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Abstract. We provide an interactive method for knowledge acquisitioncombin-
ing approaches from description logic and formal concept analysis. Based on
present data, hypothetical rules are formulated and checked against a description
logic theory. We propose an abstract framework (Logical Domain Exploration)
for this kind of exploration technique before presenting a concrete instantiation:
Relational Exploration. We give a completeness result and provide an overview
about some application fields for our approach: machine learning, data mining,
and ontology engineering.

1 Introduction

A plethora of research fields is concerned with the question of finding specifications for
a given domain. Research areas like machine learning, frequent pattern discovery, and
data mining in general aim at extracting these description on the basis of (examplary or
complete) data sets – following the Aristotelian paradigm,that every conceptualization
has to start from entities actually present. Other approaches intend to deduce these
specifications from pre-specified theories – being somehow more Platonic by assuming
the primacy of abstract ideas. The latter is the usualmodus operandie.g. in description
logic or theorem proving.

We reconcile these two antagonistic approaches by combining techniques from two
fields of knowledge representation: description logic (DL)and formal concept analysis
(FCA).

In our work, we use DL formalisms for defining FCA attributes and FCA explo-
ration techniques to obtain or refine DL knowledge representation specifications. More
generally, DL exploits FCA techniques for interactive knowledge acquisition and FCA
benefits from DL in terms of expressing relational knowledge.

In most cases, the process of conceptually specifying a domain cannot dispense of
human contribution. However, although all information needed in order to describea
domain is in general implicitly present in an expert’s knowledge, the process of explicit
formal specification may nevertheless be tedious and overstraining. Moreover, it might
remain unclear whether a specification is complete, i.e., whether it covers all valid state-
ments about the domain that can be expressed in the chosen specification language.
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Hence, we provide a method – called Relational Exploration (RE) – that organizes
and structures the specification process by successively asking single questions to the
domain expert in a way which minimizes the expert’s effort (in particular, it does not
ask redundant questions) and guarantees that the resultingspecification will be com-
plete in the sense stated above. To present our work, which generalize the results from
[1] and [2], we will proceed as follows: Section 2 provides a general framework for
this kind of procedure, called Logical Domain Exploration.In Section 3, we shortly
sketch the FCA basics necessary for our work and give an overview about attribute ex-
ploration. Section 4 introduces the notions from description logics needed in this work.
In Section 5, we establish the correspondence between DL models and certain formal
contexts, which enables us to apply FCA to DL. In Section 6, the RE algorithm is de-
scribed in detail. Section 7 shows certain completeness properties of the knowledge
acquired via RE. Section 9 displays direction for further work. In Section 8, we discuss
our results and consider in which fields the presented technique could be applied.

2 The Epistemic Framework:
Logical Domain Exploration

Before engaging into the technical details, we sketch the overall setting for our ap-
proach, which helps conveying the underlying idea and identifying the contributing
components. Doing this on an abstract level, we also give an opportunity to relate alter-
native approaches. This framework will be called Logical Domain Exploration.

Let ∆ be the considered domain of interest the elements of which wewill call
(DOMAIN ) INDIVIDUALS . LetL be a language the elements of which are calledFOR-
MULAE . We write∆ |= ϕ in order to state for a formulaϕ that it is valid in the domain.
Moreover let the setting be well-behaved in the way that whenever∆ |= ϕ is not true,
there is a finite individual setΓ ⊆ ∆ witnessing this (we then writeΓ † ϕ and sayΓ
SPOILSϕ).

– The EXPERT is supposed to be “omniscient” wrt. the described domain andthus
able to answer any question about it. In particular, he knowsfor all ϕ ∈ L and
Γ ⊆ ∆ whether∆ |= ϕ and whetherΓ †ϕ. Mostly, a human or a group of humans
will take the role of the expert.

– The TERMINOLOGY consists of a theoryTh ⊆ LT about the domain consisting
of axioms in some languageLT ⊇ L and a reasoning functionality, i.e. for any
statementϕ ∈ LT it can be decided whetherTh entailsϕ.1

– TheDATA consists of a set of known or recorded individualsD ⊆ ∆ and is endowed
with a special querying capability, i.e., a procedure providing for anyϕ ∈ L a set
Γ ⊆ D with Γ † ϕ if there exists one.

– The SCHEDULER can be conceived as an automated procedure initiating and co-
ordinating the ”information flow”. It links the other systemcomponents by asking
questions, processing answers, and assuring that in the endall knowledge is ac-
quired to quickly decide for anyϕ ∈ L whether∆ |= ϕ.

