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Abstract. This paper describes a list of studies necessary to justify the simulta-

neous use of both the overall test score and the subscale scores when measuring 

complex constructs. We investigate in detail one of the strategies for modeling 

composite constructs, which is popular within the international comparative 

studies of education. This strategy is based on repetitive recalibrations of the 

same data using unidimensional models for reporting overall test score and mul-

tidimensional models for reporting its components. We use Monte-Carlo simu-

lations to illustrate that repetitive recalibrations of the data using 

unidimensional and multidimensional models yield, basically, the same results 

after their transformation to the same scales. However, we also illustrate that 

the fit of the unidimensional models to the data may be confounded if the com-

ponents of the composite vary in terms of their relations with each other and 

their variance. We illustrate the studied strategy for modeling composite con-

structs using the computer adaptive test PROGRESS-ML, which measures 

basic math literacy in the third grade. 

Keywords: Composite Constructs, Composite Tests, Multidimensional Rasch 

Models, Unidimensional Rasch Models, PROGRESS-ML. 

1 Introduction 

Within contemporary educational sciences and broadly, in the social sciences, there is 

a growing need for composite measurement instruments – instruments that have a 

complex structure, for example, those which consist of subscales that invest in some 

way in the overall test score. This may be a consequence of the trend for measuring 

complex constructs - such as 21
st
 century skills or new literacies. Such constructs 

consist of multiple components, and it is not easy to portrait them as a classic 

unidimensional or single-component trait of respondents. It is widely assumed that the 

information about the integral trait level is valuable for policymakers, while infor-

mation about its components is valuable for practitioners. Such information provides 

important insights for improving the performance of, for example, the educational 

system or psychological practice at different levels of the social system. 
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The standards for educational and psychological testing [1] clearly state that (1) 

test scores should not be reported to users until their validity, fairness, and reliability 

have been studied, and (2) if the test produces more than one test score, the psycho-

metric quality of all reported scores must be confirmed. 

This is important because inaccurate information about the overall test score can 

lead to decisions with undesirable social consequences, while erroneous information 

about subscores can lead to incorrect decisions to correct or improve the situation [2]. 

In an academic environment, low-quality subscores can lead to false conclusions 

about the nature of the phenomenon being studied. 

2 Psychometrics of composite instruments 

In psychometric terms, composite tests are multidimensional. Therefore, the task is to 

evaluate, if possible, both the overall ability and its components. Psychometric model-

ing of such tests consists of several stages. First of all, a researcher needs to check 

whether the test is essentially unidimensional. It is possible to do so by utilizing the 

weak definition of local item independence stating that item residual correlations are 

zero after extracting a single factor estimated by the unidimensional model (figure 1a) 

[3]. If so, a researcher can report the overall test score - of course, given that it is 

proven to be valid and psychometrically consistent. If the test is not unidimensional, it 

is necessary to use multidimensional models, and then the overall test score requires 

additional research using hierarchical models [4]. Two types of hierarchical models 

are particularly popular – models with higher-order factors (figure 1c) [5] and bifactor 

models [6, 7] (figure 1d). Despite the algebraic similarities [8, 9] and the fact that 

both groups of models assume the use of the overall test score (called the general 

factor in factor-analysis terminology), their interpretation is different [10, 11]. While 

models with higher-order factors estimate the general factor that manifests in items 

through subscores, bifactor models assume a complete separation of the general factor 

and specific factors. 

Second, if a researcher intends to report subscores (for example, cognitive opera-

tions or content areas), several approaches are available. The first is to apply the 

unidimensional model to each subscale separately [12]. This approach is called the 

"Consecutive Approach". The consecutive approach is the least attractive since the 

number of items in each subscale is usually small. Therefore, the measurement relia-

bility will not be high enough, and the measurement error will be too large. This leads 

to the impossibility of reporting subscores [1]. 

The second approach involves the use of bifactor models. These models, hypothet-

ically, allow simultaneous reports of the overall score and subscores as additional 

independent information. However, studies show that subscores estimated in bifactor 

models rarely have satisfactory reliability because they describe information not ex-

tracted by the overall score. Therefore, valuable information is often suppressed by 

random noise [13]. Moreover, their interpretation is difficult due to model assump-

tions. 

