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Abstract. In the last few years, the automatic classification of heart
sounds has been widely studied as a screening method for heart disease.
Some of these studies have achieved high accuracies in heart abnormality
prediction. However, for such models to assist clinicians in the detection
of heart abnormalities, it is of critical importance that they are gener-
alisable, working on unseen real-world data. Despite the importance of
generalisability, the presence of bias in the leading heart sound datasets
used in these studies has remained unexplored. In this paper, we explore
the presence of potential bias in heart sound datasets. Using a small set
of spectral features for heart sound representation, we demonstrate ex-
perimentally that it is possible to detect sub-datasets of PhysioNet, the
leading dataset of the field, with 98% accuracy. We also show that sensors
which have been used to capture recordings of each dataset are likely the
main cause of the bias in these datasets. Lack of awareness of this bias
works against generalised models for heart sound diagnostics. Our find-
ings call for further research on the bias issue in heart sound datasets
and its impact on the generalisability of heart abnormality prediction
models.
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1 Introduction

Cardiac auscultation is a cost-effective and non-invasive technique that has been
used by physicians to diagnose heart disease for over 200 years [15]. Ausculta-
tion involves listening and interpreting the patient’s heart beat, typically using
a stethoscope. However, the accuracy of this diagnostic method is influenced by
different factors such as the auscultation skills of the clinicians and the capacity
of the human auditory system to detect low-frequency sounds [20]. In recent
times, the development of heart sound classification models for automatic detec-
tion of heart abnormalities has been an active area of research [13, 11, 4, 23, 16].
Given that the ultimate goal of such systems is to assist clinicians with their
decision making, the generalisability of these models to unseen real-world data
is of great importance.

One of the main causes of poor generalisation of predictive models is dataset
bias [22, 21]. Unintended bias can be introduced into datasets at different stages
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of the data collection and generation process. Consequently, the source of bias
will differ across datasets, including historical, representation and measurement
bias [18]. Supervised machine learning models are heavily influenced by the char-
acteristics of the data they are trained on. Bias in the data may result in a
suboptimal model which would be biased towards some particular features of
the dataset [22]. While such a model might show a high level of accuracy on the
dataset used for training and evaluation, it may not offer the same performance
when deployed to production. In other words, the generalisability of such model
can be affected by the fact that the training and the real-world data come from
different distributions.

In addition to the diagnostically salient acoustic characteristics, heart sound
recordings are susceptible to a variety of factors. These can be grouped as: hu-
man factors regarding the patient (e.g. age, resting/moving state, fitness levels);
context and environmental factors (e.g. room noise, stethoscope placement); and
system factors (e.g. stethoscope specifications such as acoustic coupling, digital
sampling rate, acoustic dynamic intensity range). Recent work has also shown
differences in parameters of the transmitted sound exist between digital stetho-
scopes [12]. Despite the fact that any of these factors can be a potential source of
bias in heart sound datasets, the impact of bias on datasets used for data-driven
classification models has not been explored. At the same time, the heavy reliance
on a small set of datasets in this area of research also stresses the importance of
potential bias in these datasets. Currently, there are few publicly available heart
sound datasets which have been employed to build heart abnormality prediction
models. One of these which has been widely used as a gold standard dataset
by researchers since 2016 is the PhysioNet heart sound dataset [9]. We explore
the presence of potential bias in the PhysioNet heart sound dataset and its im-
pact on the generalisability of heart disease prediction models. Our key finding
is that bias is present in the PhysioNet meta-dataset, and that the sound cap-
turing sensor (the digital stethescope) used is likely the principal contributor to
this bias.

Our paper is structured as follows: In section 2, we provide a brief overview of
the heart sound classification problem. We also give an overview of the available
datasets and specifications of sensors used to capture heart sounds. In section 3,
we provide the details of the experimental methodology, including the chosen
datasets, pre-processing, feature representations, classification model, and met-
rics. In section 4, we give a detailed analysis of the results. In section 5, the results
are discussed. Conclusions and future directions are presented in section 6.

2 Background and Related Work

Heart sounds are a product of vibrations in heart muscles. These vibrations are
in turn the result of blood flow with the opening and closure of heart valves.
A normal heartbeat cycle is composed of two separate sounds, called first heart
sound (S1) and second heart sound (S2). In some cases, a third and fourth sound
might also be present, which can be a sign of heart abnormality. In addition
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Fig. 1: Phonocardiogram of a normal heart sound.

to these sounds, heart valve defects can also produce a whooshing or swishing
sound, which is called murmur. A phonocardiogram is a visual representation of
a heart sound showing heart sound amplitudes over a period of time. Figure 1
shows the phonocardiogram of a normal heart sound.

