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Abstract. In this paper, a platform for analysing public space engage-
ment is described. This research focused on efforts to better understand
the various ways people interact with the city environment, for example;
the number of persons on a street, the average time spent, and topically
- due to Covid-19, the physical distance maintained between people. A
novel data collection method was used to capture imagery from several
streets in a low-cost, scalable, and privacy ensuring fashion. Insights were
captured in real-time over several months on a five-minute interval, for
nine hours a day and seven days a week, across multiple cameras. These
insights were generated through a novel CNN trained on thermal camera
imagery - which maintained the individual’s right to privacy by ensuring
that no person was identifiable in the captured data-set. Finally, a SORT
based tracking algorithm was used to measure interactions over time.
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chine Learning · Object Detection · Object Tracking · Thermal Cameras

1 Introduction

The Streetseek project has been undertaken in response to an open call as part
of the +CityxChange smart city program [1], funded by the European Union’s
Horizon 2020 research and innovation program. The goal of this program is
closely aligned to the UN Sustainable Development Goals (SDG), specifically
UN SDG 11 – “Making cities and human settlements inclusive, safe, resilient
and sustainable”. The development of Streetseek took place over the course
of three months from May to August 2020. The idea of data-driven decision
making has been around for centuries. However, in recent times advancements
in information and communication technology have changed the way in which
we use data for policy-making and urban growth [2]. It’s essential to understand
how we use our cities in order to consistently innovate in urban areas while also
ensuring they have the correct facilities and systems to cater for the growing
urban populations. In 2019, the United Nations estimated that more than half
the world’s population (4.2 billion people) now live in urban areas and by 2041,
this figure will increase to 6 billion people [3]. The need to capture large scale
actionable data has been highlighted further in recent times due to the Covid-
19 pandemic. Policy-makers adapt their guidelines and restrictions based on
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data surrounding positive tests, hospital admissions, and deaths. Although the
effectiveness of these guidelines can be inferred by examining these pieces of data
there is no data to suggest in real-time how people are adhering to the measures
that have been put in place.

A thermal and deep learning technology based platform has been built, capa-
ble of gathering real time, actionable insights directly from streets and lane-ways.
Although local government are the immediate stakeholders for this type of sys-
tem, the public and academic researchers will also have interest in this data.
Therefore, the insights capture platform is built upon a collaborative, open data
platform. This type of design ensures data is easily accessible and therefore can
be easily communicated.

2 System Overview

Fig. 1: System Level Diagram

The capabilities of computer vision applications have grown exponentially in
recent years. This is driven by advancement in deep learning algorithms allow-
ing for more accurate object detection within imagery across a wider range of
environments. Such development has allowed for camera systems to become less
passive and evolve into real world sensing tools. One of the major benefits of
using a camera system as a sensor is the high resolution of the data collected.
Many different insights can be generated through various algorithms depending
on the intended use case. Processing of data can take place either at the edge (on
the camera compute unit) or in the cloud. Cloud processing was chosen due to
hardware limitations in the capture layer . Therefore, the capture layer (see Fig.
1 ) was vastly simplified, requiring only a video encoder and streaming software,
resulting in minimal computational specifications.



This reduced complexity in the capture layer translates to increased complex-
ity in the inference layer (see Fig. 1 ). If the detection algorithms were running at
the edge the upstream packets would be much smaller, and would simply consist
of the detection data processed by the edge compute unit. Instead, video data
was streamed from multiple cameras up to the cloud at a resolution of 160x120
pixels at 7 frames per second. Therefore, the decoding engine at the front of
the inference layer was required to be scale-able on demand to the number of
incoming streams. A cluster based approach was used to handle this requirement.

The YOLOv3 [4] single shot detector algorithm (discussed in section 3.2) ran
within the detector block. An API endpoint was exposed where decoded images
from the decoder engine were forwarded in order to generate the detection data.
The detections store (see Fig. 1 ) used a NoSQL database which included tables
and items. Primary keys were used to uniquely identify each item in a table and a
secondary index was used to provide more querying flexibility. Having generated
relevant bounding boxes, this data was used as the input to the insights generator
function. The SORT [5] algorithm was used in this block to derive the various
insights required of the application. The Insights generator ran on a 5 minute
interval querying a batch of data between two timestamps from the detections
store and sent a request to an API in order to write the insights to the Insights
Store. A REST API was developed to interact with an Insights Store. This
API exposed GET and POST requests to access the data contained within the
Insights Store.

