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Abstract. Various forms of reasoning, the profusion of knowledge, the
gap between neuro-inspired approaches and conceptual representations,
the problem of inconsistent data input, and the manifold of computa-
tional paradigms for solutions of these problems challenge AI models for
higher cognitive abilities. We propose the I-Cog architecture as a step
towards a solution for these problems. I-Cog is a modular system that is
composed of a reasoning device based on analogical reasoning, a rewrit-
ing mechanism for the ontological knowledge base, and a neuro-symbolic
interface for robust learning from noisy and inconsistent data.

1 Introduction

Since the origins of Artificial Intelligence – based on the fundamental work of
Alan Turing [44], the first architecture for neural networks by McCulloch & Pitts
[35], the development of higher programming languages like LISP [34], and finally
the creation of AI as a discipline at the Dartmouth conference – artificial intel-
ligence has (more or less) strongly been committed to interdisciplinary research
and the modeling of higher cognitive abilities.1 Several important achievements
can be identified during the last 50 years with respect to modeling (or support-
ing) cognitive challenging tasks of humans: state-of-the-art computer programs
beat world-class chess champions and intelligent programs support our daily life
in various respects, for example, when driving a car, flying a plane, creating an
engineer’s CAD constructions, or searching the web for information.

Despite these apparent examples for the success of AI, there are severe prob-
lems of AI which can provocatively be described as follows: there is not even an
idea of how human-level intelligence2 (HLI) in the large can be achieved, tak-
ing into account the various forms of capabilities of human beings, for example,

1 The term higher cognitive abilities can be identified with all forms of cognition which
essentially include a deliberative aspect like reasoning, planning, game playing, learn-
ing, problem solving etc. In particular, purely reactive behaviors or behaviors which
can be reduced to mere conditioning are not higher cognitive abilities.

2 The term human-level intelligence is used in the sense of [7], namely as the problem
to integrate many different types of representation formats, reasoning devices, com-
putational paradigms etc., in order to approximate a breadth of intelligence usually
ascribed to humans.
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concerning reasoning, problem solving, learning, adapting, acting, using natural
language etc. In the following we list three classes of such problems.

• The profusion of knowledge [7] and its constant updates.
• The variety of types of reasoning and computational paradigms for modeling

human reasoning abilities (compare textbooks in AI).
• The gap between neuro-inspired learning approaches to cognition and sym-

bolic representational approaches [4].

We think that these challenges are at the heart of achieving human-level in-
telligence, because of the following fundamental problem: The more fine-grained
the methods are in developing tools for particular (and isolated) AI applications,
the more we depart from the goal of achieving HLI and a unified model of higher
cognition.3 This paper aims to propose an architecture that provides a possible
solution to model higher cognitive abilities by integrated cognition. We think
that an integrated architecture can be considered as a device for achieving HLI.

This paper has the following structure. Section 2 discusses obvious problems
in modeling a variety of higher cognitive abilities. Section 3 presents the I-Cog
architecture consisting of a reasoning module, a background knowledge rewriting
module, and a neuro-symbolic integration module. These modules interact in a
non-trivial way described in Section 4. Finally Section 5 summarizes related work
and Section 6 concludes the paper.

2 Problems for Modeling Higher Cognition in AI Systems

2.1 Knowledge

Knowledge representation is classically connected with coding entities in the
environment by symbolic frameworks. Although such a straightforward logical
representation is universal for most knowledge representation formalisms, and
appropriate logical calculi ensure that many types of inferences for applications
can be performed, there are non-trivial challenges for such a logical approach:

• Problem of expressive strength: For many applications first-order logic is sim-
ply too expressive. Examples are terminological hierarchies for ontological
knowledge [43] or representations of STRIPS-like plans [11]. For other appli-
cations first-order logic is simply not expressive enough. Examples are forms
of modeling common ground [6], or the usage of standard arithmetic.

• Dynamic updates of background knowledge: Whereas background knowledge
is commonly considered to be static, human agents constantly update, mod-
ify, and learn new knowledge. Furthermore, they can overwrite existing
knowledge easily without being threatened by inconsistencies.