 



 

Fig. 1. Structural models for modeling composite constructs. Latent variables are drawn using 

circles, while observed variables are drawn using squares. One-headed arrows represent regres-

sion dependencies, while two-headed arrows represent correlations 

 

The third approach involves the use of non-compensatory multidimensional mod-

els [14] (correlated traits models or models for between-item multidimensionality 

[15], figure 1b). Such models represent, essentially, several unidimensional models 

combined in a single likelihood equation. This approach is under investigation in this 

paper. From a modeling perspective, it is crucial to distinguish this analysis strategy 

from the bifactor modeling and consecutive approach. The described approach breaks 

the general factor into its parts, proportional to the number of items dedicated to a 

particular dimension. Each latent trait is calculated based on respondents' responses to 

the corresponding items and considering the latent variables' estimated correlations. 

Thus, multidimensional models use information about each dimension and compute 

the probability of completing or endorsing an item as a function of several latent vari-

ables, taking into account the relationships between them. As a result, such measure-

ments' reliability will be greater compared to the consecutive approach. Therefore, it 

is more likely that it will be possible to report subscores. At the same time, bifactor 

modeling suggests modeling additional subscale-specific components, which add up 

to the general factor to produce the observed item scores. Consequently, the interpre-

tation of the subscale-specific scores from bifactor models is too convoluted for the 

most practical tasks. As a result, the application of the bifactor models is mostly lim-

ited to modeling testlet-based assessments and local item dependence conditional on 

person parameters. 



The third analysis strategy illustrates the use of collateral information. Collateral 

information is any information about items, respondents, or their interaction, which, 

being introduced in the measurement model, does not change the parameters' interpre-

tation. However, collateral information reduces the uncertainty in the estimates [16]. 

In this case, for each subscale, the responses to all other subscales (together with the 

correlation matrix of latent dimensions) are collateral information [17]. 

Thus, to use the results of composite tests, regardless of the chosen strategy of data 

analysis, it is necessary to conduct extensive psychometric research. It is necessary to 

decide whether the overall test score and subscores are reliable and psychometrically 

consistent enough to be reported to users. 

 

2.1 Modeling components of the composite 

Breaking the overall test score into its components is popular within cross-national 

comparative studies of education. For example, PISA [18] and TIMSS [19] use repeti-

tive recalibrations of their testing data to decompose the overall test score into the 

components, which produce it. TIMSS uses its theoretical framework to report 

subscores on cognitive operations required to solve an item. From a statistical point of 

view, de facto, it leads to ignoring model-fit indices and recirculation of the data. 

Nevertheless, its interpretation allows researchers to describe the composition of the 

overall test scores in terms of how respondents achieve those test scores. This enables 

policymakers to make decisions based on the information described in terms of social 

sciences. 

However, the difference and equivalence between multidimensional and 

unidimensional models is a challenging area of psychometric research. Many studies 

have already touched upon the idea of the unidimensional interpretation of multidi-

mensional measurements. For example, Reckase et al. [20] showed that if the test 

items are selected according to specific conditions, the unidimensional model can fit 

such data. However, it requires strict guiding the process of test development by the 

psychometric parameters of the items. Several researchers have also tried to concep-

tualize the fit of the unidimensional models to multidimensional data in terms of the 

general factor's strength. For example, Drasgow and Parsons [21] demonstrated that if 

the general factor is "strong" (if the factors in the multidimensional model are firmly 

positively correlated), then the unidimensional model can fit the data well. Our paper 

describes the same phenomenon directly in terms of the correlation matrix of latent 

dimensions. Many other researchers studied how model modification can allow the 

unidimensional model to fit multidimensional data. The main implication of those 

findings is that it is possible to use the overall test score even if the general factor is 

weak as long as the multidimensional structure of the data is explicitly modeled [22]. 

Nonetheless, much research found that the differences between parameter esti-

mates from multidimensional and unidimensional models are expressed, mainly, in 

item parameters. Numerous researches have highlighted unpredictable distortion in 

the item parameters estimated when the model's dimensionality is misspecified re-

garding the data-generating model [23]. However, another conclusion from this 

stream of research concerns the stability of the person parameters. As DeMar noted 



(although, in another context), "if the focus is on estimated θ's and not on the item 

parameters, any of the models will perform satisfactorily" [24]. Reise et al. [25] sum-

marized that the correlation of person parameters from different models tends to be 

close to 1 regardless of the model's misspecification. 

3 Simulation study 

To illustrate the possibility of fitting the unidimensional models to the multidimen-

sional data, we perform a small-scale Monte-Carlo simulation study. We generate the 

data under the multidimensional Rasch model and calibrate both unidimensional 

(misspecified) and multidimensional (correctly specified) Rasch models on the data. 

We then compare the average of the multiple person abilities from the multidimen-

sional model and the estimated person ability from the unidimensional model. To 

compare the results, we used the Pearson linear correlation. 