Physicians use a device called stethoscope to monitor the heart sounds. By
examining the timing, duration, intensity, and pitch of the heart sounds, they can
differentiate normal and abnormal sounds [10]. Acoustic stethoscopes have been
used by clinicians for over 200 years. However, in recent years, they have evolved
into digital auscultation devices with multiple functionalities. 3M Littmann [1],
Eko Core [6], and Jabes [7] are just some examples of available electronic stetho-
scopes in the market. Specifications of these three stethoscopes have been pro-
vided in Table 1. These devices allow their users to significantly amplify heart
sounds. They also eliminate ambient noises by filtering out unwanted frequency
ranges or through active noise cancellation. Littman and Jabes stethoscopes also
offer functionality to enable users to switch between different frequency modes
which have been tailored to heart and lung sounds frequency ranges. Such fea-
tures enable digital stethoscopes to offer a higher level of sound quality than
their acoustic counterparts, which in turn will assist practitioners to make a
more accurate diagnosis [19]. Referring to Table 1, we think that characteristics
such as different frequency ranges, digital sampling rates, and frequency modes
can be potential causes of bias in sounds recorded by such sensors.

Table 1: Specifications of three digital stethoscopes available in the market.

Stethoscope
Frequency

Range (Hz)
Sample

Rate (Hz)
Amplification

Noise
Reduction

Frequency
Modes

3M Littmann
3200

20 – 2000 8000 Up to 24x Yes Yes

Eko Core 20 – 2000 4000 Up to 40x
Yes - Active

noise cancellation
No

Jabes 20 – 1000 8000 Up to 20x Yes Yes

Currently, a few heart sound datasets are available to researchers, including
but not limited to PASCAL [2] and PhysioNet datasets. PhysioNet is by far the
most extensive heart sound meta-dataset, comprising six smaller databases with
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different number of recordings. These six databases were contributed by differ-
ent research groups to the PhysioNet Computing in Cardiology 2016 challenge.
The heart sounds available in each database have been recorded using digital
stethoscopes/microphones in clinical as well as non-clinical environments. Phy-
sioNet meta-dataset contains 3240 recordings, out of which 665 samples belong
to normal subjects and 2575 samples to abnormal ones. Since its release in 2016,
many researchers, including [13, 11, 4, 23] have used PhysioNet as a benchmark
dataset to validate their proposed algorithms.

Creating a heart sound classification system generally involves four steps:
data acquisition and pre-processing, segmentation, feature extraction, and heart
sound classification [5]. It must be noted that one or some of these steps might
not be present in particular cases such as deep learning models. Potes et al. [13]
applied the Springer segmentation algorithm [17] to segment heart sounds and
then used time and frequency domain features to train an ensemble model which
combines an AdaBoost classifier with convolutional neural network (CNN). Their
method achieved a mean accuracy of 86% on the PhysioNet/CinC 2016 challenge
test set and won the challenge. The goal of this challenge was to classify heart
sound recordings into either normal or abnormal categories. In [11], Noman et
al. extracted Mel-Frequency Cepstral Coefficients (MFCCs) from short segment
heart sound signals. They then built a deep learning architecture which com-
bines a 1D-CNN that receives raw heart sound signals, and a 2D-CNN that
takes MFCCs as input. Their proposed method achieved a mean accuracy of
88.14% on the PhysioNet dataset. The method proposed by Dominguez-morales
et al. [4] split heart sound recordings into fixed-length segments and extracts
frequency bands of each segment. Sonogram images were generated for each of
the samples and then fed into a CNN model. This method achieved a mean ac-
curacy of 94.16% on Physionet dataset. High reliance on the PhysioNet dataset
as a benchmark dataset in recent work [13, 11, 4, 23] indicates that PhysioNet is
currently the gold standard dataset in this field.