3 This claim clearly does not mean that other difficulties for modeling cognition in
the large are simple or in some way straightforward to solve. Obviously challenges
in computer vision, the modeling of autonomous agents and motor control, or nat-
ural language processing are also hard problems. But except for natural language
processing, they concern lower cognitive abilities and are not considered here.
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Due to the first challenge a profusion of representation formalisms emerged.
Currently there is no idea how to reduce these paradigms significantly. The
second challenge seems to be recently detected as a problem [24].

2.2 Reasoning

Reasoning abilities of humans can be classified into many types: Just to mention
some of them, humans can perform deductions, inductions, and abductions. Fur-
thermore, they are able to perform analogical reasoning steps, non-monotonic
inferences, and frequency-based inferences (at least to a certain extent). Addi-
tionally, human agents are able to reason with vague and uncertain knowledge
and they have the ability to associate certain situations with other similar situa-
tions. As a natural consequence of this variety of reasoning types, AI developed
a tremendous number of frameworks for the computation of inferences. Unfortu-
nately, these computational paradigms are not fully compatible with each other.

2.3 Neuro-Symbolic Integration

The gap between robust neural learning and symbolic representation formalisms
is obvious: whereas symbolic theories are based on recursion and composition-
ality allowing the computation of (potentially) infinitely many meanings from a
finite basis, such principles are not available for connectionist networks. On the
other hand, neural networks have been proven to be a robust tool for learning
from noisy data, pattern recognition, and handling vague knowledge – classical
domains with which symbolic theories usually encounter problems. A potential
solution for achieving HLI would require an integration of both approaches.

3 The Modules of the I-Cog Architecture

3.1 Analogical Reasoning

It is a crucial hypothesis of this paper that the establishment of analogical re-
lations between a source and a target domain can be used for many forms of
classical and non-classical reasoning tasks [14]. Examples for application domains
of analogies are string domains [28], geometric figures [41], problem solving [1],
naive physics [10], or metaphoric expressions [21]. Furthermore, analogies are a
source of creativity [29] and a possibility to learn from sparse data [20]. Deduc-
tions and abductions are implicitly modeled in several systems (e.g. [13]).

In this paper, heuristic-driven theory projection (HDTP) will be used for
sketching the expressive power of analogy making [21]. HDTP represents the
source and target domains by sets of first-order formulas. The corresponding
source theory ThS and target theory ThT are then generalized using an extension
of anti-unification [40]. Here are the key elements of HDTP:

– Two formulas p1(a, b) and p2(a, c) can be anti-unified by P (a, X), with sub-
stitutions Θ1 = {P → p1, X → b} and Θ2 = {P → p2, X → c}.
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Table 1. A simplified description of the algorithm HDTP-A omitting formal details.
A precise specification of this algorithm can be found in [21].

Input: A theory ThS of the source domain and a theory ThT of the target domain
represented in a many-sorted predicate logic language L.

Output: A generalized theory ThG such that the input theories ThS and ThT can
be re-established by substitutions.

Selection and generalization of fact and rules.
Select an axiom from the target domain (according to a heuristic h).
Select an axiom from the source domain and construct a generalization
(together with corresponding substitutions).

Optimize the generalization w.r.t. a given heuristic h
′.

Update the generalized theory w.r.t. the result of this process.
Transfer (project) facts of the source domain to the target domain provided they are

not generalized yet.
Test (using an oracle) whether the transfer is consistent with the target domain.

– A theorem prover allows the re-representation of formulas.
– Whole theories can be generalized, not only single terms or formulas.

The underlying algorithm HDTP-A is computing candidates of general-
izations relative to ThS and ThT (Table 1): first, axioms are chosen from
the target according to a heuristic ordering. For these axioms generalizations
are computed relative to chosen axioms from the source (also governed by a
heuristic). If every axiom from the target is generalized, the algorithm allows a
creative transfer of knowledge from the source to the target (governed by the
computed generalizations already obtained). We consider the analogy between
a water-pipe system and an electric circuit in order to clarify the framework:

(M1) Current is the water in the electric circuit.

Figure 1 depicts the situation repre-
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Fig. 1. The analogy between a water pipe

system and an electric circuit in a diagram-

matic representation. The Figure contains

more information than is necessary for an

interpretation of the metaphorical descrip-

tion (1).

sented by this analogy.4 The anal-
ogy associates water-flow in a water
pipe system with the flow of current
in an electric circuit. An important
new conceptualization about electric-
ity can be learned by students using
this analogy, namely that current is
flowing in a circuit and that a bat-
tery has a function similar to a pump
in the water pipe system.

