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Abstract

It is widely held that children implicitly
learn the structure of their writing system
through statistical learning of spelling-to-
sound mappings. Yet an unresolved ques-
tion is how to sequence reading experience
so that children can ‘pick up’ the structure
optimally. We tackle this question here
using a computational model of encoding
and decoding. The order of presentation
of words was manipulated so that they ex-
hibited two distinct progressions of granu-
larity of spelling-to-sound mappings. We
found that under a training regime that in-
troduced written words progressively from
small-to-large granularity, the network ex-
hibited an early advantage in reading ac-
quisition as compared to a regime intro-
ducing written words from large-to-small
granularity. Our results thus provide sup-
port for the grain size theory (Ziegler and
Goswami, 2005) and demonstrate that the
order of learning can influence learning
trajectories of literacy skills.

1 Introduction

Reading science provides evidence of the devel-
opmental path to acquiring reading for alphabetic
languages (Ehri, 2005; Rayner et al., 2001). From
parsing the speech stream into words in infancy
(Christiansen et al., 2006; Saffran et al., 1997),
to familiarizing with print in the preschool years
(Thompson, 2009) — these activities lead to the
accrual of key knowledge for learning to read.
Knowledge about the language’s phonotactic and
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graphotactic properties and symbolic representa-
tions with abstract letter units is necessary for the
forthcoming insight that print represents spoken
language (the alphabetic principle). Subsequent
to this insight, children are ready to take on the
process of learning the precise mapping of print-
to-speech.

At its basis, learning to read involves learn-
ing to decode a script into oral language repre-
sentations. The question arises as to the optimal
input for learning this orthography-to-phonology
mapping in an alphabetic system, especially for
languages that have deep orthographies, such as
English. Shallow orthographies (e.g., Finnish,
Spanish) have a more precise match between
letters and sounds; whereas deep orthographies
match phonemes to graphemes (one or more let-
ters) in an inconsistent way — with multiple
spellings per phoneme, or multiple pronunciations
per grapheme — and, thus, have a greater number
of GPCs (grapheme-phoneme correspondences).
Therefore, reading acquisition is found to occur
at a comparatively slower rate for readers in deep
as compared to shallow orthographies (Ellis et
al., 2004; Georgiou et al., 2008; Florit and Cain,
2011).

The deep orthographic complexity of English
also partly results from variation in the functional
units of the writing system — graphemes —-
which may consist of a single letter (e.g., a), or
multiple letters (e.g., ay, aye). While skilled adult
readers have unitized these subword patterns (Rey
et al., 2000), beginning readers need to acquire
these patterns of graphemes and their mappings to
phonemes. Here we consider this mapping prob-
lem along two dimensions: (1) the granularity of
the units of analysis to be picked up at any given
time; and (2) the ordering of learning such units
and types.

A fruitful approach to examining the GPC
learning process is through computational mod-



elling (Monaghan and Ellis, 2010; Perry et al.,
2019; Pritchard et al., 2016). Specifically, connec-
tionist models are sensitive to the timing and or-
dering of learning events, in that they learn incre-
mentally. This feature is particularly apt for mod-
eling reading development, as it affords simulating
the incremental nature of a child learning to read
new words daily, as schooling progresses. Order
effects as well as frequency trajectory effects have
been documented in previous connectionist mod-
els (Mermillod et al., 2012), and here we are inter-
ested in comparing learning trajectories for partic-
ular training orderings for reading development.

To this end, we present connectionist networks
with small batches of words, which we test reg-
ularly for accuracy until a given criterion across
the batch is achieved — in essence, an adaptive
training regime. Using this approach, we can
address long-standing issues in the area of read-
ing education with a more systematic approach to
understanding how print-to-speech mappings are
learned (Rueckl, 2016).

Below we briefly review why print-to-speech
decoding can be a hard problem, both for learners
and for researchers trying to understand its mecha-
nisms. Then, we discuss dimensions of granularity
derived from the literature, and offer a first set of
connectionist simulations of the order of reading
acquisition of American English.

