.e., 0.0 - 1.0) which will increase the predictive ac-
curacy of the outcome. As far as SVM was concerned,
although the feature data set space was linear, we de-
cided to use both kernels (i.e., linear and poly) for the
sake of experiment. For random forest, we used ntree

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

38



Table 1
Open-source project names provided by [24] with number
of total test cases and flaky tests

Project Name Total Number of
TCs

Flaky
Tests

apache-qpid-0.18 2357 284
hibernate 4 3231 273
apache-wicket-1.4.20 1250 216
apache-karaf-2.3 163 102
apache-struts 2.5 2346 60
apache-derby-10.9 3832 40
apache-lucene-solr-3.6 764 7
apache-cassandra-1.1 523 4
apache-nutch-1.4 7 4
apache-hbase-0.94 29 2
apache-hive-10.9 23 2
jfreechart-1.0.18 2292 0

between 300 - 700 as well as restricting number of vari-
ables available for splitting at each tree node known as
mtry between 25 and 100.

3. Results
This section discusses the performance of NBL, SVM
and RF with di�erent parameters. We compared our
results with the �ndings of Pinto et al. to discuss how
results vary between Java and Python projects. We
also discussed why some classi�ers do not perform as
expected and what can we learn about the predictive
power of test smells for test �akiness detection and
prediction.

3.1. RQ1: Performance of Naive Bayes
Classifier, Support Vector Machine
and Random Forest

Table 2 shows the 20 features with the highest infor-
mation gain togetherwith their frequencywith respect
to �aky and non-�aky tests. We assigned the features
to the categories presented by Luo et al. in [1]. We
manually traversed the code of �aky and non-�aky
tests to understand the context and how features were
used in the tests to assign categories. The top fea-
ture "conn" appeared in 1361 �aky tests and only 15
non-�aky tests. This feature is associated with exter-
nal connection to input/output devices and lies under
the category of "IO", presented by Luo et. al in [1].
The second top feature is "double" which appeared in
1190 �aky tests and 12 non-�aky tests assigned to the
category of "IO" followed by "�oating points opera-
tions". The top 3rd feature "tabl" was related to table
creation during runtime for databases queries and ap-

peared 1150 times in �aky tests and 52 times in non-
�aky tests.

Figure 1 (A) represents the ROC curve [26] concern-
ing NBCwith Laplace smoothing denoted as NBLwith
di�erent threshold (i.e., from 0.0 to 1.0). We conducted
di�erent experiments with di�erent training and test
data sets such as 50/50, 60/40, 70/30, 80/20 and 90/10.
We found similar values for k-fold cross validation.
ROC curve provides a comparison between sensitivity
and speci�city helping in organizing classi�ers and vi-
sualizing their performance [26]. Sensitivity also known
as the true positive rate represents a bene�t of predict-
ing �aky tests correctly and speci�city also known as
false positive rate represents the cost of predicting non
�aky tests as �aky tests. In the case of false positive,
developers need to spend e�ort and time, just to �nd
out that this is a classi�er mistake and the test case is
not �aky. The optimal target, in the ROC curve, is to
rise vertically from origin to the top left corner (higher
true positive rate) as soon as possible because then the
classi�er can achieve all true positives with the cost
of committing a few false positive. The diagonal line,
in Figure 1 (A), represents the strategy of randomly
guessing the outcome. Any classi�er that appears in
the lower right triangle performs worse than a ran-
dom guessing and we can see that NBL lies in the up-
per left triangle. Looking at 1 (A), NBL with 70/30 data
partition is suitable to proceed further with 0.4 prob-
ability score. NBL, as shown in 1 (A), has stopped is-
suing positive classi�cation (i.e., �aky test prediction)
around 0.76 - 0.87 threshold. After 0.87, it commits
more false positive rate.