3 Thermal Person Detection

3.1 Background

Person detection is a well researched problem. However, there are significant
privacy concerns surrounding cameras and public spaces. Thermal cameras de-
tect temperature by recognizing and capturing different levels of infrared light,
invisible to the naked eye.

(a) No direct sunlight (b) Direct sunlight

Fig. 2: Street 2, Limerick - direct sunlight affecting natural segmentation.



As a result they do not capture details which could be used to identify an
individual. This poses a problem, as ‘off the shelf’ human detection models are
trained on feature rich RGB images. The algorithm developed to detect humans
must rely on foreground/background segmentation, which can vary in different
conditions as shown in Fig. 2. Furthermore, the cost of thermal sensors is sig-
nificantly higher than an RGB sensor. In order for this system to be financially
feasible a low resolution (160x120) 9fps (frames per second) thermal camera was
used. The camera feed was streamed at 4.5fps to reduce computational cost in
the cloud.

3.2 Method

Initially what would be referred to as ‘classical approaches’ were used in an at-
tempt to detect pedestrians. A series of thresholding techniques [6] were applied.
The first approach involved applying a set thresholding value (as shown in Fig.
3(b)) which was calculated through a trial and error process. The subsequent two
methods tested were adaptive based thresholding techniques. The first, the Otsu
algorithm exhaustively searches for the threshold that minimizes the intra-class
variance, defined as a weighted sum of variances of the two classes:

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t).

The mean adaptive thresholding method involved examining the mean pixel
intensity values of the local neighbourhoods of each pixel. Initial results showed
that thresholding alone would not suffice as shown in Fig 3. This became even
more apparent as the scene began to get more complex, with multiple pedestrians
and varying environment temperatures. Furthermore, thresholding is incapable
of detecting individual pedestrians when they are grouped together.

(a) Original segmen-
tation

(b) Global Thresh-
olding (t=80)

(c) Otsu Threshold-
ing

(d) Adaptive Mean
Thresholding

Fig. 3: Thresholding Techniques Results

After it became apparent that thresholding would only work in simple sce-
narios, efforts pivoted to a background subtraction algorithm. This includes
the training of a background model which can be subtracted from each video



frame resulting in the foreground objects. The following algorithms [7] were
tested to access the their suitability for this use case; Gaussian Mixture-based
Background/Foreground Segmentation Algorithm (MOG & MOG2), K-Nearest
Neighbours background subtraction algorithm, statistical background image es-
timation and per-pixel Bayesian segmentation algorithm (GMG) and the CouNT
high speed background subtraction algorithm (CNT). The results presented in
Fig. 4 were marginally better across frames than the results of the thresholding
techniques. However, the top and bottom of people were often split in two.

Fig. 4: Background Subtractor Algorithms Results

In an attempt to produce a more robust and reliable thermal pedestrian
detector, a deep learning approach was adopted. A relatively lightweight CNN
architecture was needed to achieve near real-time inference while also keeping
cloud computing costs low. The YOLOv3 architecture [4], presented in 2018 was
selected.

(a) Annotated (b) 640x512 (c) 160x120

Fig. 5: FLIR Thermal Dataset

The out of the box YOLOv3 model has been trained on the COCO dataset
[8]. In order to train a model capable of classifying pedestrians in a thermal
image, a transfer learning approach [9] was used. The final fully connected layers
in the model were stripped and output was reduced to 3 classes (person, car,



bicycle). The FLIR thermal imagery driving dataset [10] which was used for
the transfer learning. The original 640x512 images were initially letter-boxed
to convert them to a 4:3 aspect ratio (640x480). A 4x4 kernel was then run
across the image, averaging pixels to reduce the image resolution to 160x120 as
shown in Fig 5. This was necessary for transfer learning as the training images
needed to be of the same resolution as the street camera. Finally, by inspection
it appeared that any detection who’s bounding box was <20px2 was discarded
since it appeared as noise.

