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Abstract. Suspension control systems in cars are a vital component
in modern vehicles tasked with enhancing ride comfort for passengers.
However, these systems rely on system controllers to dictate the damp-
ing rate. Commonly PID controllers are used for this purpose, but these
controllers have a number of drawbacks such as their linearity and in-
ability to adapt. On the other hand, many of these weaknesses are the
strengths of Reinforcement Learning (RL) techniques. In this research, a
novel approach is taken to combine both PID controllers and RL through
a technique known as Residual Policy Reinforcement Learning (RPRL).
This approach is evaluated on a quarter car suspension system model in
a variety of common scenarios and is shown to improve the suspension
control of a car, enhance the performance of a PID-controller, and adapt
to environmental changes. However, it is also shown that the algorithm’s
performance is highly reliant on the performance of the base policy, i.e.,
initially selected PID parameters.

Keywords: PID controller · RL · System Control · Suspension System
Control

1 Introduction

Suspension control systems are an integral part of modern vehicles, with ride
comfort and passenger satisfaction being directly linked to the performance of
these systems. One popular suspension system used is the semi-active suspension
system, which relies on a system controller to monitor and govern the damping
rate of the damper. Whilst there is a wide range of controllers available for this
purpose, one of the most commonly used controllers is the Proportional Integral
Derivative (PID) Controller. Even though this controller has many benefits, in-
cluding its simplicity and cost, it also has many drawbacks. Some of these include
the linear nature of the controller, which makes it unsuitable for use in complex
nonlinear systems, and the sensitivity of the controller to its parameters. These
parameters are environment specific and need to be tediously tuned to max-
imise the controllers performance. Additionally, they can suffer dramatic drops
in performances due to changes in environmental conditions such as temperature
change.
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In contrast, many of the difficulties associated with PID Controllers can be
considered the strengths of reinforcement learning (RL) techniques, as they are
self training and generally show high levels of adaptability. Additionally, when
using Deep RL it is possible to overcome complex nonlinear systems. As a result,
they are able to overcome a lot of the issues related to PID controllers.

However, RL itself also has its drawbacks with difficulties associated with
divergence and stability being common in Deep RL algorithms. [1] showed that
this can be overcome, at least in some cases, by combining RL with a strong
base policy through Residual Policy Reinforcement Learning (RPRL). In this
case the base policy refers to the traditional control technique used alongside
the Reinforcement Learning algorithm. Therefore, in order to create a system
that benefits from both the strengths of the PID controller and RL techniques
our research combines both methods together using RPRL.

This is, to the best of our knowledge, the first time PID control and RL are
combined through RPRL. Therefore, the main contributions of this paper are:

– Combining PID control and RL through the use of Residual Policy Rein-
forcement Learning. In particular, we enriching PID control with the Deep
Deterministic Policy Gradient (DDPG) variant of RL.

– Evaluating RPRL on a simulation of quarter-car suspension system.

The rest of the paper is structured as follows. Section 2 provides an intro-
duction to the two main components of this approach: PID control and RL.
Section 3 outlines related work and alternative approaches to overcome some
of these issues. Section 4 illustrates how suspension control was modelled as an
RL problem, whilst Section 5 describes the evaluation method and presents the
results. Finally, Section 6 concludes the paper.

2 Background

2.1 PID Controller

Proportional Integral Derivative (PID) Controllers are a form of closed loop
controller which aim to reduce the error between the target and current output
values of a system by altering a variable known as the manipulated variable.
In order to do this, the PID controller relies on 3 components; the proportional
component, the integral component and the derivative component. The propor-
tional component receives the error, i.e. the difference between the current and
target output value, and performs the operation shown in equation 1.

Proportional Output = Kpe(t) (1)

where:
Kp = the proportional gain
e(t) = the error between the actual process output and target process output
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The Integral component also receives the error, however, it applies the oper-
ation shown in equation 2.