1.1 Is there an optimal reading experience?

The psycholinguistic grain size theory (Ziegler
and Goswami, 2005) has generated much research
on reading acquisition, including across differ-
ent alphabetic languages. It espouses that gran-
ularity for oral and written language development
proceed in different directions — from larger to
smaller, vs. from smaller to larger units. Thus, the
mismatch in unit or “grain” sizes available over
development introduces a disparity in learning the
mapping between orthography and phonology.
This learning challenge has led to investigations
of behavioral interventions for teaching reading
at either whole word or subword levels (National
Reading Panel, 2001; McArthur et al.,, 2015),
showing an advantage for subword approaches
emphasizing letter, grapheme or larger (subsylla-
ble onset-rime) units (Rayner et al., 2001; Ehri et
al., 2001; Torgerson et al., 2006; Olson and Wise,
1992; Ecalle et al., 2009). At the same time, the
optimal subword grain size has been debated. De-

velopmentally, Treiman et al. (2006) reported that
children appear to initially attend to small units
(graphemes), before gradually showing an influ-
ence of surrounding graphemes when confronted
with inconsistencies in pronunciation.

Thus, in the current study we focus on sin-
gle grapheme to phonemes, or single phoneme to
grapheme mappings in our inquiry of granular-
ity and learning to read. In this way, we make
no assumptions about a beginning reader’s knowl-
edge of subword units or syllable structure, instead
assuming all letters are created equal (whether
vowels or consonants) and that the reading sys-
tem must initially acquire knowledge of print pat-
terns for GPC on its own, through experience
with the print input. Granularity was, there-
fore, operationalised for each word as the differ-
ence between the number of letters (Vjetter) and
phonemes (Nphon; 1.€., Nietter—Nphon). For ex-
ample, the granularity of the word mince (Nietter
=5, Nphon =4) is 1, and the granularity of thought
(Nietter = 7, Nphon = 3) is 4. A granularity of
0, hence, indicates that the word comprises of no
multi-letter grapheme (e.g., held, storm).

The aim of this study was to systematically ex-
amine granularity related to the learning of GPC
and word decoding. Theoretical accounts of the
best representational units for learning to read
have not been explicitly tested in the modelling
literature to our knowledge. This, in turn, may
inform instructional practices as to the best ap-
proaches for optimizing the learning curve, and re-
sults can be interpreted in terms of optimal child
developmental trajectories and reading curricula
(McKeown et al., 2017).

2 Method

2.1 Model Architecture

The model had four types of layers: orthographic,
phonological, hidden, and clean-up (see Figure 1).
The orthographic and phonological layers were
each connected to a clean-up layer that mediated
connections within the respective units, creating
an attractor network that settles into a stable pat-
tern over time (Harm and Seidenberg, 1999).

The orthographic layer was composed of 260
units, corresponding to 10 positions x 26 possi-
ble letters. Words were coded as vowel-centred,
such that the fourth slot was filled with the left-
most vowel of a word (e.g., mince — - _mince
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Figure 1: Architecture of the implemented reading
model.

A word’s phonology was represented with
nodes coding features of phonemes (8 positions
x 28 possible phonological features = 224 units).
Pronunciation of each word was positioned with
the vowel at the fourth slot (e.g., mince — /- _
mins __/). Each phoneme was encoded by a bi-
nary vector of 28 phonological features taken from
PHOIBLE (Moran and McCloy, 2019), an online
repository of cross-lingual phonological data. A
list of phonemes and their respective phonological
features used in the present work can be found in
the Open Science Framework (OSF) repository for
this project (https://osf.io/hjo6x/).

While traditionally the problem of learning to
read is conceptualized in terms of decoding uni-
directionally from orthography to phonology, re-
search suggests that children engage in spelling
words simultaneously as they learn to decode.
In addition, feedback sound-to-spelling relations
are also informative in establishing mappings for
reading. Thus, we implemented a new model with
a bidirectional network architecture that connects
orthographic-to-phonological and phonological-
to-orthographic layers via the hidden units.

2.2 Training Procedure

The model was trained with a learning rate of 0.05
using a back-propagation through time (BPTT) al-
gorithm with input integration and a time constant
of 0.5 (Harm and Seidenberg, 1999; Plaut et al.,
1996). Each word item was clamped and pre-
sented for six time ticks, and then in an additional
six time ticks, the model was required to repro-
duce the target pattern of the word by the final 12th
tick. The weight connections are updated based on
cross-entropy error computed between the target
and the actual activation of the output units.
Training proceeded in two distinct stages re-

flecting naturalistic child language development:
(1) a pre-literacy training stage, in which the
model was trained to learn the phonology-
to-phonology mappings with an accuracy of
99%; and (2) a literacy training stage, in
which the model was trained on both decod-
ing (orthography-to-phonology) and encoding
(phonology-to-orthography) tasks in a sequential
manner. The pre-literacy stage of training was in-
tended to mimic the fact that children develop oral
skills through hearing and speaking long before
learning to read.

