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Abstract

Data augmentation has shown potential in
alleviating data scarcity for Natural Lan-
guage Understanding (e.g. slot filling and
intent classification) in task-oriented dia-
logue systems. As prior work has been
mostly experimented on English datasets,
we focus on five different languages, and
consider a setting where limited data are
available. We investigate the effectiveness
of non-gradient based augmentation meth-
ods, involving simple text span substitu-
tions and syntactic manipulations. Our
experiments show that (i) augmentation
is effective in all cases, particularly for
slot filling; and (ii) it is beneficial for a
joint intent-slot model based on multilin-
gual BERT, both for limited data settings
and when full training data is used.

1 Introduction

Natural Language Understanding (NLU) in task-
oriented dialogue systems is responsible for pars-
ing user utterances to extract the intent of the
user and the arguments of the intent (i.e. slots)
into a semantic representation, typically a seman-
tic frame (Tur and De Mori, 2011). For example,
the utterance “Play Jeff Pilson on Youtube” has the
intent PLAYMUSIC and “Youtube” as value for the
slot SERVICE. As more skills are added to the dia-
logue system, the NLU model frequently needs to
be updated to scale to new domains and languages,
a situation which typically becomes problematic
when labeled data are limited (data scarcity).

One way to combat data scarcity is through
data augmentation (DA) techniques performing
label preserving operations to produce auxiliary
training data. Recently, DA has shown potential
in tasks such as machine translation (Fadaee et
al., 2017), constituency and dependency parsing

(Şahin and Steedman, 2018; Vania et al., 2019),
and text classification (Wei and Zou, 2019; Ku-
mar et al., 2020). As for slot filling (SF) and
intent classification (IC), a number of DA meth-
ods have been proposed to generate synthetic ut-
terances using sequence to sequence models (Hou
et al., 2018; Zhao et al., 2019), Conditional Vari-
ational Auto Encoder (Yoo et al., 2019), or pre-
trained NLG models (Peng et al., 2020). To date,
most of the DA methods are evaluated on English
and it is not clear whether the same finding apply
to other languages.

In this paper, we study the effectiveness of
DA on several non-English datasets for NLU in
task-oriented dialogue systems. We experiment
with existing lightweight, non-gradient based, DA
methods from Louvan and Magnini (2020) that
produces varying slot values through substitution
and sentence structure manipulation by leveraging
syntactic information from a dependency parser.
We evaluate the DA methods on NLU datasets
from five languages: Italian, Hindi, Turkish, Span-
ish, and Thai. The contributions of our paper are
as follows:
1. We assess the applicability of DA methods for

NLU in task-oriented dialogue systems in five
languages.

2. We demonstrate that simple DA can improve
performance on all languages despite different
characteristic of the languages.

3. We show that a large pre-trained multilingual
BERT (M-BERT) (Devlin et al., 2019) can still
benefit from DA, in particular for slot filling.

2 Slot Filling and Intent Classification

The NLU component of a task-oriented dialogue
system is responsible in a parsing user utterance
into a semantic representation, such as semantic

Copyright c©2020 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0)



Figure 1: Augmentation operations performed on an utterance, “Quali film animati stanno proiettando al
cinema piu vicino” (“Which animated films are showing at the nearest cinema”). The utterance is taken
from the Italian SNIPS dataset.

frame. The semantic frame conveys information,
namely the user intent and the corresponding argu-
ments of the intent. Extracting such information
involves slot filling (SF) and intent classification
(IC) tasks.