We tuned di�erent parameters in NBL, SVM and RF
before conducting further experiments. We do not in-
tend to provide the results of all experiments because
those experiments were only conducted to �nd the op-
timal parameters. The rest (i.e., simple NB, SVM with
radial and sigmiod kernels) were not included in fur-
ther experiments and discarded. Figure 1 (A-E) pro-
vides comparisons of NBL, SVM-Linear and SVM-Poly
(i.e., di�erent kernels) for accuracy, precision, recall
and F1-score. All classi�ers have achieved good ac-
curacies ranging from 93% - 96%. NBL outperformed
SVM although the di�erence between them is not dra-
matic. Looking only at the accuracy results of classi-
�ers can be deceiving. The important factor for classi-
�er selection is to ask the right question and motivate
the choice of using speci�c classi�er such as are we
interested in detecting �aky tests correctly (i.e.,
precision) or marking a non �aky test as �aky
is not cost e�ective (i.e, recall). It is important to
look at precision, recall and accuracy all together for
classi�er selection. We can assume that practitioners

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

39



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty
name

NBL−50/50L

NBL−60/40L

NBL−70/30L

NBL−80/20L

NBL−90/10L

A

●

●

●
●

●

93

94

95

50/5060/4070/3080/2090/10
Data Partitions

Ac
cu

ra
cy

 V
al

ue
s 

(%
)

Classifier
● NBLaplace=1

SVM−Linear

SVM−Poly

B
●

●
●

●

●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

Pr
ec

is
io

n 
Va

lu
es

 (%
)

Classifier
● NBLaplace=1

SVM−Linear

SVM−Poly

C

●
●

●

●
●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

R
ec

al
l V

al
ue

s 
(%

)

Classifier
● NBLaplace=1

SVM−Linear

SVM−Poly

D

●

●

●
●

●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

F1
 S

co
re

Classifier
● NBLaplace=1

SVM−Linear

SVM−Poly

E

Figure 1: Performance comparison among classifiers. (A) represents the ROC curve of NBL classifier with di�erent data
partition and probability score. (B-E) represents the accuracy, precision, recall and F1-score of di�erent classifiers with a
di�erent data partition, respectively.

are more interested in precision than recall because
the test suite size, in many organizations, is very large
and they cannot inspect all test cases. In this partic-
ular case, any classi�er that correctly �ag �aky tests
will be encouraged. Precision can answer the question;
"If the �lter says this test case is �aky, what’s the
probability that it’s �aky?”. Figure 1 (C,D) provides
precision and recall values for NBL and SVM. It can be
noticed that NBL precision is increasing (in C) with the
gradual decrease in recall (in D). NBL precision of 65%
dictates that 35% of what was marked as �aky was not
�aky. Recall is also lower in NBL as compared to SVM-
Linear. SVM-Poly performsworst in terms of precision
and recall as expected due the fact that the input data
set is not polynomial and is well suited for image pro-
cessing whereas linear kernel performs better for text
classi�cation.

F1-score, as presented in Figure 1 (E), is the har-
monic mean of precision and recall. F1-score is use-
ful and informative because of prevalent phenomenon
of class imbalance in text classi�cation [27]. NBL is a
suitable candidate although it has a lower F1-score as
compared to SVM-Linear because NBL performs bet-
ter with short documents as in our case, the training
test case consists of 6-15 lines of code [28]. NBL pro-
vides higher precision and lower recall as compared
to SVM-linear. Another disadvantage of SVM is that

Table 2
Top 20 frequented features and assigned category

Features Frequency Assigned category from
Luo et. al [1]

new 28083 IO
assertequ 7967 -
null 4721 -
from 4719 -
string 4126 -
sclose 3315 IO
true 3154 -
select 2842 -
for 2809 Unordered Collection
fals 2604 -
not 2294 -
int 2111 -
asserttru 1910 -
tabl* 1677 IO
should 1596 -
doubl 1588 Floating point operations
valu 1429 -
expr 1322 -
tcommit 1313 IO
expcolnam 1211 IO

it requires high computation and are very sensitive to
noisy data [29].

RF provides lesser classi�cation error and better F1-
scores as compared to decision trees, NBL and SVM.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

40



Accuracy F1−Score Precision Recall

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

25

50

75

mtry

Va
lu
es

300

400

500

600

700

ntree

Figure 2: Performance of RF with di�erent parameters (i.e., number of trees and mtry).