Integral Output = Ki

∫ t

0

e(τ)dτ (2)

where:
Ki = the integral gain
e(τ) = error

Similarly the derivative component outputs the derivative of the error times
the Derivative gain (equation 3).

Derivative Output = Kd
de(t)

dt
(3)

where:
Kd = the derivative gain
e(t) = the error
The final output is the sum of these three components.

The fact that the final output is the sum of relatively straightforward math-
ematical operations is one of the reasons the PID controller is so popular. How-
ever, this also contributes to some of its downfalls. Specifically, the performance
of the PID controller is heavily dependent on its hyperparameters, also known as
gains. These are often incredibly hard to tune, requiring complex tuning methods
such as the Ziegler-Nichols methods [2]. In addition, once tuned, gains are often
highly environment-specific so any changes to the environmental characteristics
can result in massive performance drops. The controllers are also highly linear,
making them unsuitable for complex nonlinear systems.

2.2 Reinforcement Learning

RL represents a family of algorithms in which an agent interacts and learns
from an environment directly, by taking actions in a given state and receiving a
reward outlining how good or bad that action was.

By combining RL with Deep Learning it is possible to create highly com-
plex models capable of controlling nonlinear systems [3]. In addition, due to the
models ability to self-learn, it is also possible to create dynamic agents, capable
of adapting to changes in the environment.

However, as Deep RL relies on Deep Learning, it is also susceptible to issues
which face Deep Learning, namely, the instability and divergence issues. One
cause of these divergence issues is the Deadly Triad which was studied extensively
in [4]. To overcome these issues, more advanced RL algorithms, such as the Deep
Deterministic Policy Gradient (DDPG) [5], have been proposed.

DDPG is an actor-critic RL approach which is essentially an extension of the
Deep Q-network algorithm proposed by Mnih et al [3]. It makes use of a critic to
approximate the Q-value of actions in given states and an actor network to make
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optimum actions. However, it has been found in previous work [6] that the DDPG
algorithm alone can be unstable and diverge when applied to suspension control.
Therefore, this paper proposes the use of RPRL to overcome these problems.
RPRL is an algorithm which combines RL with traditional control techniques
by combining both approaches through summation, as can be seen in equation 4.

πθ(s) = π(s) + fθ(s) (4)

where:
πθ(s) = final policy
π(s) = base policy (Traditional Technique)
fθ = residual policy (Reinforcement Learning Technique)

Using this equation, it can be seen that the gradient of the policy, with
respect to the parameters θ, depends on the residual policy as opposed to the
base policy. Therefore, it is possible to use policy gradient methods alongside
residual policy RL.

This approach has been shown to improve the performance of the DDPG
algorithm when used with a reactive hook base policy. It was also shown in [7]
to improve the performance of a P controller.

3 Related Work

This work builds on a magnitude of other research which attempted to tackle
some of the problems associated with a PID control.

[8] proposed an Adaptive PID controller (APID) which makes use of the
gradient descent algorithm to update the parameters on the fly. This online
tuning method allowed the PID controller to avoid pre-tuning, whilst helping it
adjust to environmental changes. Similar online tuning methods were proposed
in [9] and [10].

Other approaches have involved tuning the PID controller using an RL agent.
[11] used an incremental Q-Learning strategy to tune the PID controller in an
online fashion. This algorithm dynamically grows a Q-value table in both the
action space and state space direction through discretization techniques, in order
to create a discrete yet accurate tuning model. Other approaches involved using
the Continuous Action RL Automata (CARLA) algorithm [12] and a Radial Base
Function (RBF) Actor Critic network [13] to tune a PID controller. However,
neither method for online tuning, nor those that combine PID with RL, eliminate
issues relating to the linearity of the PID controller.