We would like to achieve a mod-
eling of metaphor (M1) using HDTP.
Table 2 specifies the corresponding
concepts in the target and the source
domains that are associated with
each other. The concepts of a closed

water system and a closed electric system generalize to an abstract concept
closed(A), where A is a variable. The terms water and current are associated

4 The figure is based on http://hyperphysics.phy-astr.gsu.edu/hphys.html.
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Table 2. Examples of corresponding concepts in the source and the target of the
analogy between water-flow and the flow of current in an electric circuit. ws1 denotes
an instance of a water pipe system and es1 an instance of an electric circuit.

Source Target Generalization
water circuit(ws1,water,p1) electric circuit(es1,current,b1) Circuit(A,C,S1)

closed(ws1) closed(es1) closed(A)
pump(p1) battery(b1) Source(S1)

pres(p1)>0→flow in c(w) pres(b1)>0→flow in c(c) pres(S1)>0→flow in c(C)
flow in circuit(water) flow in circuit(current) flow in circuit(C)

explicitly in the metaphoric expression (M1). From background knowledge a
rule is available stating that if the pressure caused by the pump p1 in a water
pipe system is different from 0, then water is flowing in the circuit (from high
pressure to low pressure). This can be projected to the target side, inferring
that due to the “pressure” of the battery b1 (realized by a positive voltage),
current is flowing in the electric circuit. Hence, we end up with the conclusion
(5 in Table 2) that current is flowing in the electric circuit (provided there is
a “pressure” source). The substitutions Θ1 and Θ2 can be summarized as follows:

Θ1/Θ2: A −→ ws1 / es1
C −→ water / current

Source −→ pump / battery

S1 −→ p1 / b1
Circuit −→ water circuit / electric circuit

The following list sketches some reasons for the major claim of this subsec-
tion, namely that a large variety of human reasoning mechanisms can be modeled
by analogies.

– Systems like HDTP allow the computation of analogical relations.

– Establishing analogical relations often requires the re-reprensentation of a
domain. HDTP achieves this by a theorem prover that is included in the
system and allows the application of rules (cf. Row 4 in Table 2).

– Learning generalizations is a first step towards an induction on given input
data [20]. In the example, a new conceptualization of the target domain is
learned.

– The fact that analogies are at most psychologically preferred, but never true
or false, allows the extension of the system to model uncertainty.

– Non-monotonicity can be considered as a special case of a re-
conceptualization of a given a domain very similar to a new conceptualization
of a domain by an analogical inference.
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3.2 Rewriting Ontological Background Knowledge

In Section 2, two major problems that are connected to knowledge represen-
tation and HLI were mentioned: first, the profusion of knowledge and second,
the fact that human beings are able to dynamically adapt background knowl-
edge on-the-fly. We sketch some ideas in this subsection, primarily addressing
the second problem: we propose a rewriting system that is constantly adapting
the ontological knowledge base (memory) focusing on the resolution of inconsis-
tencies. Although the framework was developed primarily for text technological
applications, the underlying logical basis is rather weak, and obviously not all
types of inconsistencies can be automatically resolved, we think that proposals
in this direction are crucial for achieving HLI.

Ontological knowledge is usually formalized within a logical framework, most
importantly in the framework of Description Logics (DL) [2]. In the past years,
a variety of successful systems have been developed that make use of markup
standards based on DL with varying degrees of expressiveness.5 However, the
storage of ontological information within a logical framework has an undesir-
able side-effect: inconsistency problems can occur, because items of information
may contradict each other, making the given ontology unsatisfiable and useless
for reasoning purposes. Because HLI requires permanent updates of ontological
knowledge, the problem of occurring inconsistencies becomes even more impor-
tant. In this section, we sketch some ideas of how to address dynamic updates
of ontologies leaving the problem of the profusion of knowledge aside.

Ontologies usually contain a terminological component and an assertion
component. A description logic terminology consists of a set of terminologi-
cal axioms defining concepts by formulas of the form ∀x : C(x) → D(x) or
∀x : C(x) ↔ D(x), where C is a concept name and D is a concept descrip-
tion.6 The assertion component mentioned above contains information about
the assignment of the particular individuals to concepts and relations from the
terminology. Axioms are interpreted model theoretically by an interpretation
function mapping concept descriptions to subsets of the domain. A model of an
ontology is an interpretation satisfying all axioms. An ontology is inconsistent if
it does not have a model.

