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Abstract. We investigate global measures of vertex similarity for knowl-
edge graphs. While vertex similarity has been explored in the context of
directed, unlabelled graphs, measures based on recursive algorithms or
learning frameworks can be costly to compute, assume labelled data,
and/or provide poorly-interpretable results. Knowledge graphs further
imply unique challenges for vertex similarity in terms of scale and diver-
sity. We thus propose and explore global measures of vertex similarity
for Knowledge Graphs that (i) are unsupervised, (ii) offer explanations
of similarity results; (iii) take into consideration edge labels; and (iv) are
robust in terms of redundant or interdependent information. Given that
these measures can still be costly to compute precisely, we propose an
approximation strategy that enables computation at scale. We compare
our measures with a recursive measure (SimRank) for computing vertex
similarity over subsets of Wikidata.
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1 Introduction

Knowledge graphs have become popular for integrating and managing incom-
plete sources of data at large scale, where nodes represent entities of interest,
and edges represent the relations between them. While knowledge graphs can
be used for a variety of purposes and applications [20], often they are used to
support exploratory tasks, where the user may not know precisely what they are
looking for but will rather explore the data in order to gain actionable knowl-
edge [26]. In this exploratory context, adopting a graph-based data model opens
up opportunities to leverage graph algorithms for the purposes of discovering
implicit connections or patterns in a knowledge graph [6].

An important class of graph algorithms is that of vertex similarity [17]. Given
a graph G = (V,E), which may be directed or undirected, the goal of vertex
similarity is to identify pairs of nodes (i.e., vertices) that are similar. Global
scenarios involve computing similarity scores for all pairs of nodes in V × V
offline, possibly restricted by a certain criteria, such as a similarity threshold,
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or a k-nearest neighbour constraint. Single-source scenarios take a given node
v ∈ V as input and find the nodes most similar to it at runtime. Unlike similarity
based (e.g.) on metric spaces, vertex similarity relies on the graph’s structure.

As in the case of graph analytics such as centrality, clustering, etc., there
is no one single notion of similarity between vertices. Thus a variety of ver-
tex similarity measures have been proposed, ranging from simple local measures
that take into consideration a bounded neighbourhood to more complex recur-
sive ones [17]. When considering different similarity measures, a trade-off arises.
While recursive algorithms tend to give better results by considering informa-
tion beyond the local neighbourhood, local similarity measures tend to be more
efficient, more scalable and arguably more explainable.

Though vertex similarity has been used productively in various domains [17],
knowledge graphs present three characteristic challenges for graph algorithms.

Regarding diversity, a knowledge graph can be seen as multiple directed
graphs representing different relations, where for the purposes of vertex similar-
ity, it is not immediately clear how the similarity computed for the graphs of indi-
vidual relations can be combined into an overall measure. Different relations may
also encode different topologies of graph. For example, a relation :citizenship

would yield a bipartite directed graph, where person nodes have low out-degree
and zero in-degree, while country nodes have very high in-degree and zero out-
degree. On the other hand, a relation :follows in a social network would yield
a cyclic directed graph consisting of user nodes, whose in-degree and out-degree
average to the same value, but follow different distributions. Furthermore, a ver-
tex similarity measure should be able to distinguish two directed labelled edges

:Unforgiven
:director−−−−−−→ :CEastwood and :Unforgiven

:actor−−−−→ :CEastwood as
encoding different information about the movie and the person.

Regarding redundancy, knowledge graphs may provide redundant (i.e., en-
tailed) or near-redundant (i.e., dependent) data. For example, a knowledge graph

may state that :Jill
:mother−−−−−→ :Anne, and :Anne

:child−−−−→ :Jill, where though
the latter edge is intuitively redundant (i.e., it could be entailed from the former
triple with the appropriate ontology), it can affect the results of vertex similar-
ity by changing the structure of the graph. As an example of near-redundant

data, a knowledge graph may state :Honduras
:region−−−−−→ :CentralAmerica and

:Honduras
:language−−−−−−→ :Spanish, where, while neither triple necessarily follows

from the other, there exists a dependency between both edges. Such redundancy
is more prevalent in knowledge graphs due to the fact that multiple interdepen-
dent relations can be encoded; in fact, encoding such redundancy is a feature
of knowledge graphs supported by ontologies. When applying vertex similarity
over knowledge graphs, we must then be cautious not to overestimate similarity
by considering dependent edges as independent events.