The precision, in which we are most interested, is usu-
ally better than that of SVM and NBL. Authors in [16]
also concluded that RF performs better than NBL and
SVM. The class outcomes are based on "votes" which
are calculated by each tree in the forest. The outcome
(i.e., �aky or not �aky) is selected based on the higher
votes. Figure 2 presents the performance of RFwith re-
spect to selected metrics. mtry represents the number
of variables randomly sampled as candidates at each
split while ntree is the number of trees to grow. There
is no way to �nd an optimal mtry and ntree, so we ex-
perimented with di�erent settings, as shown in Figure
2. The mtry has a direct e�ect on precision and recall
as shown in Figure 2. With an increase in mtry, the
precision is decreasing and recall in increasing; an un-
wanted situation. The optimal value ofmtry is 5 where
precision is higher and recall is lower regardless of the
number of trees. The change inmtry did not a�ect the
accuracy but as we discussed earlier, we are not only
interested in accuracy but precision too.
We performed several experiments to �nd optimal

parameters within a classi�er before comparing it to
other classi�ers. After these experiments, we identi-
�ed three unique classi�ers with unique and optimal
parameters. Since, we are most interested in higher
precision, we can see that RFwithmtry = 5 and ntree=250
outperforms all other classi�ers only for precision. RF
has achieved more than 90% precision with less than
10% recall. We did not achieve high precision (i.e.,
>90%) in all classi�ers. NBL provides unexpected re-
sults although it holds a good reputation in terms of
detecting spam emails [29]. As compared to NBL and
SVM, RF have distinct qualities such as 1) it can work
with thousands of di�erent input features without any

feature deletion 2) it calculates approximation of im-
portant features for classi�cation and 3) it is very ro-
bust to noise and outliers [30]. Caruana in [17] com-
pared 10 di�erent ML classi�ers and concluded that
decision trees and random forest outperform all other
classi�ers for spam classi�cation.

3.2. RQ2: Predicting Power of ML
Classifiers with Respect to Other
Languages

In comparison of our�ndingswithwhatwas presented
by Pinto et al. [23], we observed two di�erences. First,
the top 20 frequented features are very di�erent in
both studies. Only one feature such as "tabl" marked
as star (*) in Table 2 were similar in both the �ndings.
However, we observed more features were related to
"IO" output category, as presented in Table 2, which
complemented the �ndings of Pinto et al. stating "that
all projectsmanifesting �akiness are IO-intensive" [23].
Second, we have a very lower precision, recall and f1-
score as compared to Pinto et al. except at a instance
where random forest provided 0.92 precision. Table
3 provides detail statistics of precision, recall, and f1-
score of three algorithms for comparison. The algo-
rithms on Python language continuously performed
worst contrary to what pinto et al. claimed: "Although
the studied projects are mostly written in Java, we do not
expect major di�erences in the results if another object-
oriented programming language is used instead, since
some keywords maybe shared among them" [23].

We speculate that there could be several reasons as-
sociated with these performance reduction such as (1)

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

41



Table 3
Comparison of Precision, Recall and F1-Score between our
findings (A) and Pinto et al. (B)

Precision Recall F1-Score Di�
Algo. A B A B A B
Random Forest 0.92 0.99 0.4 0.91 0.09 0.95 �
Naive Bayes 0.62 0.93 0.15 0.8 0.24 0.86 �
Support Vector 0.51 0.93 0.61 0.92 0.57 0.93 �

We implemented the code ourselves using R libraries
for aforementioned classi�erswhereas pinto et al. used
Weka [31] which is an open source machine learn-
ing software that can be accessed through a graphi-
cal user interface, standard terminal applications [32],
(2) Number of features were very high in the training
samples and in these cases othermodels should be con-
sidered (i.e., regularized linear regression) that might
performed better, (3) the versatility o�ered by param-
eter tunning can become problematic and require spe-
cial considerations that can impact the classi�ers, etc.

3.3. RQ3: Test Smells Analysis and their
Predictive Power for Test Flakiness
Detection and Prediction

We investigated manually di�erent cases of true pos-
itives (i.e., correct �aky test prediction), false positive
(i.e., �aky test cases marked as non �aky) and false
negative (i.e., non �aky test cases marked as �aky) and
true negatives (correct non �aky test prediction) to an-
swer RQ3. We observed that it is not only the fre-
quency of test smell that makes a test case �aky but
its co-existence with the class code or external factors
such as operating systems or speci�c product. For ex-
ample, The test smell ’Conditional Test Logic’ as men-
tioned in [3] refers to nested and complex ’if-else’ struc-
ture in the test case. Depending on which branch of
’if-else’ is executed, the system under test may require
speci�c environment settings. Failing to set the envi-
ronment, during di�erent executions, will �ip the test
case outcome, thus making it �aky.