There are several possibilities why inconsistencies can occur in ontologies. In
[24], structural inconsistencies, usage-defined inconsistencies, and logical incon-
sistencies are distinguished. The last type of inconsistency – potentially caused
by dynamic updates of the knowledge base – is of particular interest in our
context and is addressed by an automatic rewriting device allowing constant
learning and updates of the ontological knowledge base. One aspect of logical
inconsistency problems concerns polysemy: If an ontology is updated automati-
cally, then it is hardly possible to distinguish between word senses. Suppose, the
concept tree is declared to be a subconcept both of plant and of data structure

(where plant and data structure are disjoint concepts). Both of these two inter-
pretations of tree are correct, but it is still necessary to describe two different

5 [2] provides an overview of different versions of description logics
6 Compare [2] for an exhaustive definition of description logics.
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concepts in the ontology with different identifiers (e.g. TreePlant, TreeStructure).
Otherwise, the terminology remains unsatisfiable.

Another important aspect of logical inconsistency problems concerns gener-
alization mistakes. Consider the following classical example:

Example 1 Assume the following axioms are given:

∀x : Bird(x) → CanF ly(x) ∀x : CanF ly(x) → CanMove(x)
∀x : Canary(x) → Bird(x) ∀x : Penguin(x) → Bird(x) ∧ ¬CanF ly(x)

In Example 1, the statement “birds can fly” is too general. If an exception
occurs (penguin), the ontology becomes unsatisfiable, since penguin is declared
to be a bird, but it cannot fly. This type of inconsistency is the well-known
problem of non-monotonicity, extensively discussed in the relevant AI literature.

The proposed approach – formally developed in [36], [37], and [38] – treats
ontologies that are extended with additional axioms conflicting with the original
knowledge base. Given a consistent ontology O (possibly empty) the procedure
adds a new axiom A to O. If O+ = O ∪ {A} is inconsistent, then the procedure
tries to find a polysemy or an overgeneralization and repairs O+.

We will illustrate the regeneralization of the overgeneralized concepts on the
ontology in Example 2. Since the definition of the concept Bird is overgeneral-
ized, it needs to be rewritten. We wish to retain as much information as possible
in the ontology. The following solution is proposed:

Example 2 Adapted ontology from Example 1:

∀x : Bird(x) → CanMove(x)
∀x : CanF ly(x) → CanMove(x)
∀x : Canary(x) → FlyingBird(x)
∀x : Penguin(x) → Bird(x) ∧ ¬CanF ly(x)
∀x : FlyingBird(x) → Bird(x) ∧ CanF ly(x)

We want to keep in the definition of the concept Bird (subsuming the un-
satisfiable concept Penguin) a maximum of information that does not conflict
with the definition of Penguin. The conflicting information is moved to the def-
inition of the new concept Flying bird, which is declared to subsume all former
subconcepts of Bird (such as Canary for example) except Penguin.

Our algorithm (cf. [36], [37], and [38] for a detailed description) detects prob-
lematic axioms that cause a contradiction, defines the type of contradiction
(polysemy or overgeneralization) and automatically repairs the terminology by
rewriting parts of the axioms that are responsible for the contradiction. Detected
polysemous concepts are renamed and overgeneralized concepts are split into
more general and more specific ones. This approach is knowledge preserving in
the sense that it keeps as many entailments implied by the original terminology
as possible.

The sketched solution for a constant adaptation process of background knowl-
edge is a first step towards a general theory of dynamification and adaptation
of background knowledge. The framework has been developed primarily for text
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Fig. 2. The architecture for learning a first-order logical theory with neural networks.

technological applications. But the approach can straightforwardly be extended
to a wider range of applications.7

3.3 Neuro-Symbolic Integration

In order to bridge the gap between symbolic and sub-symbolic approaches we
sketch the theory presented in [19] and [22] based on the idea to translate first-
order logical formulas into a variable-free representation in a topos [17]. A topos
is a category theoretic structure consisting of objects Obj and arrows Ar having
their domain and codomain in Obj. Certain construction principles allow to
generate new arrows from old arrows. A fundamental theorem connects first-
order logic and topos theory: a topos can be interpreted as a model of predicate
logic [17]. The overall idea of learning symbolic theories with neural networks
can be summarized as follows (compare also Figure 2):

– First, input data is given by a set of logical formulas (axioms and queries)
relative to a given first-order logical language L.