Regarding scale, global vertex similarity, when applied to V × V , may gen-
erate a similarity relation of quadratic size (O(|V |2)), which will be infeasible
to materialise at scale. Even where only the results for one vertex is required,
or where thresholds are applied, recursive algorithms may require knowledge of
pairwise similarities in order to compute any similarities.



It is in this context that we investigate four measures of vertex similarity for
knowledge graphs, two of which are taken from the literature and adapted by us
for the knowledge graph setting, and two of which are novel. We will motivate and
define these measures, and discuss how they can be optimised and approximated.
We will apply these similarity measures to sub-graphs of Wikidata to compare
their performance and to see how the results they provide correlate with each
other. We also evaluate the measures against two external ground truths: one
for similar movies, and another for similar music albums.

2 Background

Vertex similarity. Measures of vertex similarity are mostly proposed in the con-
text of undirected and directed graphs [17]. For this discussion we will assume
a directed graph G = (V,E). A vertex similarity measure σ : V × V → R is
a measure that associates pairs of vertices (v1, v2) with a real-valued similarity
score. We will assume, without loss of generality, that a higher similarity score
indicates that the pair of nodes is more similar; i.e., that σ(v1, v2) > σ(v1, v3)
indicates that v1 is more similar to v2 than it is to v3.

Vertex similarity measures may be local, or may be non-local. We say that
a particular measure σ is local if the value of σ(v1, v2) depends on a bounded
neighbourhood surrounding v1 and v2; different notions of neighbourhood give
rise to different levels of locality, such as considering only the nodes themselves,
considering the graph induced by the nodes themselves and their direct neigh-
bours in G, or their neighbours’ neighbours, and so forth. Otherwise – if σ(v1, v2)
depends on an unbounded neighbourhood – we say that σ is non-local.

We also distinguish between recursive and non-recursive measures. We call a
measure σ recursive if the value of σ(v1, v2) depends on the value of σ for pairs
of nodes other than v1 and v2. Otherwise we call σ non-recursive. Non-recursive
measures tend to be local, while recursive measures tend to be non-local (though
recursive measures applied up to a bounded number of iterations are local).

A number of local, non-recursive measures are introduced by Leicht et al. [17],
where nodes are considered similar if they have a similar neighbourhood (aka.
structural equivalence). For simplicity, we will consider the neighbourhood of
a node v in G = (V,E) generically as E(v) = {n | (v, n) ∈ E}; we could
also, for example, consider neighbours via incoming links in directed graphs. In
terms of concrete measures for σ(v1, v2), we can consider simply a neighbourhood

count (|E(v1) ∩ E(v2)|), or neighbourhood Jaccard similarity ( |E(v1)∩E(v2)|
|E(v1)∪E(v2)| ), or

neighbourhood cosine similarity ( |E(v1)∩E(v2)|√
|E(v1)|·|E(v2)|

)[17].

On the other hand, recursive measures of similarity are generally based on
the principle that nodes are considered similar if they have many similar neigh-
bours; in this case, we consider the similarity of neighbours. Many recursive
similarity measures are based on recursive centrality measures, following loosely
the intuition that similar nodes should be well-connected – or easily reachable –
from each other. Jeh and Widom [15] propose a vertex similarity measure based



on PageRank centrality, Blondel et al. [5] a vertex similarity measure based on
HITS (hubs and authorities) centrality, and Leicht et al. [17] a vertex similar-
ity measure based on Katz centrality. All such measures are recursive, and have
proven to give good results in practice. Of these measures, arguably the one that
has been most influential is that of Jeh and Widom [15], called SimRank, which
has led to various follow-up works on accuracy estimations [18], probabilistic
graphs [9], similarity joins [28], etc., for the algorithm.