1 Hereby, entailment is as usual defined in a model-theoretic way: Th is said to entailϕ if any
domain∆′ wherein all formulae ofTh are valid also satisfies∆′ |= ϕ.



The system will operate as follows: We start with a (correct but in general incom-
plete) terminological theoryTh ⊂ {ψ ∈ LT | ∆ |= ψ} and dataD ⊆ ∆. The scheduler
now comes up with hypothetical formulae. Every such hypothetical formulaϕ ∈ L is
passed both to the terminology and the data. The reasoning service of the terminology
component checks whetherϕ is entailed byTh. The data is queried for a spoiler ofϕ.
Since – due to the starting conditions – the theory is consistent with the data, we get
three disjoint possible results:

– ϕ is entailed byTh . In this case,ϕ is valid in ∆, which will be responded to the
scheduler.

– Γ ∈ D spoilsϕ. Then,ϕ is not valid in∆ and the scheduler will be provided with
this negative answer.

– Neither of the previous cases occurs. Then, the current specification leaves room
for either possibility and the domain expert will have to be asked this aboutϕ’s
validity in question. If he confirms the validity ofϕ in ∆, it will be added toTh . If
he denies it, he has to provide a spoilerΓ for ϕ, which is then added to the data.

Note that querying the data and questioning the terminologycan be done in either order
or even in parallel. After finishing the procedure every formula ϕ ∈ L will either be
a consequence of the resulting (updated) terminology or canbe excluded via a spoiler
present in the data (updated) data. The distinction betweenL (theEXPLORATION LAN-
GUAGE) andLT (theTERMINOLOGICAL LANGUAGE) is motivated by the assumption
that in most cases not all terminologically expressible axioms will be of interest but
only those of a certain shape.

In the next chapters, we come down to an instance for the previously described
framework for logical domain exploration: Relational Exploration.

3 Formal Concept Analysis

In our instantiation, the scheduler’s task will be carried out by an extension of the at-
tribute exploration algorithm well established in FCA. This necessitates to briefly intro-
duce some basic FCA notions. We mainly follow the notation introduced in [3] being
thereference for FCA theory.

The basic notion FCA is built on is that of a formal context. Itis a common claim
in FCA that any kind of grounded data can be represented in this way.

Definition 1. A FORMAL CONTEXT K is a triple (G, M, I) with an arbitrary setG
(calledOBJECTS), an arbitrary setM (calledATTRIBUTES), and a relationI ⊆ G×M
(called INCIDENCE RELATION). We readgIm as: “objectg has attributem.” Further-
more, letgI := {m | gIm}.

The central means of expressing knowledge in FCA is via implications. Thus, in
terms of the general framework from Section 2 the underlyinglanguage consists of
implications on a fixed attribute set of atomic propositions.

Definition 2. LetM be an arbitrary set. AnIMPLICATION onM is a pair (A, B) with
A, B ⊆ M . To support intuition, we writeA�B instead of(A, B). A�B HOLDS in



a formal contextK = (G, M, I), if for all g ∈ G we have thatA ⊆ gI impliesB ⊆ gI .
We then writeK |= A�B.

For C ⊆ M and a setI of implications onM , let CI denote the smallest set with
C ⊆ CI that additionally fulfills

A ⊆ CI implies B ⊆ CI

for every implicationA�B in I.2 If C = CI, we callC I-CLOSED. We sayI ENTAIL S

A�B if B ⊆ AI.3

An implication setI will be calledNON-REDUNDANT, if for any (A�B) ∈ I we
have thatB �⊆ AI\{A�B}.

An implication setI of a contextK will be calledCOMPLETE, if every implication
A�B holding inK is entailed byI.

I will be called anIMPLICATION BASE of a formal contextK if it is non-redundant
and complete.

Note that implication entailment is decidable in linear time ([4]). Therefore, know-
ing a domain’s implication base allows fast handling of its whole implicational theory.
Moreover, for every formal context, there exists a canonical implication base ([5]).

The attribute exploration algorithm our work is based on wasintroduced in [6]. Due
to space reasons, we omit to display it in detail and refer thereader to the literature.

Essentially, the following happens: the domain to explore is formalized as a formal
contextK = (U, M, I). Usually, it is not known completely in advance. However, pos-
sibly, some entities of the universeg ∈ U are already known, as well as their associated
attributesgI .