After manual investigation of all true/false positives
and true/false negatives, we come up with a list of
test smells that are strong or weak predictors of test
�akiness, as shown in Table 4. Strong predictors refer
to those test smells that existed in true positives and
true negatives cases whereas weak predictors only ex-
isted in false negatives and false positives. Test smells
that are classi�ed as weak predictors in this study are
still useful and can help in identi�cation of test �ak-
iness, but they are not useful with machine learning
classi�ers because they require additional information

such as what operating system they are running on
and whether or not speci�c con�gurations should be
deployed. Test smells that are classi�ed as strong pre-
dictors are very useful with machine learning classi-
�ers because they only exist in test case function as
one unit and do not require additional information.

4. Lesson Learned
ML and AI algorithms in recent years have established
a good reputation for predicting diseases based on symp-
toms, spam emails based on email contents and many
more. We believe that given a proper input data set
which clearly distinguishes between �aky and non �aky
tests, ML and AI can provide high prediction capabil-
ities saving e�ort, time and resources. We strongly
believe that practitioners, during training of data set,
should not consider complete test cases as an input but
only the test codes (i.e., only few lines) that reveal test
�akiness.

It is inconclusive that predicting power of machine
learning vary with respect to software written in an-
other languages. Investigation on Java test cases [23]
revealed good results while �ndings for Python test
cases performed unexpected, thus requiring more in-
vestigations whether lexical information can be traced
to �akiness.

Asyncwait, precision, randomness and IO test smells
are string predictors can be predicted bymachine learn-
ing classi�ers with 100% precision because they only
exist in test case code and do not require additional in-
formation from test class or operating system. Whereas
all other test smells mentioned in Table 4 are weak pre-
dictors of test �akiness and require additional sources
of information. We are only aware of test smells that
are investigated in open-source repositories and liter-
ature on test smells in closed-source software is scarce.

5. Discussion and Implication
Valuable Indicators for TestersThese classi�ers can
increase the awareness about �aky test vocabulary among
testers. When a new test is added to a test suite, it
will be easy to identify whether this test case contains
speci�c test smells that were known to increase test
�akiness during previous executions. Testers can take
advantage of these types of information to reduce test
�akiness. Testers can easily identify test smells that
are independent of their environment with the help of
Table 4.

Precision Depends on Data Set: In the literature

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

42



Table 4
Test Smells as Strong and Weak Predictors Together with Source of their Existence

Test Smell Category Prediction Cate-
gory

Test
Case

Test
Class

Operating
System

External
Libraries

Hardware/Product

Async wait Strong [�] - - - -
Precision (float operations) Strong [�] - - - -
Randomness Strong [�] - - - -
IO Strong [�] - - - -
Unordered Collection Weak [�] [�] [�] - -
Time Weak [�] [�] [�] - [�]
Platform Weak [�] [�] [�] [�] -
Concurrency Weak [�] [�] [�] - -
Test order dependency Weak [�] [�] [�] [�] [�]
Resource Leak Weak [�] [�] [�] - -

of ML, particularly with spam detection, it is acknowl-
edged that precision is a function of the combination
of the classi�er and the data set under investigation.
Classi�er’s precision, in isolation of data set, does not
make sense. The right question is "how precise a clas-
si�er is for a given data set". Unfortunately, there
is no data available that provides test case contents
and an associated label thus, limiting the use of ad-
vanced ML and AI algorithms. In addition to lack of
�aky test data, all research has been conducted with
open-source software and we know a little about what
test smells are present in closed-source software. Ah-
mad et. al. concluded that there are speci�c test smells
that are associated with the nature of the product [33]
known as ’company-speci�c’ test smells. The classi�er
which are trained on a speci�c data set or a domain
cannot be generalized to be used with another data set
or domain. There is a long road ahead to explore the
best classi�er given di�erent data sets.
Beyond Static Analysis of Test Smells and their
Frequency: ML is capable of incorporating di�erent
sources of information to increase predictive accuracy
as compared to the limited experiment in this study
where we only utilized the frequency of test smells in
the test case. During the investigation of the cases of
’false negative’ and ’false positive’, it has been observed
that the frequency of test smells in the test casewill not
be su�cient for prediction. Some test case code (i.e.,
seeds()) will cancel the e�ect of test smell (i.e., ran-
dom()), no matter how frequent the random() function
appears in the test case. Some test smell, even with
single appearance, will weight more than a test smell
for higher frequency.
Precision Vs Recall: When a test suite grows in size,
developers would like any indications of tests that are
more likely to be �aky rather than adopting an ap-
proach of re-run which of-course is not cost e�ective
in terms of time and resources. Developers like to in-