Some more recent approaches define vertex similarity based on latent features
of the graph using machine learning techniques. In particular, there are strong
connections between the world of graph embeddings – whose goal is to develop
meaningful numeric representations of the elements of a graph – and vertex
similarity, where, on the one hand, embedding techniques can be used to learn
similar numeric representations for nodes [23], while on the other hand, off-the-
shelf similarity measures can be used to guide the embeddings that are learnt [25].
Such measures can again be local [23] or non-local [25].

Similarity in knowledge graphs. Similarity over knowledge graphs has been used
for general applications, such as clustering [1], entity comparison [21], entity
linking [14], link discovery [19], ontology matching [10], query relaxation [12,16],
semantic relatedness [22], as well as domain-specific use-cases, such as academic
search [7], crime reports [12], geographic databases [3], multimedia retrieval [11],
protein search [2,4], etc. We identify two forms of similarity used in these works.

Metric similarity involves the use of a (normalised) distance metric δ (Eu-
clidean, Manhattan, Levenshtein etc.), where similarity will typically be defined
in terms of the distance as σ(v1, v2) = 1− δ(v1, v2). The use of δ thus induces/-
supposes a metric space to which nodes must be mapped. Such forms of similarity
have been used for geographic databases [3], link prediction [24], multimedia re-
trieval [11], protein similarity search [2,4] and query relaxation [16]. However,
such metric spaces are either domain specific [3,2,4,11], or need to be specified
manually [24,16]; they are not inherent to graphs in general.

Vertex similarity, on the other hand, is a measure intrinsic to graphs. Varia-
tions of the aforementioned algorithms for vertex similarity have been adapted
for use in clustering [1], entity comparison [21], entity linking [14], query relax-
ation over crime reports [12], semantic relatedness [22], etc.

Novelty. We investigate vertex similarity measures for knowledge graphs, in-
cluding variants of two existing measures, and two novel measures. Our novel
measures are local and non-recursive. We show one to be competitive with Sim-
Rank (a representative non-local, recursive measure) in terms of predicting a
ground truth, while being more scalable, more efficient, and more explainable.

3 Vertex Similarity Measures

We now define four vertex similarity measures: neighbourhood count (σnc),
neighbourhood selectivity (σns), neighbourhood rarity (σnr) and SimRank (σsr).



Of these measures, σns and σnr are – to the best of our knowledge – novel (though
σns is inspired by our prior proposal called concurrence [13].). Given a directed
graph G = (V,E), we recall the notation E(v) to denote the neighbouring nodes
of v in G. We assume that for our similarity measures, σ(v) ∈ [0,∞), where
σ(v1, v2) > σ(v1, v3) implies that v1 is more similar to v2 than to v3.

Neighbourhood count Our first vertex similarity measure is the neighbour-
hood count as was defined previously: σnc(v1, v2) = |E(v1)∩E(v2)|. The measure
simply counts the number of neighbours that v1 and v2 have in common.

Neighbourhood selectivity Neighbourhood count treats all neighbours as
being equal. However, neighbours with a high (in)degree, like :UnitedStates,
will be shared by many pairs of nodes; this would still be counted the same as a
node with a low (in)degree, such as :VaticanCity. Equivalently, we can say that
the probability that a particular node v has :UnitedStates in its neighbourhood
is much higher than it having :VaticanCity in its neighbourhood. Specifically,
for a node n, let deg(n) = |{v ∈ V | n ∈ E(v)}| denote the degree of n in terms
of the number of neighbourhoods it appears in. We denote the probability of n

appearing in the neighbourhood of a random node as P (n) = deg(n)
|V | .