– Second, this set of formulas is translated into objects and arrows of a topos.
The representation is variable-free and homogeneous, i.e. only objects and
arrows are represented combined by the operation concatenation of arrows.

– Third, a PROLOG program generates equations in normal form f ◦ g = h
identifying new arrows in the topos. This is possible because a topos allows
several construction mechanisms.

– Last but not least, these equations are used as input for the training of a
neural network. The network has a standard feedforward topology and learns
by backpropagation: the network adapts the representations of arrows in such
a way that the arrows representing “true” are approximating the arrow true.

7 The crucial algorithms for resolving overgeneralization, undergeneralization, and pol-
ysemy problems, are implemented and prototypically tested in example domains [38].
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The arrows true and false are the only hard-coded arrows, represented as
(1.0, 0.0, 0.0, . . .0.0) and (0.0, 1.0, 0.0, . . .0.0) respectively.

Learning is possible, because the topos induces constructions that can be
used for training the network. Clearly, infinitely many constructions are induced
by the topos, but as it turns out a finite number is completely sufficient.

The details of the approach are rather complicated. We do not go into details
here. The interested reader is referred to [19] and [22] for more information. The
framework was tested with simple and also complex first-order logical theories.

4 The Integration of the Modules

4.1 A Hybrid Architecture for Higher Cognition

The three modules proposed in Section 3 – the neuro-symbolic integration mod-
ule, the symbolic rewriting module, and the analogy reasoning module – attempt
to learn a robust model of ontological background knowledge using a connection-
ist learning device, to dynamically rewrite ontologies on the symbolic level, and
to perform various forms of reasoning, respectively. The task in this section is
to integrate these modules into one single architecture called I-Cog (integrated
cognition).

The integration of symbolic and sub-symbolic processes in a hybrid frame-
work can be achieved, because the neuro-symbolic learning module is trained on
symbolic data (i.e. on first-order logical expressions) and the fact that it learns
a model of a logical theory. Although it is currently not possible to directly
extract symbolic information from the neuro-symbolic learning device, an in-
teraction and competition of the two modules can be implemented by querying
both modules and evaluating their answers. Furthermore, both frameworks can
interact with each other: queries of the rewriting module can be answered by the
neuro-symbolic integration module. A similar remark holds for the integration
of the analogy engine and the neuro-symbolic integration device.

Figure 3 depicts the overall architecture of the system. The architecture
consists of the following modules (in the following paragraphs we will use the
shortcuts ORD for the symbolic Ontology Rewriting Device, NSLD for the neural
network-based Neuro-Symbolic Learning Device, AE for the Analogy Engine, and
CD for the Control Device):

– The input may originate from various sources: input may be collected from
resources based on structured data, unstructured data, or semi-structured
data. The input needs to be available in an appropriate (subset) of a first-
order language L, in order to be in an appropriate format for the other mod-
ules. Therefore ORD generates appropriate logical formula from hypotheses.

– The input is used for feeding, updating, and training ORD.
– An important aspect is the interaction of ORD and NSLD : on the one hand,

ORD trains NSLD, on the other hand ORD queries NSLD. Although NSLD
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Fig. 3. The I-Cog architecture for an integration of the different modules. Whereas
the modules ORD and NSLD are adapting new ontological axioms to an existing
ontology, the analogy engine AE computes analogical relations based on background
knowledge provided by the other two modules. The control device CD is intended to
choose answers from all three modules.

can only give a tentative (or better approximate) answer in terms of a classi-
fication, this can improve the performance of the dynamic rewriting module
in time-critical situations.

– With respect to the interaction of AE and ORD, ontological knowledge can
naturally be used to constrain the computation of possible analogies [18].
Furthermore, newly generated analogies can be used to update and therefore
rewrite background knowledge [23].

– Similarly to the relation between ORD and NSLD, AE is used to train
NSLD, whereas query answering can be performed in the other direction.

– The control device CD of the two learning modules is intended to implement
a competition of the feedback of the three modules with respect to queries.
Feedback may be in accordance to each other or not. In the second case, the
ranking of the corresponding hypotheses is decided by CD (see below).