We also analyze the essential unidimensionality of the simulated data by utilizing 

residual analysis. To do so, we apply principal components analysis to the standard-

ized response residuals under the unidimensional model. This is standard practice for 

the analysis of unidimensionality under the Rasch modeling paradigm. This method 

rests upon the assumption that if the data is unidimensional (and does not exhibit local 

item dependence conditional on person parameters), the residuals are noise, and any 

significant principal component cannot be extracted from the data [26; 27]. To ana-

lyze local fit, we used Rasch InFit and OutFit item-wise statistics [28], particularly 

their range from the maximum to minimum values. The larger range in InFit and Out-

Fit means that some items deviate from the model prediction and do not fit the Rasch 

model, while smaller variance means that all items fit the Rasch model. 

We conduct the simulations for 2000 respondents responding to 30 dichotomous 

items, separated into five subscales equally (6 items per subscale). We carry out 100 

replications for randomly varying positive definite variance-covariance matrices with 

positive manifold (where all latent dimensions are non-negatively correlated). Note, 

however, that during random varying of the variance-covariance matrix, we also alter 

the variance of latent dimensions. To control this source of the difference of the re-

sults, we also carry out 50 replications for three fixed variance-covariance matrices of 

person parameters (where all correlations were equal to 0.80, 0.50, or 0.20, and all 

variances are equal). For the randomly varying variance-covariance matrices, we 

calculate the difference between correlations by taking the standard deviation of the 

values in the lower triangle of the correlation matrix. We do so to analyze the fit of 

the unidimensional models conditional on the difference between the variance-

covariance matrix values. Both the multidimensional model and unidimensional mod-

el can be considered as special cases of the Multidimensional Random Coefficients 

Multinomial Logit Model [15]. The quasi-Monte-Carlo algorithm implemented in the 

Tam v. 3.5-19 package [29] for the R V. 3.6.2 software was used to estimate all mod-

els. 



3.1 Results of the simulation study 

The average correlation between person parameters from the unidimensional model 

and the average of person parameters from the multidimensional model is 0.99 (p < 

0.01) with a standard deviation of less than 0.01 across all simulated conditions. The-

se results hold for any case – whether the variance-covariance matrix was fixed or 

not. This result is in agreement with other similar research, suggesting that person 

parameters are more stable in the situation of model dimensionality misspecification. 

Further, the results of dimensionality analysis using PCA on unidimensional model 

residuals do vary depending on the size of correlations of latent dimensions in the 

data-generating multidimensional model. They suggest that the eigenvalue of the first 

component depends on the mean correlation of those dimensions (r = -0.48, p < 0.01, 

figure 2) and less depends on differences in the values of correlation matrix (r = -0.25, 

p < 0.05, figure 3). Note, however, that the critical value for the first eigenvalue is 2 

[30, 31]. Since the first component's eigenvalue is larger than the critical value, all 

unidimensional models are critically misspecified for the simulated data, and, there-

fore, their results are inconsistent. 

 

 

Fig. 2. Scatterplot of eigenvalues of the first component from PCA applied to the standardized 

model residuals versus mean correlation of latent dimensions from the simulations with ran-

domly varying variance-covariance matrices. Each point represents a single simulation 



 

Fig. 3. Scatterplot of eigenvalues of the first component from PCA applied to the standardized 

model residuals versus standard deviation of correlations of latent dimensions from the simula-

tions with randomly varying variance-covariance matrices. Each point represents a single simu-

lation 

 

To support these findings, we additionally analyzed the eigenvalue of the first 

component from PCA applied to the unidimensional model residuals when the vari-

ance-covariance matrix was fixed. We compared the eigenvalue of the first compo-

nent across different values of the fixed correlation and the varied matrix. The results 

are presented in figure 4. They also suggest that the analyzed eigenvalue depends on 

the size of the fixed correlation. However, they never exceed the critical value of 2. 

Therefore, the data with small (or absent) variance in the values of the correlation 

matrix of underlying latent factors can be considered unidimensional. 



 

Fig. 4. Boxplot of the variance of the first component from PCA applied to the standardized 

model residuals depending on conditions for simulations 

 

Next, we analyzed item fit statistics. The results are presented in figure 4. We 

compared values of item fit statistics across different conditions of simulations simi-

larly with previous results. The results are presented in figures 5 and 6.  We discov-

ered similar findings: the range of item fit statistics from unidimensional models in 

case of randomly varied variance-covariance matrix exceeds that of the fixed vari-

ance-covariance matrix. However, since the model used for data-generating is the 

Rasch model as well as the model used for data analysis, item fit statistics do not react 

to differences in item discrimination parameters. Instead, they react to the violation of 

unidimensionality, which is expected [27]. 