The algorithm now starts presenting questions of the form

“Does the implicationA�B hold in the contextK = (U, M, I)?”

to the human expert. The expert might confirm this. In this case, A � B is archived
as part ofK’s implicational baseIB. The other case would be thatA � B does not
hold in (U, M, I). But then, there must exist ag ∈ U with A ∈ gI andB �∈ gI . The
expert is asked to input thisg andgI .4 The procedure terminates when the implicational
knowledge of the universe is completely acquired, i.e., theimplications of the formal
context built from the entered counterexamples coincide with those entailed byIB.

In the approach presented here, we will exploit the capability of attribute exploration
to efficiently determine an implicational theory. Notwithstanding, we extend the under-
lying language5 from purely propositional to certain DL expressions being introduced
in the next section.

2 Note, that this is well-defined, since the mentioned properties are closed wrt. intersection.
3 Actually, this is a syntactic shortcut. Yet, it can be easilyseen that this coincides with the usual

entailment notion.
4 Referring to the general framework we mention that in this special case the spoiler (called

counterexample) is always a singleton set:{g} † A�B.
5 There exist already other language extensions, e.g. to Horn-logic with a bounded variable set,

see [7].



4 Description Logic

We recall basic notions from DL, following (and recommending for further reading)
[8].

Unlike the way DL is normally conceived, we use DL expressions to describe or
specifyone particular, fixeddomain.

Thus, we will start our considerations by formally defining the kind of relational
structure that we want to “talk about.”

Definition 3. An INTERPRETATION for a setA of (PRIMITIVE) CLASS NAMESanda
setR of ROLE NAMES is a pair I = (∆I , (.)I) where∆I is some set and(.)I is a
function mapping class names to subsets of∆I and role names to subsets of∆I ×∆I .

Verbally, for some primitive class nameA, AI provides all members of that class
and for some role nameR, RI yields all ordered pairs “connected” by that role.

The DL languages introduced here provide constructors for defining new concept
descriptions out of the primitive ones. Table 1 shows those constructors, their interpre-
tation (as usual defined recursively), and their availabilities in the description logics
considered here.

name interpretation F
L

0

E
L

F
L
E

A
L
E

A atomic concept AI × × × ×

⊤ universal concept ∆I × × × ×
⊥ bottom concept ∅ × × × ×

¬A atomic negation ∆I \ AI ×

C ⊓ D conjunction CI ∩ DI × × × ×

∀R.C value restriction {δ | ∀ǫ : (δ, ǫ) ∈ RI → ǫ ∈ CI} × × ×

∃R.C existential quantification{δ | ∃ǫ : (δ, ǫ) ∈ RI ∧ ǫ ∈ CI} × × ×
Table 1.syntax and semantics of the DLs considered in this paper

In the sequel, we will in general speak of a description logicDL if the presented
result or definition refers to anyDL ∈ {FL0, EL,FLE ,ALE}.

Definition 4. LetI be an interpretation andC, D beDL concept descriptions. We say
C IS SUBSUMED BYD in I (written: C ⊑I D) if CI ⊆ DI . This kind of subsumption
statements is also calledGENERAL CONCEPT INCLUSION AXIOM(GCI). Moreover, we
sayC andD are EQUIVALENT in I (written: C ≡I D) if CI = DI .

5 Subsumptions as Implications

Combinations of FCA and DL have already been described in several publications, e.g.
in [9], [10], and [11]. Our approach is motivated by [9] insofar as we use the same way
of transferring a DL setting into a formal context by considering the domain individuals
as objects and DL concept expressions as attributes.



Definition 5. Given an interpretationI = (∆I , (.)I) and a setM of DL concept
descriptions, we define the correspondingDL-CONTEXT

KI(M) := (∆I , M, I)

whereδIC :⇐⇒ δ ∈ CI , for all δ ∈ ∆I andC ∈ M .

The observation in the next theorem – though easy to see – is crucial for applying
attribute exploration for the intended purpose.

Theorem 1. Let I be an arbitrary interpretation andKI(M) a correspondingDL-
context. Then for finiteC,D ⊆ M , the implication

C�D

holds inKI(M) if and only if6

�
C ⊑I

�
D.

In the sequel, we will exploit this correspondence in the following way: employ-
ing the FCA exploration method allows us to collect all information that is valid ina
(not explicitly given) interpretation and can be expressedby DL subsumptions with
restricted maximal role depth7.

