
A Methodology for Hierarchical Classification of
Semantic Answer Types of Questions

Ammar Ammar1, Shervin Mehryar2, and Remzi Celebi3

1 Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, The
Netherlands a.ammar@maastrichtuniversity.nl

2 University of Toronto, Canada shervin.mehryar@utoronto.ca
3 Institute of Data Science, Maastricht University, Maastricht, The Netherlands

remzi.celebi@maastrichtuniversity.nl

Abstract. Question answering systems have recently been integrated
with many smart devices and search engines. Answer type prediction
plays an important role in question answering systems as it can help
filter irrelevant results and improve overall search and retrieval perfor-
mance. Here, we present our approach for answer type prediction using
the datasets provided for the International Semantic Web Conference
(ISWC 2020) SMART Task Challenge. Predicting granular answer types
for a question from a big knowledge graph is a greater challenge due to the
large number of possible classes. Thus, we propose a 3-step approach to
tackle the challenge task. We start with building a classifier that predicts
the category of the types and build another classifier just for resource
types. The latter model will predict the most general (frequent) type for
each question, ignoring type hierarchy. We use a multi-class text classifi-
cation algorithm built-in fastai library for these two models. The models’
accuracies are 0.95 and 0.73 for category and generic type classification
respectively in the validation set (20% randomly chosen samples) of the
DBPedia dataset. Next, we train a third classifier to find more specific
types (sub-classes) for each question based on the previous general pre-
dicted types. We achieve 0.62 and 0.61 using NDCG@5 and NDCG@10
metrics respectively for the test set.

Keywords: Question answering · Hierarchical classification · Semantic
type prediction

1 Introduction

Question answering systems have recently been integrated with many smart de-
vices and search engines. Answer type prediction plays an important role in
question answering systems as it can help filter irrelevant results and improve

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 A. Ammar et al.

overall search and retrieval performance. Here, we present our approach for an-
swer type prediction using the datasets provided by the International Semantic
Web Conference (ISWC 2020) SMART Task Challenge organizers [5]. The task
consists of training data of questions, categories, and types from large ontologies,
and the challenge participants are asked to provide the categories and types from
the WikiData and the DBpedia ontologies questions in the test dataset. The DB-
pedia dataset contains 17,571 training questions and 4,393 test questions, and
the WikiData dataset has 18,251 training questions and 4,571 test questions.
Each training dataset is labeled with an answer category and a list of types.
These questions consist of short text that can be classified based on the answers
into three main categories: boolean, literal or resource. The granular catego-
rization is possible for ‘resource’ categories using knowledge graphs/ontologies
classes including the WikiData (∼ 50K classes) and the DBpedia (∼ 760 classes).
Predicting granular answer types for a question from an ontology is more chal-
lenging due to the large number of possible classes. Thus, we present a 3-step
approach to tackle the challenge task.

2 Related Work

Most question answering systems are able to answer a wide range of world knowl-
edge on a production scale. However, they tend to have a modular architecture
and depend laboriously on information retrieval techniques. These systems are
known to rely on limiting the possible subset of candidates, known as answer
type modeling, which notably increases both speed and quality. Generally, the
main approach of question answering starts with building a labeled query-type
dataset and then selecting a answer prediction model. Several model architec-
tures including recurrent neural networks and feed-forward transition-based neu-
ral networks have been proposed to tackle this problem. For example, in Ivan
Bogatyy’s work [2], a model was developed using normalized transition-based
neural network parser. The data was encoded into two types of features: binary
features generated for the slots corresponding to the ROOT and NSUBJ of the
sentence, and integer features generated for every slot based on its depth in the
syntactic tree. Also, J. W. Murdock et.al [7] proposed a method that utilizes a
variety of strategies and resources to decide whether the candidate answer has
the desired type. These strategies and sources provide a set of type coercion
scores for each candidate answer. They used these scores to give preference to
answers that are more likely to have the right type. This method with type co-
ercion is significantly more accurate than it is without type coercion and has a
combined impact of nearly 5% on the accuracy of the IBM Watson. Moreover,
Huan Sun et.al. [10] constructed answer-type related features with two novel
probabilistic models. Such semantic features appeared to play outstanding roles
in determining the true answers from the large answer candidate collection. Us-
ing two test datasets, the aforementioned question-answering system achieved an
improvement of 18% and 54% with the F1 metric, in comparison to several avail-
able QA systems. Finally, Semih Yavuz et.al. [11] generated an abstract form of



Hierarchical Classification of Answer Types 3

the questions by replacing their topic entities with their types. A bidirectional
LSTM model was built to train over the abstract form of questions and predict
their answer types. The model was able to improve the F1-score from 49.7% to
52.6% on the WE-BQUESTIONS dataset.

