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Abstract
A three-dimensional reconstruction of the dome formed by a thin hyperelastic specimen during a creep bulge test was carried
out through two different techniques: stereoscopic reconstruction based on epipolar geometry and Digital Image Correla-
tion. A suitable experimental device, provided with a sliding crossbar for acquiring dome images so to detect its strain state,
was used for the epipolar geometric reconstruction. In 3D reconstruction based on the Digital Image Correlation, the cam-
eras/sliding crossbar system was replaced by a different optical system. A new approach to exploit the greater accuracy
obtained with Digital Image Correlation, using cheaper techniques, was based on the training of a Convolution Neural Net-
work. This training consisted in using a set of points (x, y) of the specimen at different pressure values in order to obtain
a heights (z) map of the dome. This approach is aimed to reconstruct the dome providing to the Network thus trained the
images from a single camera placed on the vertical axis of the dome apex.
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1. Introduction
Nowadays elastomers are widely used in the automo-
tive and mechanical industries to make tires, hydraulic
or pneumatic drive units, hydraulic hoses, anti-vibrat-
ion mounts, pneumatic and hydraulic shock absorbers.

These materials exhibit large deformations with high-
ly non-linear hyperelastic behavior [1]. The mechan-
ical characterization, aimed at defining the hyperelas-
tic constants describing the behavior of elastomers, re-
quires the use of different types of tests. Among these,
the bulge test is a consolidated technique for the study
of membranes subjected to an equibiaxial tension state
[2, 3, 4]; this test can also avoid the damage that can
occur on the edges when the specimen is stressed dur-
ing other types of tests.

The bulge test consists in fixing a thin specimen be-
tween two circular flanges with holes in the center to
allow, through the insufflation of fluid inside the test
chamber, the inflation and therefore the deformation
of the material. During inflation, the characteristic pa-
rameters of the test are monitored: pressure and dis-
placements. The data thus obtained will then be con-
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verted into stress and strain values. Some of the au-
thors have already published a mobile crosshead de-
vice capable of subjecting a membrane to the bulge test
in force control (creep) [5, 6].

In this study, the three-dimensional reconstruction
of the dome of a bulge-tested specimen was performed
with two different techniques: stereoscopic reconstruc-
tion based on epipolar geometry and Digital Image Cor-
relation (DIC) [7, 8]. The data obtained from the lat-
ter methodology were used to properly train a convo-
lutional neural network (CNN). The neural network
thus trained will be able to reconstruct the dome on
the basis of frames from a single camera placed on the
vertical axis of the apex dome, while maintaining the
level of accuracy achieved with 3D-DIC in the training
phase. This involves an obvious saving both temporal
and economical.

2. Materials and Methods
The material tested in this study is SBR 20% carbon
black-filled that is an artificial rubber widely used for
making tires, seals and shoe soles [9, 10, 11]. A set
of 10 square specimens (180𝑚𝑚 × 180𝑚𝑚) were cut
from a single sheet of elastomer having a thickness of
3 mm. Each specimen presented a different pattern
on each of the two faces (Fig. 1). On the first, use-
ful for the epipolar reconstruction, a grid consisting
of five concentric circles (parallels) was silk-screened,
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Figure 1: Left: Side for epipolar reconstruction. In white and in red meridians and parallels considered in CNN, respec-
tively. Right: Side for DIC reconstruction. In this sample, holes for clamping are already made.

Figure 2: Bulge test setup for epipolar geometric recon-
struction (Courtesy of the authors [9]).

a small central circle whose center corresponded to
the top of the dome and 73 equidistant rays (meridi-
ans) radiating from the center. On the second face, on
which to carry out the 3D-DIC, a pattern of random

Figure 3: (a) Light transitions: dark to light (red point) and
light to dark (blue point). (b) Homothetic markers. (c) Com-
parison of the distance between two homothetic markers at
two successive stress states (Courtesy of the authors [6]).

Figure 4: Bulge test setup for 3D-DIC reconstruction.

spots of white paint was airbrushed (with nozzle di-
ameter 𝜙 = 0.18𝑚𝑚). In this way, spots obtained had
an average diameter 𝜙 = 0.23𝑚𝑚 and a relative sur-
face 𝐴 = 0.042𝑚𝑚2.

The bulge test technique is based on some restrictive
assumptions both on the tested material (isotropy and
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Figure 5: Left: Epipolar geometric reconstruction of the dome (Courtesy of the authors [9]). Right: 3D-DIC reconstruction
of the dome.