crease precision at the expense of recall. When en-
countering ’false negative’, an experienced developer,
having su�cient knowledge of the test smells, will by-
pass the outcome, however, with ’false positive’, de-
velopers are unaware of the fact that test suite still
contains �aky tests. The motivation of employing ML
classi�ers (i.e., higher precision - low recall vs balances
precision and recall) should be made clear before pro-
ceeding with implementation.
Multi-Factor Input Criteria for Flaky Test Detec-
tion: We observed that the ML algorithm should in-
clude di�erent sources of information to increase pre-
dictive accuracy. These sources may include 1) assign-
ing speci�c weight (i.e., in numbers) to speci�c test
smells or test code, 2) developer’s experience (i.e., new
developer, unaware of the test design guidelines are
more likely to write �aky tests), 3) company-speci�c
test smells.

6. Related Work
Luo et al., in [1], investigated 52 open-source projects
and 201 commits and categorized the causes of test
case. Asynchronous wait (45%), concurrency (20%),
and test order dependency (12%) were found to be the
most common causes of TF. Palomba and Zaidman in
[2] partially replicated the results presented by Luo et
al. concluding that the most prominent causes of TF
are asynchronous wait, concurrency, and input output
and network issues. Authors investigated, in [3], the
relationship between smells and TF. Another empiri-
cal study of the root causes of TF in Android Apps was
conducted by Thorve et al. [4] by analyzing the com-
mits of 51 Apache open-source projects. Thorve et al.
[4] complement the results of Luo et al. and Palomba
and Zaidman, but they also report two additional test
smells (user interface and program logic) that are re-

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

43



lated to TF in Android Apps. Bell et al. in [34] and pro-
posed a new technique called DeFlaker, which moni-
tors the latest code coverage and marks the test case
as �aky if the test case does not execute any of the
changes. Another technique called PRADET [35] does
not detect �aky tests directly, rather it uses a system-
atic process to detect problematic test order dependen-
cies. These test order dependencies can lead to �ak-
iness. King et al. in [36] present an approach that
leverages Bayesian networks for �aky test classi�ca-
tion and prediction. This approach considers �akiness
as a decease mitigated by analyzing the symptoms and
possible causes. Teams using this technique improved
CI pipeline stability by as much as 60%. To best of our
knowledge, no study has been conducted to evaluate
the predictive accuracy of machine learning classi�ers
that can help developers in �aky test case prediction
and detection.
Dutta et al. [37] and Sjobom [38] investigated projects

written in Python language to classify test smells that
increase test �akiness. Their study is limited to list
the test smells and their e�ect on test �akiness. Our
study worked with the test smells identi�ed in [38].
Pinto et al. evaluated �ve machine learning classi�ers
(Random Forest, Decision Tree, Naive Bayes, Support
Vector Machine, and Nearest Neighbour) to generate
�aky test vocabulary written in Java [23]. The con-
cluded that Random Forest and SVM performed very
well with high precision and recall. They concluded
that features such as "job", "action", and "services" were
commonly associated with �aky tests. We replicated
the similar experimentwith di�erent programming lan-
guage and extended the current knowledge by answer-
ing RQ2 and RQ3.

7. Validity Threats
The authors in this study selected only those ML clas-
si�erswhich have established a good reputation of high
accuracy in spam detection thus reducing the selection
bias.
The authors in this study reduced the experimenter

bias by performing several experiments with di�erent
thresholds (i.e., probability scores, kernels, number of
trees, etc.) before selecting a champion.
External validity refers to the possibility of gener-

alizing the �ndings, as well as the extent to which the
�ndings are of interest to other researchers and practi-
tioners beyond those associated with the speci�c case
being investigated. Since the precision strongly de-
pends on the data set under investigation, we have an
external validity threat. We cannot generalize the �nd-

ings of this study for other data set.