Finally, approaches have also been made to completely replace PID con-
trollers with RL. [14] successfully applied the DDPG algorithm for an intelligent
control strategy for transient response of a variable geometry turbocharger sys-
tem. Similarly, [15] and [16] also proposed RL models to replace PID controllers.
Whilst these models proved to be capable of outperforming and replacing PID
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controllers in their given task, they do not directly address the divergence and
stability issues associated with Deep RL techniques.

As such, there is a need for an algorithm which can overcome the weaknesses
of both PID control and RL techniques, and achieve superior performance.

4 Modelling Suspension Control as a RL Problem

As suspension control systems are closed loop feedback systems it is possible
to formulate them as an RL problem. In this case, a quarter-car suspension
control simulation was provided by ZF Friedrichshafen AG in the form of an
OpenAI GYM environment. This allowed the suspension system behaviour to
be simulated, whilst also ensuring that the RL agent and the suspension system
could have the same interaction as seen in an RL problem. In other words, it
allows for the agent to view the current state of the suspension systems, take an
action and receive a reward. The DDPG algorithm (as shown in Algorithm 1)
was used, and the state space, action space and reward are outlined below.

4.1 State Space

The state space captures the system’s wheel velocity and position. The wheel
velocity and position change 1ms ahead of the chassis velocity and position, and
therefore using this as the state space gave the agent a chance to act and protect
the chassis from impact.

4.2 Action Space

The action space was the suspension system’s damping rate. This damping rate
described the stiffness of the damper and was in the range [100, 5000], with 100
being a very loose damper, and 5000 being a very stiff damper. The agent was
only allowed take an action every 35ms due to real world physical constraints
which would prevent the agent from taking an action more frequently. This
prevents the agent from reacting immediately to road disturbances that occur
during the 35ms window, however, it better reflects the real world constraints.

4.3 Reward Function

The reward received by the agent reflects how successful the agent is at reducing
chassis acceleration and as such is expressed as:

Reward Function = −((clip((abs(achassis) − 0.315m/s2), 0, 1) × 100)) (5)

where;
achassis = chassis acceleration

This reward function was chosen following extensive testing which showed
its improved performance over alternatives, including reward functions which
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gave an immediate punishment of -100 when accelerations exceeded 0.315m/s2

as opposed to the gradual build up in punishment seen in the chosen reward
function. In addition, it is based on the ISO 2631 Riding Comforts Standards
which highlights that the vehicle ride becomes uncomfortable following acceler-
ations in excess of 0.315m/s2. Therefore, the agent receives maximum reward
for accelerations below this threshold.

Fig. 1: Residual Policy Reinforcement Learning Agent’s Interaction with Envi-
ronment

4.4 Terminal Goal

The end of the simulation occurs when a terminal goal is reached. In this case
the terminal goal occurs when chassis acceleration falls to below 0.2m/s2 for 200
consecutive timesteps. This is done to determine when the chassis has settled
down following the road disturbance. When this is achieved the simulation ends.

5 Experimental Evaluation and Analysis

5.1 Implementation

The RPRL algorithm was created using a PID controller as the base policy and a
DDPG RL agent as the residual policy. The PID controller was pre-tuned using
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an iterative method which tested a series of parametric values for each gain in
the range [-1000, 1000], with iteration size 0.1. Using this method the optimum
parameters were found as follows: Proportional = 0, Integral = 0, Derivative = 0.
This means the PID controller outputs a constant target value of 0. Whilst this
may seem peculiar it is believed to be caused by the simulation, rather than the
tuning method, which requires the PID controller to select a target acceleration
rather than a damping rate.

The RL agent was implemented using the DDPG algorithm. The actor’s
architecture consisted of a single neuron input layer, a 300 neuron hidden layer
and a single neuron output layer. All layers used the ReLU activation function,
except for the final layer which used a TanH activation function. This allowed for
the actor to have a zero centred action space, which could then be multiplied by
5000 to give the RL agent an action space of [-5000, 5000]. Note: This action space
is different to the environment action space, as the actor’s output is combined
with the PID controllers, i.e., it does not represent the action of the RPRL agent
alone.