Figure 6: Creep-test diagrams.

incompressibility) and on the geometry of the inflated
specimen (hemispherical shape and reduced thickness
compared to the radius of curvature). Under these as-
sumptions, the stress state can be considered plane and
equibiaxial, allowing the Boyle-Mariotte law, valid for
thin-walled tanks, to be applied:

𝜎𝑐 = 𝜎𝑎 = 𝑝 ⋅ 𝑆
2 ⋅ 𝑠 (1)

where 𝜎𝑐 and 𝜎𝑎 are, respectively, the circumferen-
tial and axial tension, s is the thickness at the apex,
R is the radius of curvature of the dome and p is the
inflation pressure.

At the apex of the dome each meridian is a main di-
rection and the stress state is equibiaxial. Therefore,
on the surface of the dome the main deformations are
equal to each other (𝜖1 = 𝜖2 = 𝜖𝑒𝑞 ). From the knowl-
edge of the undeformed length 𝑙0 and the deformed
length 𝑙𝑑 of a membrane finite element, these defor-
mations are:

𝜖1 = 𝜖2 = 𝑙𝑛 𝑙𝑑𝑙0
(2)

From the equation of the well-known equivalent de-
formation of Von Mises, respecting the assumption of
incompressibility of the material [12]:

𝜖3 = 𝑙𝑛 𝑠
𝑠0

(3)

where 𝑠0 is the initial thickness of the specimen.

3. Experimental Setup
The experimental setup (Fig. 2) consists of a bulge
chamber, inflated by a compressed air system allow-
ing to accurately adjust the pressure, and of a mobile
crossbar to which two cameras are fixed to detect the
equibiaxial strain of the specimen.

The mobile crosshead device, controlled by an op-
tical system, moves the fixed focus cameras following
the inflation of the specimen. This means that the di-
mensions of the captured images depend exclusively
on the deformation at the dome and not on its ap-
proaching to the camera lenses. The measurement of
the equibiaxial deformation (𝜖𝑒𝑞), according to the eq.
(2), is obtained by comparing the distances between
two homothetic markers relative to two successive in-
stants during the creep of the material (Fig. 3). To mea-
sure the displacement more accurately 33 samples, at
a sample rate of 1 𝑘𝐻𝑧, were acquired for each image.
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The acquisition time was equal to 1/30 𝑠, correspond-
ing to the camera frame rate. During each acquisition,
the average of the 33 values, as a representative value,
and the standard deviation of the series were calcu-
lated. The resulting synchronization uncertainty was
1/30 𝑠, equal to the phase shift of a single frame. More-
over, the displacement signal will be less affected by
the electronic noise.

In order to achieve the 3D reconstruction based on
DIC, GOM ARAMIS 2M LT optical system replaced the
device with cameras/sliding crossbar (Fig. 4).

Figures 5a and 5b show the three-dimensional re-
constructions obtained through epipolar geometry and
3D-DIC, respectively. The creep-test was performed
by inflating air into the chamber as quickly as possible
until reaching a pressure of 75 kPa, keeping it constant
for the entire test period (Fig. 6a). This value, much
lower than the breaking pressure of the specimen, al-
lowed to fall within the elastic range so that the two
faces of the specimen could be tested with the mea-
surement methods adopted. Fig. 6b shows the creep
strains measured with the two methods adopted.

4. Description and Training of
the Neural Network

The architecture of the CNN is largely used in com-
puter vision problems. The main structure used is the
Inverted Bottleneck as residual block that allows hav-
ing a good performance together with limited impact
on the hardware [13].

In this study, a CNN was trained with data extracted
from the mesh generated by the 3D-DIC system (Fig.
7).

The CNN was trained in PyTorch [14] through the
ADAM optimizer and the Mean Squared Error (MSE)
as loss function for 100 epochs with an initial learning
rate (𝑙𝑟 ) of 0.001 and batch size of 4. The weight decay
was set to 10−5 and 𝑙𝑟 was scaled of 0.1 after 20 and 90
epochs.

To achieve the heights (z) map prediction, the CNN
needed 9 coordinate points (x, y) per creep test as in-
put: 8 points from the intersection of meridians 1, 19,
37, 56 and parallels 2 and 3; 1 from the apex of the
dome. In addition, the current pressure was required.

5. Results and Conclusion
Fig. 8 shows the dome reconstructed by the CNN neu-
ral network reached after a learning time of 100 epochs.
The good performance of this network is highlighted

Figure 7: CNN Neural Network.

Figure 8: CNN reconstruction of the dome.

by the value of 0.0147 found, over the testing set, for
the mean square error among test and train curves.

The application of the CNN neural network has prov-
ed useful both from the point of view of time and eco-
nomic savings. In fact, the reconstruction of the dome
can be performed simply based on the frames of a sin-
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gle camera placed on the vertical axis of the dome apex,
thus ensuring the same level of accuracy achieved with
3D-DIC in the training phase.
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