Let {n1, . . . , nk} = E(v1) ∩ E(v2) denote the set of neighbours that v1 and
v2 have in common. Instead of simply counting the neighbours that two nodes
have in common (k), we propose neighbourhood selectivity, which measures the
vertex similarity between v1 and v2 as the probability of a random node v not
having all of the individual neighbours that v1 and v2 share in common:

σns(v1, v2) = P (¬(n1 ∩ . . . ∩ nk)) = 1−
k∏

i=1

P (ni) = 1− 1

|V |k
k∏

i=1

deg(ni)

This assumes that having individual neighbours are independent events. The
idea behind this measure is that the more neighbours a pair of nodes share, and
the rarer those neighbours, then the lower the probability of a random node
having all of those neighbours, and thus the higher the similarity measure.

Neighbourhood rarity The previous measure assumes that having different
neighbours corresponds to independent events. However, as argued in the in-
troduction, this is often not the case. For example, in a bipartite graph linking
movies to actors, having :SLaurel in the neighbourhood, and having :OHardy

in the neighbourhood, should not be considered as being independent events, as
these were a famous duo of actors who often starred in movies together. In the
presence of redundant or interdependent data – which, as we previously argued
is common in the case of knowledge graphs – the previous measure would end
up overestimating the similarity of node pairs per its own design criteria.

Rather than combining the probabilities of (supposedly) independent events,
we propose neighbourhood rarity, which measures the vertex similarity of v1 and



v2 as the ratio of other nodes not having (at least) all of the neighbours that
v1 and v2 share in common. First, for a given set of nodes N , we generalise
the definition of degree to a set of nodes: let deg(N) = |{v ∈ V | N ⊆ E(v)}|.
Defending our slight abuse of notation, note that deg(n) = deg({n}). We can
now define the neighbourhood rarity measure as simply:

σnr(v1, v2) = 1− deg(E(v1) ∩ E(v2))− 2

|V | − 2

We subtract 2 to exclude v1 and v2 from the count. As opposed to the previous
measure, if we now have interdependent neighbours in E(v1)∩E(v2), then neigh-
bourhood rarity will take this into account as many other nodes with likewise
have those interdependent neighbours together, reducing the above similarity.

SimRank The measures we have presented thus far are non-recursive. We now
introduce a representative of a recursive algorithm, namely SimRank [15]. First
we need some additional notation. Let E−(v) = {n | (n, v) ∈ E} denote the
nodes with incoming edges to v. The SimRank measure σsr is then defined
recursively as follows: if v1 = v2, then σsr(v1, v2) = 1; else if |E−(v1)| = 0 or
|E−(v2)| = 0, then σsr(v1, v2) = 0; otherwise:

σsr(v1, v2) =
γ

|E−(v1)| · |E−(v2)|

|E−(v1)|∑
i=1

|E−(v2)|∑
j=1

σsr(E−i (v1), E−j (v2))

where E−i (v) and E−j (v) denote the ith and jth elements of E−(v), respectively;
and where γ ∈ [0, 1] is a hyperparameter called the decay constant (originally
γ = 0.8). Intuitively, the similarity of v1 and v2 (where v1 6= v2) depends on
the sum of the pairwise similarity of their incoming neighbours, normalised by
the score they would have if all incoming neighbours had a pairwise similarity
of 1 (|E−(v1)| · |E−(v2)|) multiplied by a decay parameter. This measure can
be computed iteratively by setting σsr(v1, v2) = 1 if v1 = v2, or σsr(v1, v2) = 0
otherwise, and then computing the above equation iteratively.