Although some of the studies mentioned above have achieved high accuracies
on PhysioNet meta-dataset, the potential presence of bias in this dataset and
its impact on the generalisability of the proposed models has been overlooked.
The fact that the PhysioNet meta-dataset is imbalanced across its constituent
databases increases the risk that the models built using this dataset will be biased
towards the characteristics of one of its sub-databases. As a result, while the
resultant models might achieve high accuracies on this particular dataset, such
models may show lower performance when we use them in real-world scenarios
to classify heart sounds. Previous studies were motivated to design models with
a higher levels of heart sound classification accuracy. We explore the PhysioNet
dataset from a different point of view. We investigate the presence of bias in
PhysioNet, the leading dataset in the field, aiming to establish the presence and
main cause of such bias.
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Table 2: Details of the databases used for training and evaluation of the model.
Adapted from [9].

Database
Subject

type
#

Rec
Age

Gender
(F/M)%

Recording
position

Sample
rate (Hz)

Sensor
frequency
response

Sensor

Training-a
Normal

Abnormal

117

292
Unknown Unknown

Nine
different
positions

44100
20 Hz –
20 kHz

Meditron

Training-b
Normal

Abnormal

386

104
Unknown 38/62

Tricuspid
Area

4000
20 Hz –
1 kHz

3M
Littmann

E4000

Training-f
Normal

Abnormal

80

34
56 ± 16 62/38 Apex 8000

20 Hz –
1 kHz

Jabes

3 Experimental Methodology

Our first objective is to find out if there is any bias resulting from PhysioNet’s
construction through combining sub-datasets of heart sounds that were sourced
from a variety of independent research studies. To do so, we train a classification
model using three different sub-datasets of PhysioNet dataset and see if we can
distinguish the recordings of each sub-dataset with an accuracy higher than
random guess.

PhysioNet sub-datasets have some differences across multiple attributes such
as age distribution of subjects, auscultation positions and sensors used to capture
the sounds. As a result, any of these attributes might be a potential cause of
bias in this meta-dataset. In this regard, our second objective is to find out
which attributes play a more significant role in introducing bias in the PhyioNet
dataset.

This section presents the datasets, pre-processing, feature representations,
classification model and the evaluation metrics computed. The experiments were
implemented in Python 3.8 using Librosa 0.8.0 library for feature extraction and
Scikit-learn 0.23.2 for the classification models.

3.1 Datasets

In order to train and evaluate the classification model, we use three out of six
databases which are available in PhysioNet heart sound meta-dataset. Table 2
shows the details of the selected databases.

These databases include both normal and abnormal heart sounds and been
recorded using three different electronic stethoscopes (sensors). We excluded
Training-c and Training-d databases because the number of normal samples
in these databases are small. As the sensors which were used to capture heart
sounds are different across the normal and abnormal classes of Training-e database,
we also do not use this database. It must be noted that the sampling rate of the
recordings available in PhysioNet dataset is 2000 Hz.
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We label the recordings of each of these databases according to their sensors.
Then we choose 80 recordings from the normal class of each of the three datasets.
Out of each of these sets of 80 samples, 50 recordings will be used for training,
and 30 recordings will be used for testing the classification model. Therefore,
we will have a training set containing 150 normal samples across three different
databases, and a test set of 90 normal samples. We also create a separate test
set which includes 90 abnormal recordings from the same databases. In Table
3, the details of the training and test sets which are used to train and evaluate
the classification model have been provided. After creating the training and test
sets, pre-processing, feature extraction, and classification steps will be carried
out as described in section 3.2, 3.3, and 3.4, respectively.

Table 3: Distributions of samples selected from each dataset in training and test
sets. The training set contains only normal recording. The classes include Jabes,
Littmann, and Meditron.

Sensor(class) Training set Normal test set Abnormal test set

Jabes 50 30 30

Littmann 50 30 30

Meditron 50 30 30

Total 150 90 90

3.2 Pre-processing

Given that each heart sound recording has a different duration, to make the
length of samples consistent, we use only the first five seconds of each sample.
Five seconds is long enough to capture several cardiac cycles. Also, given that
recordings of each database have a different range of amplitudes, we normalise
all samples to have an amplitude between -1 and 1 with the following equation:

´S (t) = 2
S (t) −min[S (t)]

max [S (t)] −min [S (t)]
− 1 (1)

where S (t) and ´S (t) are the original and normalised signals, respectively.