Algorithm 1 DDPG Algorithm Pseudocode [5]

Randomly initialise critic network Q(s, a|θQ) and actor µ(s|θµ with weights θQ and
θmu.
Initialise target network Q′ and µ′ with weights θQ

′
← θQ, θµ

′
← θµ

Initialise replay buffer R
for episode = 1, M do

Initialise a random process N for action exploration
Receive initial observation state s1
for t=1, T do

Select action at = µ(st|θµ)+Nt according to the current policy and exploration
noise

Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′

Update critic by minimising the loss: L = 1
N

∑
i

(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si (6)

Update the target networks”

θQ
′
← τθQ + (1− τ)θQ

′
(7)

θµ
′
← τθµ + (1− τ)θµ

′
(8)

end for
end for
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The critic was composed of two input layers made of a single neuron. The first
input layer took in the state and connected to hidden layer 1, composed of 400
neurons. Hidden layer 1 then connected to hidden layer 2 which was composed
of 300 neurons. The second input layer, which received the actor’s action, also
connected directly to hidden layer 2. Hidden layer 2 then connected to the single
neuron output layer. Again, all layers used ReLU activation functions except for
the output layer which used a linear activation.

5.2 Experiments

Experimental scenarios were selected with the following evaluation objectives:

1. To evaluate whether the RPRL algorithm is capable of enhancing a PID-
controller’s performance in terms of accepted metrics.

2. To evaluate whether the RPRL algorithm has the ability to adapt and re-
optimise the PID-controller’s performance following changes to the environ-
ment.

3. To evaluate whether the RPRL algorithm has the ability to optimise the
performance of untuned PID-controllers, reducing the need for tedious tuning
methods.

The performance is analysed using the following metrics: Maximum Chassis
Acceleration, Maximum Chassis Velocity, Maximum Chassis Movement, Reward
Function Score and ISO 2631 Riding Comfort Standard.

Evaluation Scenarios The following three scenarios were evaluated, corre-
sponding to the three evaluation objectives specified above:

1. Performance Versus a Standard PID - The algorithm was tested against
a PID controller using the same parameters as seen above on 6 different
simulations to compare overall performance. This performance was analysed
based on the metrics above. Whilst 6 simulations were used (2.5cm sine wave
disturbance, 5cm sine wave disturbance, 2.5cm pothole disturbance, 5cm
pothole disturbance, 2.5cm hybrid disturbance, 5cm hybrid disturbance),
only the results for the 2.5cm hybrid road disturbance3 will be presented in
this paper in the interest of space.

2. Mass Change - The algorithm was also tested on its ability to deal with
environmental change, which was simulated by altering the mass of the chas-
sis. This mass change was from 650kg to 600kg which is similar to unloading
a vehicle. This was tested on the 2.5cm hybrid road disturbance.

3. Untuned PID - Finally the algorithm was also tested on its ability to
optimise the performance of an untuned PID-controller. In order to do this
the PID gains were randomly selected. Again the model was tested only on
a 2.5cm hybrid road disturbance.

3 Hybrid refers to a road disturbance which is a combination of a sine wave and a unit
step function.
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Training For each simulation the RPRL agent was trained for 30,000 episodes.
During training Early Stopping and Performance Threshold were used to im-
prove performance. Early stopping was used to end training when convergence
had been reached. This was useful as during training it was found that the
RPRL agent could fall out of convergence and diverge to a bad policy. Perfor-
mance Threshold was used to ensure a minimum was reached. In this case the
PID performance level was chosen, and only models performing better than this
minimum performance level were saved. In addition the performance threshold
(expressed the reward obtained) was updated when a model outperformed, so
that only models performing better than this new performance threshold were
saved. This meant that only the best performing models would be saved and
would further protect against divergence during training.