4 Knowledge Graph Vertex Similarity

We assume a knowledge graph to be a directed, labelled graph K = (V,L,E),
where V is a set of nodes, L is a set of edge labels, and E ⊆ V × L × V is
a set of directed, labelled edges. Thus far our measures have been defined for
directed graphs only. This raises the question: how should the proposed mea-
sures be applied to knowledge graphs? The first alternative would be to drop
the labels from the edges (and remove duplicate edges between the same pair
of nodes with different labels) in order to return to a directed graph. For a

directed labelled edge s
p−→ o, this would involve projecting a directed edge

s −→ o. However, as we argued in the case of :Unforgiven
:director−−−−−−→ :CEastwood



and :Unforgiven
:actor−−−−→ :CEastwood, edge labels carry important informa-

tion for vertex similarity measures. Taking a more extreme example, consider

:CEastwood
:citizen−−−−−→ :UnitedStates, :DTrump

:president−−−−−−−→ :UnitedStates, and

:BObama
:president−−−−−−−→ :UnitedStates. Intuitively the similarity of :DTrump and

:BObama should benefit more from being presidents of the :UnitedStates.
A second alternative that keeps edge information is to encode a directed la-

belled edge s
p−→ o as two directed edges of the form (p, s) −→ o and s −→ (p, o).

For example, the directed labelled edge :Unforgiven
:director−−−−−−→ :CEastwood

would become two directed edges: :Unforgiven −→ (:director,:CEastwood)

and (:director,:Unforgiven) −→ :CEastwood. In this case, the resulting di-
rected graph is lossless, meaning that we can from the directed graph reconstruct
the full directed edge-labelled graph. While this might seem unusual, particularly
in the case of the local neighbourhood measures, this is quite a practical alterna-
tive, where elements of the neighbourhood now become pairs of edge labels and
nodes, which in turn allows us to distinguish the probabilities associated with,
for example, (:president, :UnitedStates) and (:citizen, :UnitedStates).

5 Implementation

We now describe our algorithms for implementing our measures, their complex-
ity, and approximations that we apply in the case of the local neighbourhood
measures to enable increased scalability and efficiency.

Neighbourhood measures We implement the local neighbourhood measures
on the distributed Apache Spark framework [27]. In comparison with, for exam-
ple, the Hadoop framework based on MapReduce [8], Spark abstracts storage
not only on the hard disk, but also in-memory, which generally allows for more
efficient computation across a cluster of machines when sufficient main memory
is available. Our implementation assumes an input graph in RDF format.

Implementation. We implement the similarity measures in the natural way, with
the exception of the neighbourhood rarity measure, which we compute in a
slightly indirect but more efficient way. For reasons of space, we provide a high-
level sketch of the details of the algorithms used:

– Neighbourhood count : we group the graph by neighbours n, collecting to-
gether all nodes {v1, . . . , vk} such that n ∈ E(vi) for 1 ≤ i ≤ k; then for each
such group we write out all asymmetric, irreflexive pairs of nodes (va, vb) for
1 ≤ a < b ≤ k sharing that neighbour. We then count occurrences of the
resulting pairs, producing the final neighbourhood count.

– Neighbourhood selectivity : we apply the same process as before, but instead
of writing pairs of the form (va, vb), we output triples of the form (va, vb, k);
we can then group these triples by (va, vb) and compute the neighbourhood
selectivity over the bag of values {{k1, . . . , km}} for each pair.



– Neighbourhood rarity : we apply a neighbourhood count generating pairs of
the form (va, vb, σnc(va, vb)); we apply a similar process to count how many
neighbours a triple of nodes have in common (va, vb, vc, σ

′
nc(va, vb, vc)), where

1 ≤ a < b ≤ k and a 6= c 6= b. We can then group both sets of data
together by (va, vb), giving us its neighbour count σnc(va, vb), and a list of
pairs {(vc1, σ′nc(va, vb, vc1)), . . . , (vcm, σ

′
nc(va, vb, vcm))} denoting other nodes

sharing at least one neighbour with va and vb, along with how many neigh-
bours the three nodes share. Finally we can count how many nodes vci there
are in the set such that σ′nc(va, vb, vci) = σnc(va, vb).