We exemplify the interaction between AE and ORD in more detail (cf. [18],
[23]): the establishment of an analogical relation of AE, if successful, provides
a new conceptualization of the target domain. The example sketched in Sub-
section 3.1 results in a new conceptualization, where current is flowing in an
electric circuit (triggered by a source). With respect to the ontological back-
ground knowledge ORD this means an update has to be performed, resulting in
the introduction of a new (perhaps polysemous) concept, the update of a known
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concept using new relational constraints (flowing in an electric circuit), or even
the generation of a conflict in the knowledge base (which has to be resolved).
Additionally, the generalized theory of the anti-unification process introduces a
new concept specifying an abstract circuit, where an entity is flowing caused by
a source. On the other hand, ORD can be used to restrict possible analogical
relations computed by AE : Due to the fact that AE can generalize arbitrary
concepts, fact, rules etc., ontological knowledge may be used to restrict cer-
tain undesirable generalizations. For example, for a physics domain containing
concepts like time-point, real number, force, electric charge, pressure etc., it is
undesirable to generalize force with real number or pressure with time-point. But
it is desirable to generalize different types of force, or different types of pressure.
Such restrictions can be implemented by specifying an upper-level ontology in
ORD which blocks certain (logically possible) generalizations.

A crucial problem of the presented approach concerns the control device CD.
This module needs to assess possible answers of the three main modules and
needs to implement a competition process. The natural way to realize such a
control mechanism is to learn the behavior of the systems, based on certain
heuristics. We exemplify possible situations with respect to ORD and NSLD :
with respect to underdetermined situations, ORD is not able to answer queries,
simply because the reasoning engine will not be able to prove anything with-
out sufficient knowledge. In contrast to ORD, NSLD will be able to give an
answer in any case. In such cases the usage of NSLD is clearly preferred by
the heuristic. On the other hand, if ORD is able to prove a particular fact, for
example, that a certain subsumption relation holds between two concepts A and
B, then this result should be tentatively preferred by CD in comparison to the
output of NSLD. In cases where time-critical reactions are necessary and ORD

is not able to compute an answer in time, the natural heuristic would be to use
NSLD instead. Finally, it could happen that the answers of ORD and NSLD

are contradicting each other. In this case, CD cannot base the decision on a

priori heuristics. A natural solution to this problem is to implement a reinforce-
ment learning mechanism on CD itself, namely the learning of preferred choices
(dependent on the particular domain) of the knowledge modules involved.

4.2 The Added-Value of a Hybrid Approach

The added-value of the overall architecture (as depicted in Figure 3) can be
summarized as follows:

– The architecture is robust due to the fact that the trained neural network
can give answers to queries even though noise might be contained in the
training data.

– Even in time-critical situations the proposed framework is able to react
and to provide relevant information, because the neural network can an-
swer a query immediately without any processing time, although the sym-
bolic rewriting module may be busy with computation tasks. This can be
achieved by a heuristic governing the behavior of CD in cases of time-critical
situations.
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– The architecture gives a first idea how an interaction between a symbolic
level and a sub-symbolic level of computation can be achieved. The crucial
issue is the fact that NSLD is able to learn from highly structured training
data on a neural level.

– The architecture is cognitively more plausible than pure symbolic or sub-
symbolic approaches. Although the hard problem of cognitive science,
namely how a one-to-one translation from the symbolic level to the cor-
responding neural correlate and vice versa can be defined is not resolved, at
least a particular direction of communication between such devices can be
achieved.

Besides the mentioned advantages of such an architecture for automatically
learning and adapting ontologies, covering many aspects of different reasoning
paradigms, and providing a hybrid architecture, there is the chance to integrate
various forms of cognitive capacities into one framework that are often considered
to be incompatible. Perhaps this provides an idea of how to bridge the obvious
gap between symbolic and subsymbolic processes, as well as the corresponding
differences in computing paradigms and capacities. Models of conceptual theories
(in our case of logical theories) can be coded on the neural level in a trained neu-
ral network. Additionally, this is complemented by a symbolic representation of
the semantic knowledge of the environment, allowing classical (and non-classical)
deductions and reasoning processes. In total, we think that the proposed hybrid
architecture seems to be cognitively more plausible than isolated approaches that
are purely based on one computational reasoning mechanism and representation
paradigm.

