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Abstract
The softmax operation is used in the last layer of deep learning classifiers. This function is characterized by complex arith-
metic operations as exponentials and divisions. In hardware implementations, such complexity negatively impacts on hard-
ware resources. In this paper, we present an efficient hardware implementation of the softmax function. The proposed
architecture has been designed and simulated in Simulink, coded in VHDL, and finally synthesized using the Xilinx Vivado
toolchain. Implementation results are presented in terms of area and power.
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1. Introduction
In the last few years, we assisted to a significant in-
crease in Machine Learning based applications and re-
search works [1, 2, 3]. There are three main reasons
for this incredible Machine Learning growing up:

1. The availability of a great amount of data thanks
to internet diffusion.

2. The computation capability of modern digital sys-
tems that makes possible the efficient parallel
computations as for example GPUs and FPGAs.

3. The introduction of new technologies that allow
the implementation of artificial neural networks
more and more similar to natural ones [4].

New technologies can range from sensors [5], new
cellular systems [6], satellite [7] and critical services [8,
9, 10]. In all those machine learning systems character-
ized by high-speed computations requirements, hard-
ware solutions are preferred to software solutions, such
as in the case of FIR filters [11], it is very important to
design hardware architectures optimized in terms of
complexity in order to reduce costs and power con-
sumption. In this scenario, the softmax function rep-
resents an important issue.

In Machine learning systems, the softmax [12, 13]
function finds its application in the output layer of
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classifiers, making the output values, typically not nor-
malized, interpretable as a percentage of success in
recognizing a certain class.

The name of softmax is a function which, given in
input a vector z, of real values, k-dimensional, pro-
duces in output a vector, always k-dimensional, con-
taining the exponential values of the inputs normal-
ized with respect to the summation of the latter.

The outputs have values included in the range [0.1]
and their summation has a unitary value: it can be in-
terpreted as a probabilistic distribution. The softmax
equation is shown in eq. 1
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As shown in eq. 2 the Softmax function replaces the
activation function of the output layer of the neural
network.
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The block diagram of the softmax function is shown
in Fig. 1 and works as follows:

• The system accepts a k-dimensional vector "y"
as input;

• The vector is input to a logic block that produces
k results, the result of the exponential function
of the input values. This result is input to two
logic blocks;
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Figure 1: Softmax blockdiagram.

Figure 2: The proposed softmax hardware architecture

• The “summation” block compresses a k-dimensional
vector into a numerical value equal to the sum
of the k values;

• The last block divides each element produced by
the exponential by the sum of the exponentials
themselves, producing a k-dimensional vector
containing the percentages.

2. Softmax hardware
implementation

The proposed architecture for the hardware softmax
implementation is shown in Fig. 2. It is composed of
three main blocks:

• Look Up tables for the exponential computation
of e𝑥

• An adders tree for the summation computation

• Dividers for the division computation

Because the exponential relationship between the
number of the bit of the input and the location number
of the Look-Up table used for the exponential function
computation, it is necessary to introduce a technique
able to reduce the location number of the Look-Up ta-
ble in order to not negatively impact on the hardware
resources used for the implementation. For this pur-
pose we use the linear interpolation.

Let’s consider the function 𝑓 (𝑥) = 𝑒
𝑥 we define the

function g as linear interpolation function in the inter-
val 𝑥0 < 𝑥 < 𝑥0 +ℎ, with h defined as the interpolation
step. The function g is defined in eq. 3.

𝑔(𝑥, 𝑥0) = 𝑓 (𝑥0) +𝑚 ⋅ (𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0))

𝑚 =
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𝑥 − 𝑥0

ℎ
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𝑔(𝑥, 𝑥0) = 𝑒
𝑥0

+

𝑒
𝑥0

ℎ

⋅ (𝑒
ℎ
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It is now possible to define the absolute error as
shown in eq. 4 and the relative error shown in eq. 5
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Figure 3: Exponential function vs proposed function
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Choosing h = 0.25 and = 0.125 it is possible to ob-
tain maximum relative errors less than 0.8% with rms
= 0.566% and less of 0.2% with rms = 0.14%.

In fig. 2 is shown a comparison between the expo-
nential function and an interpolated exponential func-
tion.

In order to characterize the performance of the pro-
posed system in terms of maximum frequency, hard-
ware resources, and power consumption, we performed
experiments on several implementations varying the
range of the exponent and the size of the LUTs.

As regards the range, simulations were carried out
with x in the range [-16; 15] and [-2; 1].

The device used for our experiments is the Zynq Ul-
trascale + ZCU 104, which allows you to manage the
numerous inputs and outputs of 16-bit architectures.
In our experiment we fix the value of the number of
input to 8.

For x in the range [-15;15] we choose 5 bit for the in-
teger part and 11 bit for the fractional part. The linear
interpolation has been implemented with h=0.5. Us-
ing this approach the total amount of locations is equal

to 64. The minimum relative error in terms of rms is
2.22%. The values stored in the Look-up table are in
the range [𝑒

−16
= 1.1254 ∗ 10

−7
; 𝑒

15.5
= 5.3897 ∗ 10−6].

For x in the range [-2;1] we choose 2 bit for the inte-
ger part and 7 for the fractional part. The linear inter-
polation has been implemented with h=0.125. Using
this approach the total amount of locations is equal to
8. The minimum relative error in terms of rms is 0.25%.
The values stored in the Look-up table are in the range
[𝑒
−2

= 0.1353; 𝑒
2
= 7.3891].

3. Experimental results
After a floating point and a fixed point Simulink simu-
lation, the proposed softmax architectures were coded
in VHDL and implemented using the XILINX Vivado
toolchain. Finally, they have been characterized in terms
of hardware resources speed and power consumption.
For our experiments we use a Xilinx Zynq Ultrascale+
device.

Implementation results are shown in Fig. 3 and in
Fig. 3 Implementations have been performed with a
clock constraint of 20 ns. Experimental results show
a very low use of hardware resources available in the
device For what concerns power consumption, the re-
sults show a reduced dissipation. This is aspect is very
important especially in all those applications where
power is not provided directly by the power line but it
is provided by batteries or energy harvesting systems.
This is the case for example of IoT systems. Results
show a power consumption of 0.120w and 0.107w for
the two analyzed cases.
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Figure 4: Implementation results range [-16:15]

Figure 5: Implementation results range [-2:1]

4. Conclusion
In this paper, we presented the main features and po-
tential of Xilinx RFSoCs. Thanks to RF converters (un-
til 6 Gsps) they are very suitable for direct sampling of
RF signals with bandwidth up to 4 GHz. As well as
being fully supported from Vivado tool, these devices
are also supported by other tools such us Mathworks
Simulink.
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