6 The Relational Exploration Algorithm

The algorithm we present here is an iterative one. In each step the maximal role depth
of the consideredDL concept descriptions will be incremented by one. In each step,
the results from previous steps will be exploited in severalways.

In the worst case, the time needed for the attribute exploration algorithm is expo-
nential with respect to the number of attributes. Thus, it isessential to see how the set
of attributes can be reduced without losing completeness.

The first exploration step is aimed at clarifying the implicational interdependencies
of DL concept descriptions with quantifier depth 0. Therefore, noroles occur yet and
we start with

M0 :=

{

{⊥} ∪ {A,¬A | A ∈ A} if DL = ALE
{⊥} ∪ A otherwise.

In the actual exploration step – the interview-like procedure described in Section3
– takes place with respect to the contextKI

i = KI
i (Mi). Every hypothetical implication

A�B for A,B ⊆ Mi presented to the expert has to be interpreted as question about
the validity of

�
A ⊑I

�
B, and will be passed to the “answering components” as

described in Section 2.
6 We use

�
{C1, . . . , Cn} to abbreviateC1⊓ . . .⊓Cn. Moreover, let

�
{C} := C and

�
{∅} :=

⊤.
7 As usual, a concept description’s role depth indicates how deep quantifiers are nested in it.



The exploration step ends up with an implication baseIBi, which – as we will
prove in Section 7 – represents the complete subsumptional knowledge of the consid-
ered domain up to role depthi.

For the next exploration step – incrementing the consideredrole depth – we have to
stipulate the next attribute setMi+1. In case of the concept descriptions preceded by an
existential quantification, the previously acquired implication baseIBi can be used to
reduce the number of attributes to consider, keeping the completeness property.

Mi+1 := M0

∪{∀R.C | R ∈ R, C ∈ Mi}
∪{∃R.

�
C | R ∈ R, C = CIBi ,⊥ �∈ C}

If consideringEL or FL0, simply discard the second resp. third line from the defi-
nition. In addition to minimizing the cardinality ofMi+1, we can accelerate the explo-
ration process by providing implications onMi+1 that are already known to be valid.
These are the following:

– {⊥}�Mi+1,
– {(A)i+1 | A ∈ A}� {(B)i+1 | B ∈ B} for every implicationA�B from IBi

(i.e., translate8 all known implications fromMi into Mi+1),
– {∀R.A | A ∈ A}�{∀R.B | B ∈ B} for every implicationA�B from IBi,

– {∃R.
�
A}� {∃R.

�
B} for all IBi-closed setsA,B ⊆ Mi with A � B where

there is noIBi-closed setC with A � C � B, and

– {∃R.
�
A, ∀R.A}� {∃R.

�
(A ∪ {A})IBi} for everyIBi-closed setA ⊆ Mi \

{A} and every concept descriptionA ∈ Mi.

With this attribute setMi+1 and the a-priori implications we start the next explo-
ration step.

In theory, this procedure can be continued to arbitrary roledepths. In some but
not in all cases a complete acquisition of knowledge can be achieved. Yet in practice,
with increasing role depth, the questions brought up by the exploration procedure will
be increasingly numerous as well as less intuitional and thus difficult to answer fora
human expert. So in many cases, one will restrict to small role depths.

7 Verification of the Algorithm

LetDLi denote the set of allDL concept descriptions with maximal role depthi. Now
we show a way how the validity of any subsumption onDLi can be checked by us-
ing just the attribute setsM0, . . . , Mi as well as the corresponding implication bases
IB0, . . . ,IBi on those sets. First, we will define functions that provide for any concept
descriptionC ∈ DLi a set of attributesC ⊆ Mi such thatC ≡I

�
C. The following

definitions and proofs are carried out forALE but can be easily adapted to the other
DLs by simply removing the irrelevant parts.

8 We will formally define and justify this translation(.)i+1 in Section 7.



Definition 6. Let I be an interpretation and the corresponding sequences(Mi), (K
I
i )

defined as above. Given the according sequenceIB0, . . . ,IBn of implication bases,
we define a sequence of functionsτi : DLi → P(DLi) in a recursive way:

τi(C) = {C} for C ∈ M0

τi(
�
C) =

⋃

{τi(C) | C ∈ C}

τi(∀R.C) = {∀R.D | D ∈ τi−1(C)}

τi(∃R.C) =

{

{⊥} if ⊥ ∈ (τi−1(C))IBi−1 ,
{∃R.