3.3 Feature Extraction

Numerous time-domain, frequency-domain and time-frequency features have been
employed in the area of heart sound classification [5]. Unlike previous work, in
this paper we are not aiming to design a heart abnormality prediction model –
our main goal is to determine whether combining training data from a variety
of sources introduces bias into the dataset. As heart sounds can be classified
by listening to them with a stethoscope, basic acoustic features that capture
features salient to human perception are applied. Given that heart sounds are
fundamentally periodic beats, both temporal and spectral features are captured.
In this regard, after the pre-processing step, we extract four different spectral
features from each sample, including spectral centroid, spectral roll-off, spectral
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bandwidth and spectral contrast. To reduce the dimensionality of feature vec-
tors, for all features, we calculate the average value of the feature across the
frames of the sample, as in [23].

(a) Spectral centroid is a measure that shows where the centre of mass of the
spectrum is located. It represents the brightness of the sound signal [14] and is
calculated as follows (as used in [23]):

Sc =

∑
n x (n) f (n)

x (n)
(2)

where x (n) represents the spectral magnitude of frequency bin n, and f (n) is
the centre frequency of that bin.

(b) Spectral bandwidth is the order-p statistic of the signal spectrum and
distinguishes high bandwidth sounds from low bandwidth sounds. It is calculated
using the following equation (as used in [14]):

Sb =

(∑
n

x (n) (f (n) − Sc)
p

) 1
p

(3)

where x (n) is the spectral magnitude at frequency bin n, f (n) is the centre
frequency of that bin, and Sc represents the spectral centroid. It must be noted
that in default Librosa implementation of this feature, p is equal to 2.

(c) Spectral roll-off point is a frequency so that 85% of spectral energy lies
below that frequency. This feature is calculated using the following equation (as
used in [23]):

f∑
n=1

x (n) = 0.85

(
N∑

n=1

x (n)

)
(4)

where f is the roll-off frequency, x (n) is the spectral magnitude at frequency
bin n, and N is the total number of frequency bins.

(d) Spectral contrast is defined as the difference between spectral peaks and
valleys measured in sub-bands by octave-scale filters. For more information,
please refer to [8].

3.4 Classification Model

After the feature extraction step, we train a linear Support Vector Machine
(SVM) classifier [3]. We selected SVM classifier based on the data volumes avail-
able, and achieved similar results with other classifiers such as KNN and random
forest. We perform a grid search with 4-fold cross-validation on the training set
(as described in Table 3) to optimise the c value for the SVM. After training,
the model is evaluated using the test sets described in Table 3.
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3.5 Metrics

We use two different metrics to evaluate the classification model. The first one is
recall, which is also called sensitivity or true positive rate. It shows the fraction
of positive examples which have been classified correctly and is calculated using
the following equation:

Recall =
True positive

True positive + False negative
. (5)

As summarised in Table 3, the prepared training and test sets are balanced
across classes. Therefore, we also use accuracy metric to evaluate our model
at dataset level. This metric is defined as the ratio of the number of correct
predictions to the total number of examples and is calculated as follows:

Accuracy =
True positive + True negative

All examples
. (6)

4 Results

4.1 Investigation of the presence of dataset bias

Figure 2 illustrates the distributions of the extracted features from the training
set across three different datasets. As shown in Figure 2, the median value of
the majority of features is distinct across different datasets. Also, in the case
of Jabes dataset, we can observe that the distributions of spectral centroid and
spectral roll-off features are entirely distinct from the feature distributions of
the other two datasets. The observations can be a sign of potential bias across
datasets.

To find out if selected datasets are biased or not, we evaluate the SVM
model which was trained using normal recordings of three different datasets on
the normal test set (as described in Table 3). Given that normal recordings
must be consistent across different datasets, if dataset bias was not present, we
could not expect to see an accuracy higher than chance. Figure 3 (left confusion
matrix) depicts the evaluation results. According to Figure 3, we can see when
we evaluate the model on the test set with normal recordings, the recall for
each of the classes is at least 97%. Given that this is a three-class classification
problem, the random guess accuracy would be 1

3 ≈ 0.33. We can see that the
overall accuracy on the normal test set is 98% which is significantly higher than
the chance. This observation clearly indicates the presence of bias in selected
PhysioNet sub-datasets.

4.2 Exploring the cause of the dataset bias

As we mentioned earlier, in addition to sensors, PhysioNet sub-datasets are
different across multiple attributes such as age distribution of the subjects and
auscultation positions used to record the heartbeat sounds. To find out what is
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Fig. 2: Distributions of extracted features across three different datasets.