Given an input utterance of n tokens, x =
(x1, x2, .., xn), the system needs to assign a partic-
ular intent yintent for the whole utterance x and the
corresponding slots that are mentioned in the utter-
ance yslot = (yslot1 , yslot2 , .., yslotn ). In practice, IC
is typically modeled as text classification and SF
as a sequence tagging problem. As an example,
for the utterance “Play Jeff Pilson on Youtube”,
yintent is PLAYMUSIC, as the intent of the user is
to ask the system to play a song from a musician
and yslot = ( O, B-ARTIST, I-ARTIST,
O, B-SERVICE ) in which the artist is “Jeff Pil-
son” and the service is “Youtube””. Slot labels
are in BIO format: B indicates the start of a slot
span, I the inside of a span while O denotes that
the word does not belong to any slot. Recent ap-
proaches for SF and IC are based on neural net-
work methods that models SF and IC jointly (Goo
et al., 2018; Chen et al., 2019) by sharing model
parameter among both tasks.

3 Data Augmentation (DA) Methods

DA aims to perform semantically preserving trans-
formations on the training data D to produce aux-
iliary data D′. The union of D and D′ is then
used to train a particular NLU model. For each
utterance in D, we produce N augmented utter-
ances by applying a specific augmentation opera-
tion. We adopt a subset of existing augmentation

methods from Louvan and Magnini (2020), that
has shown promising results on English datasets.
We describe the augmentation operations in the
following sections.

3.1 Slot Substitution (SLOT-SUB)

SLOT-SUB (Figure 1 left) performs augmentation
by substituting a particular text span (slot-value
pair) in an utterance with a different text span that
is semantically consistent i.e., the slot label is the
same. For example, in the utterance “Quali film
animati stanno proiettando al cinema più vicino”,
one of the spans that can be substituted is the
slot value pair (più vicino, SPATIAL RELATION).
Then, we collect other spans in D in which the
slot values are different, but the slot label is the
same. For instance, we found the substitute can-
didates SP ′ = {(“distanza a piedi”, SPATIAL RE-
LATION), (“lontano”, SPATIAL RELATION), (“nel
quartiere”, SPATIAL RELATION), . . .}, and then
we sample one span to replace the original span in
the utterance.

3.2 CROP and ROTATE

In order to produce sentence variations, we apply
the crop and rotate operations proposed in Şahin
and Steedman (2018), which manipulate the sen-
tence structure through its dependency parse tree.
The goal of CROP (Figure 1 middle) is to simplify
the sentence so that it focuses on a particular frag-
ment (e.g. subject/object) by removing other frag-
ments in the sentence. CROP uses the dependency
tree to identify the fragment and then remove it
and its children from the dependency tree.



#Label #Utterances (D) #Augmented Utterances (D′)
Dataset Language #slot #intent #train #dev #test #SLOT-SUB #CROP #ROTATE

SNIPS-IT Italian 39 7 574 700 698 5,404 1,431 1,889
ATIS-HI Hindi 73 17 176 440 893 1,286 460 472
ATIS-TR Turkish 70 17 99 248 715 144 161 194
FB-ES Spanish 11 12 361 1,983 3,043 1,455 769 1,028
FB-TH Thai 8 10 215 1,235 1,692 781 - -

Table 1: Statistics on the datasets. #train indicates our limited training data setup (10% of full training
data). D′ is produced by tuning the number of augmentations per utterance (N ) on the dev set.

Model DA SNIPS-IT ATIS-HI ATIS-TR FB-ES FB-TH

Slot Intent Slot Intent Slot Intent Slot Intent Slot Intent

M-BERT None 78.25 94.99 69.57 86.57 64.36 78.98 84.13 97.68 56.06 89.80

SLOT-SUB 81.97† 94.93 72.44† 87.29 66.60† 79.85 84.27 97.72 59.68† 91.42†

CROP 80.12† 94.60 70.04 86.92 65.11 79.48 83.85 98.08† - -
ROTATE 79.24† 95.37 70.69 87.60† 65.20 80.06 83.28 98.20† - -
COMBINE 81.27† 95.00 72.13† 86.93 66.68† 81.12† 83.67 97.94 - -

Table 2: Performance comparison of the baseline and augmentation methods on the test set. F1 score is
used for slot filling and accuracy for intent classification. Scores are the average of 10 different runs. †
indicates statistically significant improvement over the baseline (p-value < 0.05 according to Wilcoxon
signed rank test).