�
(τi−1(C))IBi−1} otherwise.

Moreover, let̄τi(C) := (τi(C))IBi for all C ∈ DLi.

Note that by this definition, we also haveτ̄i(⊤) = τ̄i(
�

∅) = ∅IBi . Next, we have
to show that the functions just defined behave in the desired way. The following lemma
ensures that̄τi andτi indeed map toMi.

Lemma 1. SupposeC ∈ DLi. Then we haveτi(C) ⊆ Mi and τ̄i(C) ⊆ Mi.

Proof. Obviously,τ̄i(C) ⊆ Mi wheneverτi(C) ⊆ Mi. We show the latter by induction
on the role depth considering four cases:

– C ∈ {A,¬A | A ∈ A} ∪ {⊥}. Then by definitionC ∈ Mi.
– C = ∃R.D. If ⊥ ∈ τ̄i−1(D), we getτi(C) = τi(∃R.D) = {⊥} ⊆ Mi.

Now suppose⊥ �∈ τ̄i−1(D). As immediate consequence of the induction hypothesis
we haveτ̄i−1(D) ⊆ Mi−1. Sinceτ̄i−1 gives anIBi−1-closed set, we have also
∃R.

�
τ̄i−1(D) ∈ Mi, as a look to the constructive definition ofMi immediately

shows. Therefore,τi(C) = τi(∃R.D) = {∃R.
�

τ̄i−1(D)} ⊆ Mi

– C = ∀R.D. Again, our induction hypothesis yieldsτi−1(D) ⊆ Mi−1 which implies
{∀R.E | E ∈ τi−1(D)} ⊆ Mi due to the definition ofMi and therefore also
τi(C) = τi(∀R.D) = {∀R.E | E ∈ τi−1(D)} ⊆ Mi.

– C =
�
C. W.l.o.g., we presuppose that there is no conjunction outside the quantifier

range in anyD ∈ C. So we haveτi(D) ⊆ Mi due to the three cases above, and
subsequently alsoτi(C) = τi(

�
C) =

(
⋃

{τi(D) | C ∈ C}
)

⊆ Mi. �

The next lemma and theorem show that in our fixed interpretationI, for any concept
descriptionC ∈ DLi, the entity sets fulfillingC on the one hand and̄τi(C) as well as
τi(C) on the other hand coincide.

Lemma 2. For anyC ⊆ Mi, we have
�
C ≡I

�
CIBi .

Proof. First, observe(
�
C)I =

⋂

{(C)I | C ∈ C} =
⋂

{CIi | C ∈ C} = {δ ∈ ∆I |
δ ∈ CI for all C ∈ C}. Now, considerKI

i . SinceIBi is an implication base ofKI
i ,

C � CIBi is an implication valid inKI
i , ergo all objects ofKI

i (being the individuals
δ ∈ ∆I ) fulfill C ⊆ δIi ⇒ CIBi ⊆ δIi . Therefore, oneδ has all attributes from
C exactly if it has all attributes fromCIBi . Finally, we have then{δ ∈ ∆I | δ ∈
CI for all C ∈ CIBi} =

⋂

{CI | C ∈ CIBi} = (
�
CIBi)I .

�



Theorem 2. LetC ∈ DLi. ThenC ≡I

�
τi(C) ≡I

�
τ̄i(C).

Proof. The second equivalence is a direct consequence of Lemma 2. Weshow the first
one again via induction on the role depth:

– C ∈ {A,¬A | A ∈ A} ∪ {⊥}. Then, we trivially haveCI = (
�
{C})I .

– C = ∃R.D. By induction hypothesis, we getDI = (
�

τ̄i−1(D))I , therefore
(∃R.D)I = (∃R.

�
τ̄i−1(D))I which by definition equals(

�
τi(∃R.D̃))I .