Complexity. Letting E = |E| and V = |V | for readability, then the worst-case
runtime complexities are as follows. Neighbourhood count is Θ(V3 logV). This
worst case is tight, as seen for the V-clique where we first sort the edges of
the graph (in time O(E log E)), and then write O(V2) pairs of nodes a total of
O(V) times, giving a bag of pairs of nodes of size O(V3), which we then sort in
time O(V3 logV3). This gives us Θ(E log E + V3 logV3), which can be simplified
to Θ(V3 logV) observing that E ≤ V2 and that V3 logV3 = 3V3 logV. Neigh-
bourhood selectivity is likewise O(V3 logV) as it follows a similar procedure.
Neighbourhood rarity is rather Θ(V4 logV); for the V-clique we now write O(V3)
triples of nodes a total of O(V) times, giving rise to a bag of triples of nodes of
size O(V4), which we sort in Θ(V4 logV). However, noting that we produce pairs
and/or triples of nodes only for a particular neighbour, we can tighten these
bounds if we rather define D = max{deg(n) | n ∈ V }, where often D� V. This
then gives worst-case complexities of Θ(E log E + VD2 logV) for neighbourhood
count and selectivity, and Θ(E log E + VD3 logV) for neighbourhood rarity.

κ-approximation. Still, max{deg(n) | n ∈ V } can be a prohibitively large value
to raise by 3 or 4, particularly for large-scale knowledge graphs. However, this
analysis does suggest a flexible mechanism for approximation: we can define a
threshold κ such that we ignore neighbours n with deg(n) > κ. Intuitively, this
means that we will simply ignore high-degree nodes from the similarity computa-
tion. While this may affect the final scores produced, we note that in the case of
neighbourhood selectivity and neighbourhood rarity, high-degree neighbours have
comparatively less influence on the measure. We will later experimentally check
the effect of varying κ on the associated similarity scores. With κ-approximation,
the complexity becomes simply O(E log E) in all three cases as the quadratic/cu-
bic parameter D = max{deg(n) | n ∈ V } ≤ κ is now bounded. For this reason
we believe that these measures are promising for global vertex similarity on
large-scale knowledge graphs, with κ allowing to trade precision for scale.

Neighbourhood rarity-s. Finally, we can solve the issue of frequent ties in neigh-
bourhood rarity with negligible practical cost by interleaving the computation of
neighbourhood selectivity into the process, where we then define a novel hybrid
measure of similarity that we call neighbourhood rarity-s as

σnrs(v1, v2) = |V | · σnr(v1, v2) + σns(v1, v2)



Table 1. Statistics of the four Wikidata sub-graphs

Sub-graph Subjects Predicates Objects Triples

Universities 842 787 83,583 94,599
Albums 653 936 165,456 189,653
Countries 179 905 196,318 216,774
Movies 765 896 256,456 365,123

such that the whole part of the similarity measure is given by σnr (neighbour-
hood rarity), while the decimal part is given by σns (neighbourhood selectivity);
intuitively, σnrs first ranks similar pairs by σnr, using σns to break ties.

SimRank We use an off-the-shelf implementation of SimRank. The space com-
plexity of SimRank is O(V2) for V = |V | as it needs to store all pairwise sim-
ilarities (aside from the cases that are trivially 0 or 1 throughout). The worst
case time complexity of an iteration of SimRank is O(V4) where several such
iterations of SimRank are required to approximate the measure. Though opti-
misations of SimRank have been proposed in the literature, to the best of our
knowledge they consider single-source rather than global similarity.

6 Experiments

In this initial work, we perform experiments that consider small-to-medium sized
sub-graphs of Wikidata, where each focuses on a different entity type. We show
statistics relating to these sub-graphs in Table 1. With respect to our experi-
ments, we wish to address three initial research questions: (1) How do the run-
times and results of local neighbourhood measures compare? (2) How does the
value of κ affect runtimes and similarity results? (3) How do the results for the
local neighbourhood measures and SimRank compare for ground-truth similarity
datasets? Noting that we failed to compute SimRank for any of these subgraphs,
we postpone discussion of SimRank results until the end of the section, where
we will sample smaller subgraphs for comparison.