The ROTATE (Figure 1 right) operation is per-
formed by moving a particular fragment (includ-
ing subject/object) around the root of the tree, typ-
ically the verb in the sentence. For each operation,
all possible combinations are generated, and one
of them is picked randomly as the augmented sen-
tence. Both CROP and ROTATE rely on the univer-
sal dependency labels (Nivre et al., 2017) to iden-
tify relevant fragments, such as NSUBJ (nominal
subject), DOBJ (direct object), OBJ (object), IOBJ
(indirect object).

4 Experiments

Our primary goal is to verify the effectiveness
of data augmentation on Italian, Hindi, Turkish,
Spanish and Thai NLU datasets with limited la-
beled data. To this end, we compare the per-
formance of a baseline NLU model trained on
the original training data (D) with a NLU model
that incorporates the augmented data as additional
training instances (D + D′). To simulate the lim-
ited labeled data situation we randomly sample
10% of the training data for each dataset.

Baseline and Data Augmentation (DA) Meth-
ods. We use the state of the art BERT-based joint
intent slot filling model (Chen et al., 2019) as
the baseline model. We leverage the pre-trained

multilingual BERT (M-BERT), which is trained
on 104 languages. During training, M-BERT is
fine tuned on the slot filling and intent classi-
fication tasks. Given a sentence representation
x = ([CLS] t1 t2 . . . tL), we use the hidden state
h[CLS] to predict the intent, and hti to predict the
slot label. As for DA methods, in addition to the
methods described in Section 2, we add one con-
figuration COMBINE, which combines the result
of SLOT-SUB and ROTATE, as ROTATE obtains
better results than CROP on the development set.

Settings. The model is trained with the
BertAdam optimizer for 30 epochs with early
stopping. The learning rate is set to 10−5 and
batch size is 16. All the hyperparameters are
listed in Appendix A. For SLOT-SUB the number
of augmentation per sentence N is tuned on the
development set. To produce the dependency
tree, we parse the sentence using Stanza (Qi
et al., 2020). For both CROP and ROTATE we
follow the default hyperparameters from Şahin
and Steedman (2018). We did not experiment
with Thai for CROP and ROTATE as Thai is not
supported by Stanza. The number of augmented
sentences (D′) for each method is listed in Table
1. For evaluation metric, we use the standard
CoNLL script to compute F1 score for slot filling
and accuracy for intent classification.



Datasets. For the Italian language, we use the
data from Bellomaria et al. (2019), translated from
the English SNIPS dataset (Coucke et al., 2018).
SNIPS has been widely used for evaluating NLU
models and consists of utterances in multiple do-
mains. As for Hindi and Turkish, we use the ATIS
dataset from Upadhyay et al. (2018), derived from
Hemphill et al. (1990). ATIS is a well known
NLU dataset on flight domain. As for Spanish and
Thai we use the FB dataset from Schuster et al.
(2019) that contains utterances in alarm, weather,
and reminder domains. The overall statistics of the
datasets are shown in Table 1.

5 Results

The overall results reported in Table 2 show that
applying DA improves performance on slot filling
and intent classification across all languages. In
particular, for SF, the SLOT-SUB method yields
the best result, while for IC, ROTATE obtains
better performance compared to CROP in most
cases. These results are consistent with the finding
from Louvan and Magnini (2020) on the English
dataset, where SLOT-SUB improves SF and CROP

or ROTATE improve IC. In general, ROTATE is bet-
ter than CROP for most cases on IC, and we think
this is because CROP may change the intent of the
original sentence. Intents typically depend on the
occurrence of specific slots, so when the cropped
part is a slot-value, it may change the sentence’s
overall semantics.