Fig. 3: Confusion matrices for the SVM model which has been trained using four
spectral features. The left confusion matrix shows the performance of model
tested on normal test set, and the right one shows the performance on the
abnormal test set.

the main cause of bias in PhysioNet dataset, we perform the above experiment
again, but this time instead of testing on the normal test set, we evaluate the
model on the abnormal test set (as described in Table 3). In other words, we
use the same SVM model which was trained on the normal heart sounds and
evaluate it on a test set which contains various abnormal heart sounds from
different subjects. This way, we can make sure that the recordings in training
and test sets are considerably different in terms of content. If the model can
still predict the datasets with an accuracy higher than chance, this will indicate
that sensor is likely the main cause of bias in datasets and the role of the other
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attributes in dataset bias is negligible compared to that of sensors. The reason
is that sensor is the only attribute which is certainly consistent across the three
datasets available in normal and abnormal test sets.

Figure 3 (right confusion matrix) shows the result of this experiment. We
can see that the recall values for all three classes are still much higher than the
random guess. Also, the overall accuracy is 96% which is significantly higher
than the chance (33.3%). We observe that despite evaluating the model on a
test set with very different content, the model still achieves a near to perfect
accuracy. This observation suggests that the sensor is likely the main source of
bias in selected heart sound databases. Given that other attributes like the age
distribution of the subjects differ across normal and abnormal test sets, if they
were the main source of bias, we could not except to see an accuracy much higher
than chance.

5 Discussion

In section 4, we examined the presence of bias across three heart sound datasets
available as part of the PhysioNet meta-dataset We showed that we could accu-
rately classify sub-datasets of the PhysioNet meta-dataset and concluded that
bias is certainly present in this meta-dataset. We also demonstrated that the
role of attributes such as the age of the subjects and auscultation positions in
introducing bias could not be as significant as the sensor, and sensor is likely
the main cause of bias in PhysioNet dataset. It is important to note that, due
to the existence of multiple attributes in each of the PhysioNet sub-datasets, we
cannot assert that the other attributes do not play any role in introducing bias
into this dataset. We do not have access to sufficient data to precisely examine
the role of all attributes involved.

We carried out our experiments on three out of six subset datasets of Phy-
sioNet meta-dataset. This meta-dataset has been assembled by pooling smaller
datasets from different resources. As it was reported in Table 2, each of these
datasets contains a different number of recordings. This means that when we
use PhysioNet meta-dataset to train heart abnormality prediction models, we
can expect a bias in our models towards the characteristics of databases with
the highest number of samples. That is to say, employing PhysioNet dataset for
training heart disease prediction models may not necessarily lead to models with
better generalisability than that of models trained with smaller datasets as the
models can be biased towards a proportion of the PhyioNet meta-dataset. It
is worth noting that PhysioNet meta-dataset has been used as a gold standard
dataset in the majority of studies in the area of heart sound classification since
2016. The main goal of such studies is to build prediction models which can
be used as a tool for initial screening of heart disease. However, according to
the results of our experiments, the generalisability of the models built using this
meta-dataset to unseen data in real-world settings seems implausible. Indeed, any
model which is built using this meta-dataset must be evaluated using real-world
data to validate that it can reproduce the reported performance. In addition to
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this, we must also consider bias as an important factor when we want to create
a heart abnormality prediction system using the PhysioNet meta-dataset. As we
mentioned in section 2, in the majority of cases, building a heart abnormality
prediction model involves four different steps: pre-processing, segmentation, fea-
ture extraction, and classification. Our design decisions in each of these steps
can determine the level of which the resultant model will be influenced by the
dataset bias.

6 Conclusion and Future Work

In this paper, we investigated the presence of potential bias in PhysioNet heart
sound meta-dataset. We chose three sub-datasets of this dataset and labelled
the recordings of each one based on the sensor used to capture them. Then
we built an SVM model using four spectral features. The model was able to
detect recordings of each of the PhysioNet sub-datasets with an accuracy of
98%, which is way above chance. This indicates that bias is undoubtedly present
in PhysioNet dataset, the gold standard dataset in the field. We also showed that
sensors are likely the main cause of this bias. Our findings necessitate further
investigations into the impact of this bias issue in the PhysioNet dataset on the
generalisability of the heart sound classification models.

A comprehensive analysis of the different feature representations which are
being used in the field of heart abnormality prediction in terms of their level of
robustness to sensor bias can be a future direction. In addition to this, looking
into the possibility of alleviating the bias through data preprocessing techniques
can also be an interesting future work.
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