8. Conclusion
At themoment ofwriting this paper, literature is scarce
on test �akiness (i.e., root causes, challenges, mitiga-
tion strategies, etc.) which requires signi�cant atten-
tion from researchers and practitioners. We extracted
�aky and non �aky test case contents fromopen source
repositories. We implemented threeML classi�ers such
as Naive Bayes, Support Vector Machine and Random
Forest to see if the predictive accuracy can be increased.
The authors concluded that only RF performs better
when it comes to precision (i.e., > 90%) but the recall
is very low (< 10%) as compared to NBL (i.e., preci-
sion < 70% and recall >30%) and SVM (i.e., precision
< 70% and recall >60%). The authors concluded that
predicting accuracy of ML classi�ers are strongly as-
sociated with the lexical information of test cases (i.e.,
test cases written in Java or Python). The authors in-
vestigated why other classi�ers failed to produce ex-
pected results and concluded that; 1) it is a combina-
tion of the test smell and an external environment that
makes a test case �aky, and in this study, the exter-
nal environment was not taken into consideration, 2)
ML classi�ers should not only consider the frequency
of test smells in the test case but other important test
codes that have an ability to cancel the e�ect of test
smells.

9. Acknowledgment
We appreciate Linköping University students to pro-
vide their expertise to collect �aky test data from on-
line repositories.

References
[1] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An Empir-

ical Analysis of Flaky Tests, in: Proceedings of the
22Nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2014, ACM, New York,
NY, USA, 2014, pp. 643–653. URL: http://doi.acm.org/10.1145/
2635868.2635920. doi:10.1145/2635868.2635920, event-
place: Hong Kong, China.

[2] F. Palomba, A. Zaidman, Does Refactoring of Test Smells In-
duce Fixing Flaky Tests?, in: 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2017,
pp. 1–12. doi:10.1109/ICSME.2017.12.

[3] F. Palomba, A. Zaidman, The smell of fear: on the relation
between test smells and �aky tests, Empirical Software En-
gineering 24 (2019) 2907–2946. URL: https://doi.org/10.1007/
s10664-019-09683-z. doi:10.1007/s10664-019-09683-z.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

44



[4] S. Thorve, C. Sreshtha, N. Meng, An Empirical Study of Flaky
Tests in Android Apps, in: 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2018,
pp. 534–538. doi:10.1109/ICSME.2018.00062.

[5] V. Garousi, B. Küçük, Smells in software test code: A survey of
knowledge in industry and academia, Journal of Systems and
Software 138 (2018) 52–81. URL: http://www.sciencedirect.
com/science/article/pii/S0164121217303060. doi:10.1016/j.
jss.2017.12.013.

[6] R. Shams, R. E. Mercer, Classifying Spam Emails Using Text
and Readability Features, in: 2013 IEEE 13th International
Conference on Data Mining, 2013, pp. 657–666. doi:10.1109/
ICDM.2013.131, iSSN: 2374-8486.

[7] S. K. Tuteja, N. Bogiri, Email Spam �ltering using BPNN classi-
�cation algorithm, in: 2016 International Conference on Auto-
matic Control and Dynamic Optimization Techniques (ICAC-
DOT), 2016, pp. 915–919. doi:10.1109/ICACDOT.2016.
7877720, iSSN: null.

[8] E. Sahın, M. Aydos, F. Orhan, Spam/ham e-mail classi�cation
using machine learning methods based on bag of words tech-
nique, in: 2018 26th Signal Processing and Communications
Applications Conference (SIU), 2018, pp. 1–4. doi:10.1109/
SIU.2018.8404347, iSSN: null.

[9] K. Mathew, B. Issac, Intelligent spam classi�cation for mo-
bile text message, in: Proceedings of 2011 International
Conference on Computer Science and Network Technology,
volume 1, 2011, pp. 101–105. doi:10.1109/ICCSNT.2011.
6181918, iSSN: null.