We can see that languages with different typo-
logical features (e.g. subject/verb/object order-
ing)1 benefit from ROTATE operation for IC. This
result suggests that augmentation can produce use-
ful noise (regularization) for the model to allevi-
ate overfitting when labeled data is limited. When
we use COMBINE, it still helps the performance
of both SF and IC, although the improvements are
not as high as when only one of the augmentation
method is applied. The only language that gets
the benefits the most from COMBINE is Turkish.
We hypothesize that as Turkish has a more flexi-
ble word order than the other languages it benefits
the most when ROTATE is performed.

Performance on varying data size. To better
understand the effectiveness of SLOT-SUB, we
perform further analysis on different training data
size (see Figure 2). Overall, we observe that as we

1Italian, Spanish, and Thai are SVO languages while
Hindi and Turkish are SOV languages.

Figure 2: Improvement (∆F1) obtained by SLOT-
SUB (SS) on different training data size. Positive
numbers mean that the model with SS yields gain.

increase the training size, the benefit of SLOT-SUB

is decreasing for all datasets. For some datasets,
namely ATIS-HI and FB-ES, SLOT-SUB can cause
performance drop for larger data size, although it
is reasonably small (less than 1 F1 point). FB-TH
consistently benefits from SLOT-SUB even when
full training data is used. Until which training data
size the improvement is significant vary across
datasets2. For SNIPS-IT, improvement is clear for
all training data size and they are statistically sig-
nificant up until the training data size is 80%. For
ATIS-HI improvements are significant until data
size of 40%. As for FB datasets, improvements
are significant only until the training data size is
10%. Overall, we can see that SLOT-SUB is ef-
fective for cases where data is scarce (5%, 10%),
while it is still relatively robust for larger data size
on all datasets.

Figure 3: Gain (∆F1) obtained by SLOT-SUB

(SS) on various number of augmented sentence
(N). Positive numbers mean that the model with
SS yields gain.

2For more details of the p-value of the statistical tests
please refer to Appendix B



Performance on different numbers of augmen-
tation per utterance (N ). We examine the ef-
fect of a larger number of augmentations per utter-
ance (N ) to the model performance, specifically
for SF (see Figure 3). For FB-ES, similarly to the
results in Table 2, increasing N does not affect the
performance. For the other datasets, increasing
N brings performance improvement. For ATIS-
HI, SNIPS-IT, and FB-TH the trend is that, as
we increase N , performance goes up and plateau.
For ATIS-TR, changing N does not really affect
the gain of the performance as the performance
trend is quite steady across number of augmenta-
tions. For most combinations of N in each dataset
(except FB-ES), the difference between the per-
formance of model that using SLOT-SUB and the
model that does not use SLOT-SUB is significant
3.

6 Related Work

Data augmentation methods that has been pro-
posed in NLP aims to automatically produce ad-
ditional training data through different kinds of
methods ranging from simple word substitution
(Wei and Zou, 2019) to more complex methods
that aims to produce semantically preserving sen-
tence generation (Hou et al., 2018; Gao et al.,
2020). In the context of slot filling and intent clas-
sification, recent augmentation methods typically
apply deep learning models to produce augmented
utterances.

Hou et al. (2018) proposes a two-stages meth-
ods to produce the delexicalized utterances gen-
eration and slot values realization. Their method
is based on a sequence to sequence based model
(Sutskever et al., 2014) to produce a paraphrase
of an utterance with its slot values placeholder
(delexicalized) for a given intent. For the slot
values lexicalization, they use the slot values in
the training data that occur in similar contexts.
Zhao et al. (2019) trains a sequence to sequence
model with training instances that consist of a pair
of atomic templates of dialogue acts and its sen-
tence realization. Yoo et al. (2019) proposes a
solution by extending Variational Auto Encoder
(VAE) (Kingma and Welling, 2014) into a Con-
ditional VAE (CVAE) to generate synthetic utter-
ances. The CVAE controls the utterance genera-
tion by conditioning on the intent and slot labels