5 Related Work

Some application domains for analogical reasoning were already mentioned in
Section 3. Concerning underlying methods for modeling analogies algebraic [29],
graph-based [10], and similarity-based approaches [15] can be found.

A collection of approaches that aims at resolving inconsistencies in knowledge
representation is related to non-monotonicity. Some examples are extensions
by default sets [25] or by belief-revision processes [12]. In [9], inductive logic
programming techniques are proposed to resolve ontological inconsistencies. A
family of approaches is based on tracing techniques for detecting a set of axioms
that are responsible for particular contradictions in an ontology [3], [30].

With respect to the problem of representing symbolic data structures with
neural means, we mention as examples sign propagation [32], dynamic localist
representations [5], tensor product representations [42], or holographic reduced
representations [39]. Furthermore, researchers tried to solve the so-called infer-
ence problem: whereas symbolic approaches allow one to draw inferences from
given representations, there is no neural correlate to this capacity. An example
to solve this problem is described in [27] in which a logical deduction operator
is approximated by a neural network. Another approach is [26], where category
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theoretic methods are used for neural constructions. In [8], tractable fragments
of predicate logic are learned by connectionist networks.

Recently, some endeavor has been invested to approximate a solution to
human-level intelligence. [7] proposes a so-called cognitive substrate in order
to reduce higher cognition and the profusion of knowledge to a basis of low com-
putational complexity. [13] propose to explain cognitive diversity of reasoning
methods as a reduction to the well-known structure mapping theory [16]. Due to
the combination of large knowledge bases, efficient retrieval, an analogy engine
and learning modules, [13] is quite similar in spirit to the proposed architecture
in this paper. Further approaches that resemble the integration idea presented
here follow the tradition of cognitive architectures. Examples are the hybrid
AMBR/DUAL model [31], which is modeling neuro-symbolic processing and
analogical reasoning, the ICARUS architecture [33], which is focusing primarily
on learning, or the NARS architecture [45], which is intended for integrating
many different types of reasoning and representation formats.

6 Conclusions and Future Research

The paper proposes a hybrid architecture, based on analogical reasoning, an on-
tology rewriting device, and a module for neuro-symbolic integration, in order to
model HLI. Although each module has been proven to be successfully applicable
in theory and practice to the respective domains, many challenges remain open.
Besides the fact that the overall architecture needs to be implemented and care-
fully evaluated, there are several theoretical questions that need to be addressed.
One aspect concerns the control architecture, in particular, the question on which
basis competing answers from the different modules are evaluated. Another is-
sue concerns the interaction of the particular modules: for example, whereas
the training of the NSLD module by ORD is more or less well-understood, the
other direction, i.e. the input from NSLD to ORD is (at present) rather un-
clear. Consequently, it is currently only possible to query the neural network,
because a direct extraction of symbolic knowledge from the trained network is
an unsolved problem. Additionally, the problem of the profusion of knowledge
and representation formalisms needs to be addressed. It may be a possibility to
restrict ontological knowledge practically to hierarchical sortal restrictions that
can be coded by relatively weak description logics, but in the long run, this is
probably not sufficient. Last but not least, it would be desirable to add further
devices to the system, e.g. planning systems and action formalisms.

The ultimate test scenario for the I-Cog architecture, as well as for HLI in
general, would be a modified version of the Turing test: assume a robot operates
an avatar in a virtual environment like “Second Life”, where real humans operate
their avatars, too. If a human cannot decide whether an avatar is controlled by
a robot or a human, the robot shows HLI and higher cognition in the sense of
this paper. It is essential that such systems are built for humans to interact with
and not for robots. It is obvious that no isolated AI tool like a theorem prover, a
knowledge base, a neural network, a planning system etc. is able to control the
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behavior of an avatar in a reasonable way in such a scenario. Although we do
not claim that the presented architecture is sufficient to pass this type of “grand
challenge”, we believe that only integrated cognitive architectures like I-Cog will
have a chance at all.
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20. Gust, H., Kühnberger, K.-U.: Explaining Effective Learning by Analogical Reasoning, in: R.
Sun, N. Miyake (eds.): CogSci/ICCS 2006: 28th Annual Conference of the Cognitive Science
Society in coopera-tion with the 5th International Conference of the Cognitive Science (in the
Asian-Pacific region), Lawrence Erlbaum (2006) 1417–1422.
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