[10] A. B. M. S. Ali, Y. Xiang, Spam Classi�cation Using Adaptive
Boosting Algorithm, in: 6th IEEE/ACIS International Confer-
ence on Computer and Information Science (ICIS 2007), 2007,
pp. 972–976. doi:10.1109/ICIS.2007.170, iSSN: null.

[11] R. K. Yin, Case study research design and methods, 4th ed ed.,
Thousand Oaks, Calif Sage Publications, 2009. URL: https://
trove.nla.gov.au/work/11329910.

[12] A. A. Alurkar, S. B. Ranade, S. V. Joshi, S. S. Ranade, P. A.
Sonewar, P. N. Mahalle, A. V. Deshpande, A proposed data
science approach for email spam classi�cation using machine
learning techniques, in: 2017 Internet of Things BusinessMod-
els, Users, and Networks, 2017, pp. 1–5. doi:10.1109/CTTE.
2017.8260935, iSSN: null.

[13] S. Vahora, M. Hasan, R. Lakhani, Novel approach: Naïve Bayes
with Vector space model for spam classi�cation, in: 2011
Nirma University International Conference on Engineering,
2011, pp. 1–5. doi:10.1109/NUiConE.2011.6153245, iSSN:
2375-1282.

[14] M. R. Islam, W. Zhou, M. U. Choudhury, Dynamic Fea-
ture Selection for Spam Filtering Using Support Vector Ma-
chine, in: 6th IEEE/ACIS International Conference on Com-
puter and Information Science (ICIS 2007), 2007, pp. 757–762.
doi:10.1109/ICIS.2007.92, iSSN: null.

[15] T.-Y. Yu, W.-C. Hsu, E-mail Spam Filtering Using Support Vec-
tor Machines with Selection of Kernel Function Parameters,
in: 2009 Fourth International Conference on Innovative Com-
puting, Information and Control (ICICIC), 2009, pp. 764–767.
doi:10.1109/ICICIC.2009.184, iSSN: null.

[16] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O.
Adetunmbi, O. E. Ajibuwa, Machine learning for email
spam �ltering: review, approaches and open research prob-
lems, Heliyon 5 (2019) e01802. URL: http://www.sciencedirect.
com/science/article/pii/S2405844018353404. doi:10.1016/j.
heliyon.2019.e01802.

[17] R. Caruana, A. Niculescu-Mizil, An empirical comparison of
supervised learning algorithms, in: Proceedings of the 23rd in-
ternational conference on Machine learning, ICML ’06, Asso-
ciation for Computing Machinery, Pittsburgh, Pennsylvania,

USA, 2006, pp. 161–168. URL: https://doi.org/10.1145/1143844.
1143865. doi:10.1145/1143844.1143865.

[18] C.-Y. Chiu, Y.-T. Huang, Integration of Support Vector Ma-
chine with Naïve Bayesian Classi�er for Spam Classi�cation,
in: Fourth International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD 2007), volume 1, 2007, pp. 618–
622. doi:10.1109/FSKD.2007.366, iSSN: null.

[19] Z. Jia, W. Li, W. Gao, Y. Xia, Research on Web Spam Detec-
tion Based on Support Vector Machine, in: 2012 International
Conference on Communication Systems and Network Tech-
nologies, 2012, pp. 517–520. doi:10.1109/CSNT.2012.117,
iSSN: null.

[20] A. S. Katasev, L. Y. Emaletdinova, D. V. Kataseva, Neural Net-
work Spam Filtering Technology, in: 2018 International Con-
ference on Industrial Engineering, Applications and Manufac-
turing (ICIEAM), 2018, pp. 1–5. doi:10.1109/ICIEAM.2018.
8728862, iSSN: null.

[21] M. K., R. Kumar, Spam Mail Classi�cation Using Combined
Approach of Bayesian and Neural Network, in: 2010 Interna-
tional Conference on Computational Intelligence and Commu-
nication Networks, 2010, pp. 145–149. doi:10.1109/CICN.
2010.39, iSSN: null.

[22] L. Firte, C. Lemnaru, R. Potolea, Spam detection �lter us-
ing KNN algorithm and resampling, in: Proceedings of
the 2010 IEEE 6th International Conference on Intelligent
Computer Communication and Processing, 2010, pp. 27–33.
doi:10.1109/ICCP.2010.5606466, iSSN: null.