– C = ∀R.D. Again, by induction hypothesis, we getDI = (
�

τ̄i−1(D))I =
⋂

{EI | E ∈ τ̄i−1(D)}. Now, observe that the statement(δ, δ̃) ∈ RI → δ̃ ∈ DI

is equivalent to
∧

E∈τi−1(D)

(

(δ, δ̃) ∈ RI → δ̃ ∈ EI
)

and thus(∀R.D)I =

{δ | (δ, δ̃) ∈ RI → δ̃ ∈
⋂

{DI}} = {δ |
∧

E∈τi−1(D) δ ∈ (∀R.E)I} =
⋂

{(∀R.E)I | E ∈ τi−1(D)} = (
�
{∀R.E | E ∈ τi−1(D)})I which by defini-

tion is just(
�

τi(∀R.D))I .
– C =

�
C. Again, we can presume no conjunction outside the quantifierrange in

any D ∈ C. Then(
�
C)I =

⋂

{(D)I | D ∈ C} =
⋂

{(
�

τi(D))I | D ∈ C}
because of the cases shown before. Now, this is obviously thesame as

⋂

{(E)I |
E ∈ τi(D), D ∈ C} = (

�
(
⋃

{τi(D) | D ∈ C}))I = (τi(
�
C))I . �

Using these propositions, we can easily provide a method to check – using only the
closure operatorsIB0, . . . ,IBi – the validity of any subsumption onDLi with respect
to a fixed (but not explicitly known) interpretationI. It suffices to applȳτi on both sides
and then check for inclusion.

Corollary 1. LetC1, C2 ∈ DLi. ThenC1 ⊑I C2 if and only if τ̄i(C2) ⊆ τ̄i(C1).

Proof. Due to Theorem 2,C1 ⊑I C2 is equivalent to
�

τ̄i(C1) ⊑I

�
τ̄i(C2). Accord-

ing to Lemma 1, we havēτi(C1) ⊆ Mi andτ̄i(C2) ⊆ Mi. In view of Theorem 1, this
means the same as the validity of the implicationτ̄i(C1) � τ̄i(C2) in Ki. Now, since
the application of̄τ always gives a closed set with respect to all implications valid in
Ki, this is equivalent tōτi(C2) ⊆ τ̄i(C1). �

Finally, consider the functionτi from Definition 6. It is easy to see that for any
C ∈ Mi−1 by calculatingτi(C) we get a singleton set{D} with D ∈ Mi. We then have
evenC ≡I D. For the sake of readability we will just writeD = (C)i. Roughly spoken,
D is just the “equivalentMi-version” ofC. Note that evaluatingτi does not need the
implication baseIBi but onlyIB0, . . . ,IBi−1. So we have provided the translation
function we promised in Section 6.

8 Conclusion

We have introduced an interactive knowledge acquisition technique for finding DL-style
subsumption statements valid in a domain of interest. Its outstanding properties are

– minimal workload for the domain expert (i.e., no redundant questions will be posed)
and



– completeness of the resulting specification (any statementfrom the exploration lan-
guage is known to hold or not to hold).

Several current fields of AI can benefit from the results presented here.
Ontology engineering would be the first to mention. Since based on DL formalisms,

our method can obviously contribute to the development and refinement of ontologies.
RE can be used for an organized search for new GCIs9 of a certain shape (namely those
expressible byDL concept descriptions). Clearly, the description logics nowaday’s on-
tology specifications are based on are much more complex thanany ofDL. Nonethe-
less, our algorithm is still applicable since all of them incorporate the DLs considered
as exploration language candidates. Hence, any of the existent reasoning algorithms for
deciding subsumption (as for instance KAON2 [12] or FaCT [13], both capable of rea-
soning inSHIQ(D) – see [14]) can be used for the terminology part. All information
beyondDL would then be treated as background knowledge and “hidden” from the
exploration algorithm. As already pointed out, one major advantage of applying this
technique is the guarantee that all valid axioms expressible as subsumption statements
onDL with a certain role depth will certainly be found and specified.

Another topic RE can contribute to is machine learning. The supervised case cor-
responds almost directly to the RE algorithm – mostly one would have large data sets
and (almost) empty theories in this setting. Yet also unsupervised machine learning can
be carried out – by “short-circuiting” the expert such that every potential statement di-
rected to him would be automatically confirmed. Essentially, the same would be the
case for data mining tasks.

Finally, we are confident that an implementation of the RE algorithm will be a very
helpful and versatile tool for eliciting information from various knowledge resources.

9 Future Work

So, as the very next step, we plan an implementation of the presented algorithm includ-
ing interfaces for database querying as well as for DL reasoning. Applying this tool
in the ontology engineering area will in turn enable us to investigate central questions
concerning practical usability; in particular performance on real-life problems and scal-
ability (being of unprecedented relevance in the Semantic Web Technologies sector), as
well as issues concerning user acceptance will be of specialinterest for evaluation.
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