6.1 Runtime performance

We first look at the runtime performance of the different measures and for dif-
ferent values of κ. In Table 2, we show the results for the smallest and largest
subgraphs. As general observations, we see that, as predicted by the complexity
analysis, there is little difference between the runtimes of σnc and σns (being
quadratic with respect to κ), while σnrs is generally slower to execute (being
cubic with respect to κ). Furthermore, as κ increases, the runtimes of σnc and
σns grow more slowly than in the case of σnrs. In the case of Movies (and Al-
bums), Spark failed to compute σnrs with κ = 512, where a single neighbour n

with deg(n) = 512 produces (512−2)
2 (5122 − 512) = 66, 716, 160 quadruples.



Table 2. Runtimes (s) for Universities (left) and Movies (right)

κ σnc σns σnrs

4 145 159 413
8 149 159 411

16 149 160 412
32 152 160 420
64 147 159 431

128 145 161 491
256 147 160 697
512 149 162 710

κ σnc σns σnrs

4 162 183 433
8 164 200 503

16 175 237 732
32 200 262 1,989
64 283 301 7,303

128 417 367 11,514
256 547 447 20,736
512 1,162 737 —

Table 3. Kendall’s-τ correlations for varying κ against results for highest κ on datasets
for Countries, Universities, Movies and Albums

σnc

κ c. u. m. a.

4 0.25 0.20 0.25 0.22
8 0.35 0.26 0.35 0.30

16 0.58 0.53 0.48 0.52
32 0.78 0.72 0.56 0.58
64 0.89 0.85 0.75 0.70

128 0.95 0.90 0.85 0.83
256 1.00 0.99 0.93 0.95
512 1.00 1.00 1.00 1.00

σns

c. u. m. a.

0.23 0.29 0.62 0.59
0.33 0.34 0.63 0.60
0.44 0.40 0.66 0.75
0.79 0.56 0.73 0.79
0.91 0.76 0.82 0.84
0.99 0.86 0.88 0.90
1.00 0.99 0.93 0.95
1.00 1.00 1.00 1.00

σnrs

c. u. m. a.

-0.27 0.07 0.34 0.33
0.13 0.59 0.76 0.60
0.06 0.59 0.78 0.66
0.16 0.57 0.83 0.68
0.56 0.74 0.89 0.92
0.99 0.86 0.88 0.90
0.95 0.99 1.00 1.00
1.00 1.00 — —

6.2 Effect of κ on the similarity results

The aforementioned results show the performance benefit of lowering κ, but
what effect does this have on the similarity scores? To address this question, we
compared the similarity results for varying values of κ against the most accurate
approximation (κ = 512 in all cases, except σnrs in the case of Albums and
Movies which did not run, where we compare with κ = 256). In general, we see
that as κ decreases exponentially, the correlations remain strong until κ = 128,
reducing more dramatically at around κ = 32. In general, we recommend keeping
κ as high as feasible to ensure that the results are as faithful to the original
measures as possible, but where necessary, lowering κ can still lead to reasonable
approximations while tending towards O(E log E) worst-case runtime complexity.

6.3 Ground-truth comparisons, full-scale

While the previous results compare the changes in the local neighbourhood re-
sults for varying κ, they do not establish how well the measures correspond to
a general notion of “similarity”. Unfortunately, many of the ground truths con-
sidered in the literature consider directed graphs rather than knowledge graphs,
as is our setting. For this reason, we develop two novel ground-truths based on



Table 4. Kendall’s-τ distributions for ground truths, full-scale

BestSimilar

Measure Min. L. Quar. Median U. Quar. Max

σnc 0.3577 0.5018 0.6224 0.7621 0.8558
σns 0.2998 0.4347 0.5485 0.6389 0.7982
σnrs 0.7332 0.8022 0.8630 0.9320 0.9827

Last.fm

Measure Min. L. Quar. Median U. Quar. Max

σnc 0.1777 0.3402 0.4601 0.6168 0.7549
σns 0.0982 0.2382 0.3836 0.5304 0.6758
σnrs 0.4902 0.5483 0.6538 0.7319 0.8377

similarity relations scraped from two external websites: BestSimilar for Movies
and Last.fm for Albums. Both of these websites rely on user inputs, where Best-
Similar allows to upvote or downvote similarity pairs, while Last.fm likewise has
a vast amount of user data to leverage for similarity. For this reason, we assume
that both sites offer reliable ground truths. The question then is: can we repli-
cate these similarity relations based on (costly) user input with our unsupervised
vertex similarity measures over the corresponding subgraphs of Wikidata?