Models were trained with a cumulative pro-
cess of learning to encode and decode, whereby
words with different granularity were introduced
to the model in either an ascending or descend-
ing sequence. These two models were referred to
as small-to-large (SL) and large-to—small (LS)
from here onwards.

Words were first sorted with regard to their
granularity, followed by a second-level sorting cri-
terion to arrange words with the same granularity
in order of decreasing frequency. The first batch
of words in each training regime, therefore, com-
prises of high frequency words that are of either
the smallest (e.g., fix, lynx) or largest (e.g., bought,
should) granularity in the corpus. During training,
words were sampled according to their frequency
from the Word Frequency Guide (WFG) corpus
(Zeno et al., 1995), and the resulting probability
values were normalized over all words in the train-
ing set. Correspondingly, low frequency words
had a lower probability of being presented to the
model during training as compared to high fre-
quency words [e.g., P(yules) = 0.05 vs. P(of) =
0.97].

2.2.1 Adaptive training

Teachers introduce written words progressively
to their pupils, and regularly assess progress be-
fore introducing new words. Likewise, our model
training introduced batches of 45 new words at a
time. Importantly, a new batch of words was in-
troduced only after model performance exceeded a
criterion threshold of 70% combined accuracy for
the decoding and encoding tasks on trained words
— which included only words that the model had
been trained on cumulatively up to the last training
epoch. This tested the network success at repro-
ducing the training set to which it had been pro-
gressively exposed, and allowed us to compare the
rates of learning under different training regimes.



2.3 Testing Procedure

Two complementary tests are carried out every
100 training epochs: (1) a total vocabulary test
which uses words from the entire corpus, regard-
less of whether they have been presented to the
model in previous training phases; and (2) an un-
trained pseudo-words test which uses a fixed set
of pronounceable and spellable monosyllabic non-
words. This pseudo-word set is derived from pre-
vious empirical studies on developmental reading
skills (Torgesen et al., 1999). Thus, with these
tests we assess the network’s (1) transfer and (2)
decoding abilities.

Because no learning occurs during testing, the
same set of test words and non-words can be used
routinely as novel testing items after 100 training
epochs. This represents a considerable advantage
with respect to behavioural longitudinal experi-
ments, where successive test sessions can suffer
from previous exposure effects.

Each test was administered twice, once in a de-
coding task and again in an encoding task. The de-
coding task activated the orthographic pattern for
a given test word on the orthographic layer, say,
eye, and measured the accuracy of the network to
reproduced the corresponding target phonological
word (/a1/) on the phonological layer. Conversely,
the encoding task activated the phonological pat-
tern for a given word on the phonology layer, say,
/a1/, and measured the accuracy of the network to
reproduced the corresponding target orthographic
word (eye) on the orthographic layer.

Similar to the training procedure, each test word
item was clamped and presented for six time sam-
ples, and then in an additional six time sam-
ples, the model was required to produce the tar-
get phonological/orthographic pattern of the word.
An output was scored as correct when the target
nodes were active with a value >= (.75, and con-
currently the other nodes were inactive (<= 0.25).
Intermediate values were considered incorrect.

2.4 Corpus

All stimuli were monosyllabic American English
words. The CHILDES database (MacWhinney,
2000), WFG corpus (Zeno et al.,, 1995), and
the Phonemic Decoding Efficiency sub-test of the
TOWRE (Torgesen et al., 1999) were used for pre-
literacy training (N = 5032), literacy training (N
= 4394), and pseudo-words testing (N = 163), re-
spectively. The full list of words and their respec-

tive granularity and batch number can be found on
OSF (https://osf.io/hj96x/).

To check whether frequency covaries with grain
size, and may therefore confound the order ef-
fect, we conducted Spearman’s correlations across
the training regime between batch number and
mean log frequency per batch. This was done
for each training order: small-to-large (SL) and
large—to—small (LS). Importantly, while batch
number was significantly correlated with fre-
quency for both training orders [SL: 74(96) =-0.43,
p <.001; LS: r;(96) =-0.30, p = .003], the relation
was in the same, negative direction in both cases
—- ensuring that frequency was not systematically
tied to grain size. Rather, the result was from the
second-level sorting by frequency in descending
order.

To identify the possible relationship between
the granularity and consistency of the mapping
for the units to be learned, we calculated the de-
coding and encoding consistency measures to re-
flect how often the orthographic/phonological unit
was spelled/pronounced in the same way as it was
across all words (Berndt et al., 1987). The pro-
cedure required the conditional probabilities of
GPCs and PGCs to be computed as they occur in
the corpus [e.g., the probability of the grapheme
ew being pronounced as /o/ is, P(/o/lew) =
0.057].