3For more details of the p-value of the statistical tests
please refer to Appendix B

during model training. Recent work from Peng et
al. (2020) make use of Transformer (Vaswani et
al., 2017) based pre-trained NLG namely GPT-2
(Radford et al., 2019), and fine-tune it to slot fill-
ing dataset to produce synthetic utterances. We
consider these deep learning based approaches as
heavyweight as they often require several stages
in the augmentation process namely generating
augmentation candidates, ranking and filtering the
candidates before producing the final augmented
data. Consequently, the computation time of these
approaches is generally more expensive as sepa-
rate training is required to train the augmentation
and joint SF-IC models. Recent work from Lou-
van and Magnini (2020) apply a set of lightweight
methods in which most of the augmentation meth-
ods do not require model training. The augmen-
tation methods focus on varying the slot values
through substitution mechanisms and varying sen-
tence structure through dependency tree manipu-
lation. While the methods are relatively simple
it obtains competitive results with deep learning
based approaches on the standard English slot fill-
ing benchmark datasets namely ATIS (Hemphill
et al., 1990), SNIPS (Coucke et al., 2018), and FB
(Schuster et al., 2019) datasets.

Existing methods mostly evaluate their ap-
proaches on English datasets, and little work has
been done on other languages. Our work focuses
on investigating the effect of data augmentation on
five non-English languages. We apply a subset of
lightweight augmentation methods from Louvan
and Magnini (2020) that do not require separate
model training to produce augmentation data.

7 Conclusion

We evaluate the effectiveness of data augmenta-
tion for slot filling and intent classification tasks
in five typologically diverse languages. Our re-
sults show that by applying simple augmentation,
namely slot values substitutions and dependency
tree manipulations, we can obtain substantial im-
provement in most cases when only small amount
of training data is available. We also show that a
large pre-trained multilingual BERT benefits from
data augmentation.
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Appendix A. Hyperparameters

Hyperparameter Value

Learning rate 10−5

Dropout 0.1
Mini-batch size 16
Optimizer BertAdam
Number of epoch 30
Early stopping 10

N Tuned on {2, 5, 10}
Max rotation 3
Max crop 3

Table 3: List of hyperparameters used for the
BERT model and data augmentation methods

Appendix B. Statistical Significance

Dataset Nb Aug p-value

ATIS-TR 2 0.005062032126

5 0.01251531869

10 0.006910429808

20 0.5001842571

25 0.07961580146

ATIS-HI 2 0.1097446387

5 0.005062032126

10 0.005062032126

20 0.04311444678

25 0.04311444678

SNIPS-IT 2 0.005062032126

5 0.005062032126

10 0.005062032126

20 0.04311444678

25 0.04311444678

FB-ES 2 0.0663160313

5 0.02831405495

10 0.09260069782

20 0.3452310718

25 0.07961580146

FB-TH 2 0.03665792867

5 0.005062032126

10 0.005062032126

20 0.04311444678

25 0.04311444678

Table 5: The p-values of statistical tests on the ex-
periments on Figure 3

Dataset Training Size (%) p-value

ATIS-HI 5 0.04311444678

10 0.005062032126

20 0.04311444678

40 0.04311444678

80 0.1380107376

100 0.2733216783

ATIS-TR 5 0.224915884

10 0.005062032126

20 0.7150006547

40 0.1797124949

80 0.1797124949

100 0.1797124949

SNIPS-IT 5 0.04311444678

10 0.005062032126

20 0.04311444678

40 0.04311444678

80 0.04311444678

100 0.04311444678

FB-ES 5 0.04311444678

10 0.02831405495

20 0.1797124949

40 0.1755543028

80 0.1380107376

100 0.1797124949

FB-TH 5 0.04311444678

10 0.005062032126

20 0.1797124949

40 0.1797124949

80 0.1797124949

100 0.10880943

Table 4: The p-values of statistical tests on the ex-
periments on Figure 2.