On BestSimilar, each movie is associated with a ranked list of 10 similar
movies, where we extract 100 such lists. On Last.fm, each album is associated
with a ranked list of 20 similar albums, where we again extract 100 lists. We
then linked the associated movies and albums with their Wikidata identifiers.We
measure the Kendall’s-τ correlation between our three local neighbourhood mea-
sures and each of the 100 ground truths, using the highest available values for
κ. Given that our subgraphs may mention nodes not appearing in the ground
truth, and vice versa, we only consider the ordering of elements appearing in
both lists when measuring the correlation. In Table 4, we show the distribution
of results, where we see that σnrs provides a clear improvement in both datasets
with respect to the other measures, which may justify its cost. We attribute this
improvement to the way in which it is more robust to redundant information.

6.4 Ground-truth comparisons, small-scale

Finally, in order to compare with SimRank (σsr), we reduced the scale of the
Movies and Albums sub-graph until we could successfully compute the Sim-
Rank measure. The new datasets contained 275,123 and 169,963 triples respec-
tively. We show the results in Table 5 where we see that σsr performs best out of
the four measures. This is perhaps to be expected as σsr is a recursive measure
that can incorporate information from the full graph, not just the locality of the
two nodes. On the other hand, σnrs remains quite competitive with σsr.



Table 5. Kendall’s-τ distributions for ground truths, small-scale

BestSimilar

Measure Min. L. Quar. Median U. Quar. Max

σnc 0.0013 0.0743 0.2137 0.3309 0.4689
σns 0.0026 0.0789 0.1416 0.2039 0.3275
σnrs 0.2291 0.3290 0.4300 0.4990 0.5789
σsr 0.2739 0.3738 0.4749 0.5438 0.6238

Last.fm

Measure Min. L. Quar. Median U. Quar. Max

σnc 0.0028 0.0869 0.1482 0.3132 0.4087
σns 0.0008 0.0685 0.1441 0.2097 0.2883
σnrs 0.1763 0.2620 0.3274 0.4330 0.5234
σsr 0.2317 0.3174 0.3829 0.4884 0.5789

7 Conclusions

We have investigated measures for vertex similarity in the context of knowledge
graphs. We proposed two new measures that only consider the local neighbour-
hoods of the pairs of nodes being compared. One of these measures – neigh-
bourhood rarity-s – shows promising results, being outperformed by non-local
SimRank in terms of a comparison with two ground truth datasets, but by a
narrow margin. On the other hand, this neighbourhood rarity-s measure, in
combination with degree-based (κ) approximation, can be evaluated at larger
scale and in a more efficient way than the SimRank alternative. Furthermore,
it can avoid “double counting” of redundant information by considering a com-
mon neighbourhood as a single event, rather than assuming that it consists of
multiple independent events (i.e., individual neighbours). The locality of these
measures also have further advantages that we have not explored. For example,
unlike SimRank, given a pair of nodes v1 and v2, we could in principle write a
SPARQL 1.1 query to compute the (local) similarity of the node pair.

More generally, we believe that in knowledge graphs, with the addition of
edge labels, the local neighbours of nodes tend to be rich in information: much
richer than directed graphs that only consider one relation type. For this reason,
we believe that simpler local measures of vertex similarity can compete with
more complex non-local measures in knowledge graphs such as Wikidata. As
part of future work, we plan to run scale-up experiments to understand what
values of κ make it possible to process all of Wikidata with each algorithm, to
develop a user interface, and to perform user studies.

Online material. Please see http://aidanhogan.com/wikidata-sim.
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