We then derived a composite consistency score
to account for the two measures (decoding and en-
coding), with a higher score representing higher
overall bi-directional word consistency. Consis-
tency was found to correlate negatively with gran-
ularity increases [SL: r4(96) =-0.69, p < .001; LS:
r5(96) =0.71, p < .001], indicating that words with
smaller granularity were more consistent.

3 Results

At the time of writing, each model had been
trained on 67 out of 98 batches of words (or 3015
out of 4394 unique words). While incomplete,
our preliminary observations suggest a clear dif-
ference in rate of learning across the two training
regimes.

Results are summarised in Figure 2, and show
that under a training regime that introduces writ-
ten words in batches progressively from small-to-
large granularity, the network exhibited an early
advantage in reading acquisition as compared to
a regime introducing written words from large-to-
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Figure 2: Models’ accuracy in the encoding task
when tested against the full vocabulary and a set
of pseudo-words. Test results compare models
trained on two ordering regimes based on granu-
larity of the orthography-phonology mappings.

small granularity.

The two types of repeated tests served to eval-
uate the accuracy of phonological output for: (a)
total vocabulary (including trained and untrained
words) and (b) pseudo-words. Both tests mea-
sured the ability of the networks to generalize to
unseen but orthographically legal strings (see Fig-
ure 2). Specifically, the SL and LS models took
232800 and 346400 epochs, respectively, to reach
the criterion threshold of 70% accuracy for all
67 batches of words that were introduced cumu-
latively over time. Apart from reaching the cri-
terion threshold earlier, the S model also per-
formed better than the LS model in pseudo-words
test (47.85% vs. 33.13%) at the end of preliminary
training.

4 Discussion

As the process of learning to read requires picking
up and internalizing representational units of print
associated with sound, the ordering of training
input to the reading system becomes paramount.
How best to order input and maximize learning ef-
ficiency has been debated in the literacy education
field. This study capitalizes on a computational
modelling approach to this issue, using a highly

controlled context without the ethical concerns of
human learning studies. Directly contrasting the
effects of two literacy training regimes differing
in granularity order, the simulation results support
better learning with smaller, less complex ortho-
graphic units, as predicted from corpus-based re-
search (Vousden, 2008). At training stages com-
prising of 3015 words, we found that the model
initially trained with words of smaller granularity
performed and generalized to pseudo-words better
than the model trained with larger granularity. The
LS model did require significantly more training
epochs to reach the same performance as the SL
model.

Essentially, when children learn to read, they
must navigate the structure of their language and
its writing system. Granularity and consistency
are important aspects of this structure, and both
impact reading performance. Adult readers are
slower to identify letters within a multi-letter
grapheme (Smith and Monaghan, 2011; Rey et al.,
2000), suggesting that graphemes are functional
reading units. Furthermore, Rastle and Coltheart
(1998) found that naming latencies were slower
for pseudo-words with, as compared to without,
multi-letter graphemes. Adult word naming and
lexical decision are also faster for consistent words
(Andrews, 1982; Jared, 1997; Jared, 2002), and
consistent words are more accurately read and
spelled by children (Alegria and Mousty, 1996;
Lété et al., 2008; Weekes et al., 2006).

Granularity and consistency have been regarded
to be associated (Treiman et al., 1995), and our
corpus analysis revealed this as well — mono-
syllabic English words of smaller granularity tend
to be more consistent than words with larger gran-
ularity. This relationship indicates that granular-
ity and consistency may not be entirely disentan-
gled, at least for English. With this in mind, the
SL model was first exposed to words of smaller
granularity that were also more consistent in their
GPC and PGC (phoneme-grapheme correspon-
dence) mappings. Thus consistency and granu-
larity may be two sides of the same coin, and
when manipulated they could lead to faster or
slower rates of convergence. Importantly, the cur-
rent model included bidirectional links between
orthographic and phonological units, simulating
the real-world scenario that children acquire de-
coding and encoding skills simultaneously.

These findings have implications for educa-



tional planning for early literacy. In particular,
our pilot simulation provides preliminary evidence
on the potential utility of manipulating the order
of training in terms of word granularity to unveil
facilitative effects on literacy acquisition. Read-
ing instruction can consider the early acquisition
of words with smaller granularity, or more consis-
tency. However, we note that the present findings
are based on the analysis of monosyllabic words
only and should not be generalized to multisyl-
labic words directly. Future work can consider
using models that are capable of reading multi-
syllabic words (Perry et al., 2010), or explore the
link between granularity and consistency across
languages that are either less or more orthograph-
ically transparent.
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