 



 

Fig. 5. Range of Rasch InFit item-wise statistic depending on conditions for simulations 

 

 

Fig. 6. Range of Rasch OutFit item-wise statistic depending on conditions for simulations 

 

Thus, we showed that the unidimensional IRT model could fit the data well even if 

the data was actually generated under the multidimensional model. This is fair for the 

cases where the values in the correlation matrix of latent dimensions are positive, 

correlations are strong, and they do not vary much. However, regardless of that, the 

average of the ability estimates from the multidimensional model is equal to the abil-

ity estimate from the unidimensional model. For this, of course, their transformation 



to the scales with the same numerical values is necessary (e.g., linear transformation 

to the scale N(500,100)). This finding is in agreement with previous studies, which 

found that the person parameters are not as sensitive to the model dimensionality 

misspecification as the item parameters. 

Nonetheless, psychometric consistency of the unidimensional score can be con-

founded if there is variation in the correlation matrix of "true" latent dimensions. If 

this is a case, the extraction of the overall test score from multidimensional data can-

not be conducted by averaging the multidimensional model's estimates. Additional 

research on "sufficient unidimensionality" of the data is crucial for overall test score 

reporting. 

4 Real data example 

This section demonstrates the scope of psychometric studies necessary for reporting 

both overall test scores and specific scores, interpreting them as components of the 

composite construct. We do so by applying them for the PROGRESS-ML basic math-

ematical literacy test. 

The PROGRESS-ML test evaluates how well a student is oriented in mathematics 

after completing two years of primary school. When developing the test, we relied on 

the following definition of basic mathematical literacy [32]: "basic mathematical lit-

eracy (including working with data) – the ability to apply mathematical tools, reason-

ing, and modeling in everyday life, including in the digital environment". 

The PROGRESS-ML basic math literacy test consists of 30 dichotomous items. 

The assessment is built as a computerized adaptive test with an automated stopping 

rule. 

The content of the test was selected in a way that, on the one hand, it meets the def-

inition of basic mathematical literacy, and on the other hand, it takes into account the 

content of the Russian Federal Educational Standard. As a result, we identified five 

content areas: spatial representations, measurement of quantities, regularities, model-

ing, and information processing. Test items are grouped into blocks according to the 

content area. 

Additionally, the PROGRESS-ML test evaluates students' cognitive processes re-

quired to solve the items. When developing the test items, we used the TIMSS' theo-

retical framework for the 4th grade [33]. Therefore, in addition to assessing the con-

tent area, three cognitive operations groups are measured — knowing, application, 

and reasoning. 

Thus, the PROGRESS-ML test is a composite tool: it includes five content areas 

and reflects three cognitive operations groups. It is assumed that the test results will 

report the students' overall test score (in this case, the level of their basic mathemati-

cal literacy), as well as subscores (in this case, content areas and cognitive opera-

tions). 

The sample consisted of 6078 the 3
rd

 grade students from two regions of the Rus-

sian Federation. The samples were representative for the regions. Average age = 9.06 

years (SD = 0.46), number of girls = 52.36%. 



4.1 Results of the analysis of the real data 

In the analysis of standardized residuals by the PCA, we found that the first compo-

nent's eigenvalue is 1.45, which corresponds to 4.2% of the residual variance. The 

next four components' eigenvalues are in the interval from 1.15 to 1.2. The distribu-

tion of the explained variance of residuals among the components is almost uniform – 

about 4% per component. Therefore, we conclude that the unidimensional model 

sufficiently describes the response probability distribution across persons, and the test 

can be considered unidimensional. 

The model Expected-a-Posteriori reliability [34] of the entire test score from the 

unidimensional model was 0.76. For comparison, we calculated the reliability using 

the methods of Classical Test Theory (CTT): Greatest Lower Bound (GLB) [35] reli-

ability was 0.86, the Cronbach's α [36] was 0.81. However, it is essential to note that 

the design of testing (computerized adaptive) implies that not all items are adminis-

trated to all respondents, and the CTT parameters become unstable in the presence of 

missing responses. Therefore, even though, in our example, the reliability estimated in 

the CTT (both GLB and Cronbach's α) is slightly higher than the reliability of the 

scores evaluated in the IRT, these indices should not be trusted. 

Overall, the analysis results suggest that the test can be considered unidimensional, 

even though there are different ways to group items. This implies that it is possible to 

report one overall test score of mathematical literacy based on the test results, which 

will have good reliability and psychometric consistency. 