[23] G. Pinto, B. Miranda, S. Dissanayake, What is the Vocabulary
of Flaky Tests? (2020) 11.

[24] W. Lam, R. Oei, A. Shi, D. Marinov, T. Xie, iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests,
in: 2019 12th IEEE Conference on Software Testing, Valida-
tion and Veri�cation (ICST), 2019, pp. 312–322. doi:10.1109/
ICST.2019.00038, iSSN: 2159-4848.

[25] M. Sasaki, H. Shinnou, Spam detection using text clustering,
in: 2005 International Conference on Cyberworlds (CW’05),
2005, pp. 4 pp.–319. doi:10.1109/CW.2005.83, iSSN: null.

[26] T. Fawcett, An introduction to ROC analysis, Pattern Recogni-
tion Letters 27 (2006) 861–874. URL: http://www.sciencedirect.
com/science/article/pii/S016786550500303X. doi:10.1016/j.
patrec.2005.10.010.

[27] D. Zhang, J. Wang, X. Zhao, Estimating the Uncertainty of
Average F1 Scores, in: Proceedings of the 2015 International
Conference on The Theory of Information Retrieval, ICTIR ’15,
Association for Computing Machinery, Northampton, Mas-
sachusetts, USA, 2015, pp. 317–320. URL: https://doi.org/10.
1145/2808194.2809488. doi:10.1145/2808194.2809488.

[28] Wang, Baselines and bigrams | Proceedings of the 50th An-
nual Meeting of the Association for Computational Linguis-
tics: Short Papers - Volume 2, ???? URL: https://dl-acm-org.e.
bibl.liu.se/doi/10.5555/2390665.2390688.

[29] S. Abu-Nimeh, D. Nappa, X. Wang, S. Nair, A compari-
son of machine learning techniques for phishing detection,
in: Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit on - eCrime ’07, ACM
Press, Pittsburgh, Pennsylvania, 2007, pp. 60–69. URL: http:
//portal.acm.org/citation.cfm?doid=1299015.1299021. doi:10.
1145/1299015.1299021.

[30] L. Breiman, RandomForests, Machine Learning 45 (2001) 5–32.
URL: https://doi.org/10.1023/A:1010933404324. doi:10.1023/
A:1010933404324.

[31] I. H. Witten, E. Frank, Data mining: practical machine learn-
ing tools and techniques with Java implementations, ACM
SIGMODRecord 31 (2002) 76–77. URL: https://doi.org/10.1145/
507338.507355. doi:10.1145/507338.507355.

[32] Weka 3 - Data Mining with Open Source Machine Learning

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

45



Software in Java, ???? URL: https://www.cs.waikato.ac.nz/ml/
weka/index.html.

[33] A. Ahmad, O. Lei�er, K. Sandahl, Empirical Analysis of Fac-
tors and their E�ect on Test Flakiness - Practitioners’ Percep-
tions, arXiv:1906.00673 [cs] (2019). URL: http://arxiv.org/abs/
1906.00673, arXiv: 1906.00673.

[34] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, D. Mari-
nov, DeFlaker: Automatically Detecting Flaky Tests, in: 2018
IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 433–444. doi:10.1145/3180155.
3180164.

[35] A. Gambi, J. Bell, A. Zeller, Practical Test Dependency De-
tection, in: 2018 IEEE 11th International Conference on Soft-
ware Testing, Veri�cation and Validation (ICST), 2018, pp. 1–
11. doi:10.1109/ICST.2018.00011.

[36] T. M. King, D. Santiago, J. Phillips, P. J. Clarke, Towards
a Bayesian Network Model for Predicting Flaky Automated
Tests, in: 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C),
IEEE Comput. Soc, Lisbon, 2018, pp. 100–107. doi:10.1109/
QRS-C.2018.00031.

[37] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, S. Misailovic,
Detecting �aky tests in probabilistic and machine learning ap-
plications, in: Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA
2020, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 211–224. URL: https://doi.org/10.1145/3395363.
3397366. doi:10.1145/3395363.3397366.

[38] A. Sjöbom, Studying Test Flakiness in Python Projects : Orig-
inal Findings for Machine Learning, 2019. URL: http://urn.kb.
se/resolve?urn=urn:nbn:se:kth:diva-264459.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

46