Dataset Images # of Person # of Car # of Bicycle Model Version

COCO 328,000 900,000 100,000 20,000 baseline

FLIR 10,228 28,151 46,692 4,457 v1

Street Cameras 922 1,030 0 0 v2

Table 1: Descriptions of datasets used to train each model

Test and training scripts were used to evaluate and generate new iterations
of the model. The original version of YOLO trained on RGB images was used as
a baseline. As expected the performance of this model on the captured 160x120
thermal dataset was poor. A transfer learning technique was used to generate
a new model based on the FLIR [10] thermal dataset which comprises bicycles,
cars and people. This dataset came pre-annotated and following down-sampling
to 160x120 was trained for 50 epochs. Performance increased slightly on this
iteration as the model (v1) became more familiar with thermal data. However,
the model was still not performing acceptably as it had not seen data from
the 160x120 street cameras. The model was then fine-tuned (initialised with v1
weights) with an annotated dataset consisting of 922 thermal images from the
Street 1 and 2 cameras, for a further 50 epochs - after which it achieved perfor-
mance metrics shown in Table 2. This model (v2) was chosen for deployment.

Model F1 mAP@50 Precision Recall

baseline 0.3360 0.1990 0.9530 0.2040

v1 0.3630 0.2200 0.9500 0.2240

v2 0.8897 0.9471 0.8904 0.8890

Table 2: Model metrics using the Street 1 validation set

4 Insights Generation

After detecting a pedestrian in an image, in order to understand their behaviour
and interaction with both the public space and others they must be tracked



(a) Miscount by 3 (b) Miscount by 1 (c) Correct Count

Fig. 6: Street 2, Limerick - YOLOv3 thermal person classifier results.

across video frames. In order to track pedestrian centroids in a 2D space the
SORT (Simple Online Real-Time Tracking)[5] algorithm was implemented. A
newer version of this algorithm built upon a deep learning architecture called
DeepSORT was also implemented. This architecture adds a pre-trained neural
net to generate features for objects. However, the computational cost of running
DeepSORT was not required for this use-case and so its less computational
predecessor SORT was chosen. The SORT algorithm uses a Kalman filter for
object tracking. The Kalman filter is also known as linear quadratic estimation
(LQE) algorithm that uses a series of detection centroids over time to produce
an estimate as to where the next centroid will be. The SORT algorithm then
uses IOU (intersection over union) criteria to accept the estimate. The critical
aspect of this algorithm is the association of objects between frames. IOU is
not a good approach for small objects as there is naturally less of an overlap
of their bounding boxes. DeepSORT [11] addresses this issue by adding a pre-
trained neural network to generate features for objects. Using this method the
association can be made based on feature similarity instead of overlap. Although
DeepSORT offers improvement on overall accuracy when compared with SORT,
it comes at computational cost. In this case SORT was used to speed up cloud
processing time which contributes to keeping system costs down.

(a) Social Distancing Compliance (b) Tracking

Fig. 7: Bird’s Eye Transformation used in image processing



The calculation of each metric is an extension of the SORT implementation.
The measurement distance or speed from a camera feed can be difficult due to
perspective, perceived closeness and pixel to distance calibration. The concept
of perspective is the idea that humans project the real (3D) world onto a 2D
image in order to understand distance and depth. A camera sees the world
in the same way and thus the Euclidean distance in the 2D plane is not a
good approximation of the 3D or real world Euclidean distance. To solve this
a bird’s eye view virtual camera transform presented in [12] was implemented.
The perspective transformation was developed for camera-on-vehicle discussing
the serious perspective effect on the image caused by the camera angle and
height. The same issue is evident in this pedestrian camera feed and therefore
the method can be transferred for use in this application.

The scene is transformed as shown in Fig. 7 and some basic pixel to distance
calibration is performed. This allows for the distance between pedestrians to be
calculated, as well as the avg speed they move at, the estimated time that they
speed in the frame based on the SORT Id assigned to each person and finally a
generalised heat-map that can be used to understand how pedestrians use the
public space. Furthermore a count line can be positioned in the frame to count
pedestrians and the direction that they are walking. The whole tracking process
is described in Fig. 7(b).

A total of seven pieces of data were calculated and stored. After a video frame
is processed by the YOLOv3 detection model, the pedestrian bounding boxes
are stored in a detections database with a unix timestamp linking the data to
the frame. Every five minutes an insights generator program fetches the last five
minutes of detection data and calculates the metrics. This process is described
in Algorithm 1.