5.3 Results and Analysis

Performance Versus a Standard PID The results comparing RPRL and
traditional PID controller are shown in Tables 1 and 2

Table 1 Evaluation: 2.5cm hybrid disturbance results
Metric PID-controller RPRL

Maximum Chassis Acceleration (m/s2) 0.52 0.49±0.005
Maximum Chassis Velocity (m/s) 0.01 0.0097±0.0001
Maximum Chassis Movement (m) 0.0014 0.0013
Reward -335 -280 ±15

Table 2 2.5cm hybrid disturbance results as per ISO 2631 ride comfort
standard Note: the numbers represent the number of milliseconds spent in
each comfort level
Comfort Level PID-controller RPRL

Comfortable 796 798
Little Uncomfortable 38 42
Fairly Uncomfortable 6 0
Uncomfortable 0 0
Very Uncomfortable 0 0
Extremely Uncomfortable 0 0

We observe that the RPRL agent outperformed the traditional PID controller
on all metrics. Table 1 shows that RPRL achieves a better reward score, whilst
also experiencing less maximum chassis acceleration, velocity and movement, all
indicators of improved chassis comfort. Whilst these improvements may seem
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small, they are significant enough to maintain improved comfort levels when
compared using the ISO 2631 standard. This is also seen in Table 2, where it
is shown that the RPRL agent obtains increased comfort when compared using
the ISO 2631 Ride Comfort Standard. Similar results were obtained when tested
on the 5cm hybrid, 2.5cm and 5cm sine wave and 2.5cm and 5cm pothole road
disturbances, which, in the interest of space, are not shown here.

Mass Change The algorithm was also tested on its ability to deal with envi-
ronmental change. In this case the model was trained for 30,000 episodes using a
vehicle mass of 650kg. Following 30,000 episodes the mass was changed to 600kg
and the model was tasked with adjusting to this change and re-optimising. The
results can be seen in Figure 2.

Fig. 2: RPRL Agent Responding to Mass Change

The RPRL shows the ability to re-adjust and re-optimise the performance
of the suspension control system. This can be seen at the 30,000 episode mark
where the mass change occurs. The purple line drops substantially below that of
the PID controller, however, it quickly adjusts and achieves performance superior
to that of the PID controller. Whilst the oscillation around the PID controller’s
performance line is not ideal, it is not problematic due to the use of the perfor-
mance threshold and early stopping techniques described above. As such, this
simulation shows the RPRL algorithm’s ability to adapt to change.

Untuned PID The final test involved investigating the RPRL ability to op-
timise a poorly tuned PID controller. In order to do this, a poorly tuned PID
controller was used as the base policy. The PID parameters used were selected
at random as follows: Proportional = 12, Integral = -5, Derivative = 7.

As can be seen in Figure 3, the RPRL Policy was unable to optimise the
poorly tuned PID controller. In fact, the subsequent performance proved to
be worse than the poorly tuned PID controller itself. It is thought that this
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Fig. 3: RPRL Agent with Poorly Tuned PID controller base policy

is because the poorly tuned PID controller offers very little guidance on good
actions or even guidance on places to explore for good actions, which was stated
in the original paper [1] to be one of the benefits of algorithm. As such, the
resultant performance is disappointing.

6 Conclusion

The goal of this work was to use Residual Policy Reinforcement Learning to
combine PID control and Reinforcement Learning in a complimentary fashion,
so as to maximise the advantages of each system. Whilst it was successfully
shown that this system is capable of optimising and enhancing the performance
of a PID controller and improving the adaptability of a PID controller, it was also
shown that it was incapable of compensating for poorly tuned PID controllers
and therefore is highly reliant on the base policy used.

These findings are not only important for future work involving Reinforce-
ment Learning and damper control, but for all work involving system control.
At present PID control is one of the most popular system control methods and
as such the findings here can be applied to many other use cases.

Future work should focus on applying this technique to more complex simu-
lations, including, where possible, simulations that make use of real world data.
In this case a simplified simulation was used and as such the results should be
verified on more realistic models.
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