Then, we calibrated the multidimensional IRT model to estimate if they will have 

good psychometric characteristics. The reliability analysis results by content areas are 

shown in table 1, by cognitive operations are shown in table 2. 

 

Table 1. Analysis of relations between content areas 

Content area 
Spatial rep-

resentation 

Measure-

ment of 

quantities 

Regulari-

ties 

Model-

ing 

Infor-

mation 

processing 

Spatial repre-

sentation 
 0.85 0.80 0.83 0.80 

Measure-

ments 
  0.85 0.90 0.83 

Regularities    0.86 0.84 

Modeling     0.83 

Variance 0.89 1.23 1.12 1.06 2.95 

Reliability 0.68 0.71 0.67 0.68 0.63 

Number of 

items 
7 6 6 6 5 



 

Table 2. Analysis of relations between cognitive operations 

Cognitive opera-

tion 
Knowing Application Reasoning 

Knowing  0.95 0.85 

Application   0.85 

Variance 1.37 0.82 0.60 

Reliability 0.75 0.74 0.61 

Number of items 12 14 4 

 

From the tables, we can conclude that all dimensions have sufficient reliability for 

the monitoring test use. Despite the small number of items per subscale, relatively 

high reliability is possible due to the approach used for IRT modeling. In fact, such a 

small number of items per dimension makes raw subtest scores unusable. Additional-

ly, we looked at correlations between the latent dimensions: both content areas and 

cognitive operations correlate approximately equally – at the level of 0.8-0.9. Based 

on the simulation study, we conclude that this can be seen as an additional argument 

in favor of the unidimensional model, even though multidimensional models fit the 

data better than the unidimensional model according to the AIC [37] and BIC [38] 

indices. These indices can estimate the relative model fit to the data introducing a 

penalty for extra model parameters (AIC) with respect to sample size (BIC). The low-

er values of these indices indicate a better model fit. These indices are presented in 

table 3. 

 

Table 3. Analysis of model fit 

Model Deviance Sample 
Number of 

parameters 
AIC BIC 

Unidimensional 144255.6 

6078 

 

31 144318 144526 

Content areas 143875.7 45 143966 144268 

Cognitive op-

erations 
143965.4 36 144037 144279 

 

Thus, multidimensional IRT models allowed us to get reasonably reliable 

subscores (for both content areas and cognitive operations) and therefore made it 

possible to report them to users. Moreover, the described reliability estimates are 

derived from IRT models in which no context variables were entered. Note that the 

introduction of these variables into the model (using latent regression modeling) leads 

to the estimation of more reliable scores for subscales due to explaining ability vari-

ance. 



5 Conclusion 

Contemporary psychometric literature notes the growing popularity of composite tests 

designed to produce both the overall test score and the subscores. There are several 

strategies for processing such test data. They include the use of raw test scores or the 

application of hierarchical models. However, in most cases, raw test scores cannot be 

used due to their low reliability [13], and hierarchical models require extraordinary 

caution in use due to their complex mathematical nature and interpretation. 

In this paper, we describe the strategy for modeling subscores as components of the 

overall composite test score. This strategy is based upon repetitive recalibration of the 

same data using unidimensional and multidimensional models. We demonstrate that 

the average of the ability estimates from the multidimensional models is equal to the 

ability estimate from the unidimensional model estimated on the same data. Interest-

ingly, this statement holds regardless of whether or not the unidimensional model fits 

the data. However, the application of any statistical models in social sciences needs to 

be backed by checking its assumptions and thinking through its theoretical conse-

quences. Therefore, the unidimensional model's meaningfulness must be argued in 

terms of both model fit and construct definition. As we demonstrate in our simulation 

study, the unidimensional model does not always fit the data despite the equivalence 

of its estimates to the average of the estimates from the multidimensional models. 

This means that the unidimensional model's adequacy needs to be verified either way 

if a researcher intends to follow the described approach in modeling the composite 

constructs. 

We also provide an example of the described strategy for modeling the composite 

constructs using the PROGRESS-ML basic mathematical literacy test. We demon-

strate that the use of IRT models allows us to report the respondent's overall test score 

and subscores with respect to test specification. For this test, the main result of testing 

is the respondent's overall test score. However, repeated recalibration of data based on 

content areas and cognitive operations groups required for solving items allows us to 

report subscores on those dimensions. These estimates possess greater reliability and 

simpler interpretation than estimates from other approaches to modeling composite 

constructs. The essence of these results is the decomposition of the overall test score 

into the components that make it up. 
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