Algorithm 1: Insights Generation Algorithm

Input: detection data
Output: insights object

insights object
← {“personCountLeft” : 0, “personCountRight” : 0, “avgSpeed” :
0, “estT imeSpent” : 0, “socialDistCompliance” : 100, “heatmap” : [ H

25×19
]}

for frame detections in detetection data do
tracked objects ← sort tracker.update(detection data)
for x1, y1, x2, y2, obj id in tracked objects do

feet ← (x1 + (bboxw/2)), (y2)
feet transformed ← perspective transformation(feet)
object paths[obj id].append(feet transform)
insights object ← update insights metrics(object paths)

end

end
return insights object



5 Results & Discussion

5.1 Thermal Pedestrian Model and Counter

The three models presented in Table 3 were tested using some of the captured
imagery from the Street 1 camera. The test dataset included 804 frames (half in
direct sunlight half in shade) with a total of 72 people counted across the frame
sequence and 6480 pedestrian instances. The recall metric (TP/TP + FN) was
used to evaluate how well the models performed as for this particular use case
there is only one class and for tracking false positives are not a concern.

Model Name Recall (instances) Recall (crossing line)

baseline 0.19 0.08

v1 0.35 0.28

v2 0.82 0.89

Table 3: Deployment dataset model results

It was clear that for this test data Model v2 out performed the other two
models as shown in Table 3. The training data used for Model v2 was very similar
to that of the test set, including imagery from both streets. All three models
struggled with the direct sunlight frames as well as instances where pedestrians
overlap and there was very little contrast to segment them.

5.2 Insights Generated
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Fig. 8: Daily Person Count on Street 1

The main objective of the captured insights was to communicate the data in
the hope of starting discussions which can in some cases lead to positive change



in the city. The insights data was captured at a 5 minute level of granularity and
can be queried through a REST API. The person count (over a 2 month period)
for Street 1 is shown in Fig. 8.

The first spike of people on the 2nd of September and subsequent spikes
thereafter were as a result of renovation work being carried out and workers
walking up and down the laneway throughout the day. This camera was installed
to measure the impact that these installations had on pedestrian footfall. It could
be argued that the marginal increase in pedestrian traffic seen after the initial
spike was as a direct result of the renovation work on the laneway.
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Fig. 9: 5-day Rolling Average - Social Distancing Compliance on Street 1 and
New Covid-19 Cases in Ireland

The social distancing compliance on Street 1 is presented in Fig. 9 The ques-
tion which could be posed here is whether the media surrounding the increase in
Covid-19 case numbers in Ireland resulted in better social distancing compliance
in this laneway. Furthermore, measures could be introduced in this laneway to
keep pedestrians distanced and monitored in real-time using this system.

The heatmap overlay is presented in Fig 10. It would seem that the left-hand
side of the laneway is more popular, as is the top of the frame where there is
a seating area and an entrance to a café. This would suggest that the lane is
predominantly used to access the café and could be used to start a conversation
surrounding the pedestrianization of this laneway.



Fig. 10: Street 1 Heatmap Overlay

6 Future Work

Future research should further improve the accuracy of the thermal person de-
tection models, and also could examine how accurate the model is in detecting
cars and bicycles. The detection of cars and bicycles will offer more insight
into how urban spaces are used. Furthermore, there is scope to examine how
cloud computing costs could be minimised by potentially using an intermediate
background subtraction layer to identify movement, before passing a frame to
the inference layer. Finally, over 4.5 million thermal images from several streets
have been captured and stored as part of this research. Future work will also
include the annotation of a large 160x120 thermal imagery dataset.

7 Conclusion

To conclude, a thermal and deep learning based platform that uses AI algorithms
to collect information on how pedestrians use public spaces has been developed
and deployed in Limerick city. The system is capable of counting pedestrians (and
their direction of movement), their average walking pace, the estimated time
they spend in the frame, their compliance with the social distancing guidelines
and a generalised heat-map. These new understandings can be leveraged at city
planning level to introduce measures and invest in infrastructure that make
urban spaces inclusive, safe, resilient and sustainable. The insights and thermal
imagery dataset discussed will be released alongside this paper.
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