3 Methodology and Results

We have developed a workflow to address the challenge of the ISWC 2020 where
the categories and types of questions must be predicted using classes from two
main Knowledge Graphs (KGs) ontologies: Wikidata and DBpedia. The work-
flow for the proposed methodology is shown in Fig. 2 and the code for the work-
flow can be accessed at our Github repository . For prediction of the question cat-
egories (Task 1), we model the problem as multi-class classification to predict one
of the extended categories (boolean, number, string, date and resource)
from question text using the fastai text classification library [4]. For each of the
datasets (Wikidata and DBpedia), the dataset given for training is split into 2
subsets: training set (80%) and validation set (20%). The preprocessing (tok-
enization and numericalization if needed) is handled automatically within the
fasiai data class (TextDataBunch). The classifier (text classifier learner)
uses the LSTM neural network model [3] and is trained with the best learning
rate (1e − 2), after which the process of fitting is repeated two cycles; the first
cycle with learning rate (1e−2) and the second cycle with learning rate (1e−3).
The model trained achieves an accuracy of 0.947 for category prediction.

For the type prediction problem (Task 2), we first obtain the most frequent
type among all the question types that are predicted to have a ‘resource’ category,
and try to predict the generic type from the question text using the same text
classification model (LSTM neural network) of the fastai library. The model
achieves an accuracy of 0.73 for generic type prediction. To examine the errors
made by the classifier , we plot the confusion matrix summarizing errors for
validation set shown in Figure 1. Agent type is the classifier’s most predicted
type, and also the type for which the classifier has the most errors. It can be
seen from the confusion matrix that the classifier confuse especially the Agent
class with Place class.

Once the prediction for generic (frequent) types was obtained, a specific type
was determined for each question by selecting a more specific type in each ques-
tion type list . We used a random forest model to predict the specific type. The
input representation for this model was constructed by integrating three vec-
tor representations (embeddings) for the question text, the frequent type and
the specific type. For the question text, two vector representations were used.
First, questions sentences were embedded using a pre-trained BERT language
model [8], resulting in a vector of length 1024 for each question. Next, word
and entity embeddings (vector size of 100) were extracted using Wikipedia2Vec.
Wikipedia2Vec is a Python-based open-source tool for learning the embeddings

https://github.com/rcelebi/iswc2020-smarttask
https://wikipedia2vec.github.io/wikipedia2vec/



4 A. Ammar et al.

Fig. 1. Confusion matrix summarizing the errors made by the classifier for generic type
prediction



Hierarchical Classification of Answer Types 5

of words and entities from Wikipedia. Its results on the KORE entity relatedness
dataset achieved the state-of-the-art results, and it also achieved competitive re-
sults on various standard benchmark datasets. Next, the embeddings of tokens
(word or entity) extracted from each question) were averaged to obtain a fixed
size vector for each question. The sentence embedding and the word embed-
ding are concatenated to represent a question. For generic and specific types,
vector representation was learnt by training a word2vec model [6]. To generate
the embeddings that capture the hierarchical relationship of types, we used the
ontology hierarchy of Wikidata/DBpedia KG. Next, the hierarchies were flat-
tened into a sequence of ontology terms that were used as input for embedding
learning. Here, we used the Word2Vec approach in which the ”CBOW” neural
network with a layer size of 100 was used to generate type embedding. The three
embedding vectors (question, generic type and specific type) were integrated av-
eraging the embedding for generic and specific type followed by concatenating
with question’s embedding. We modeled this problem as a binary classification
problem in which the given generic type and specific type match the question in
the positive examples, but not for negative examples. Because we lacked negative
examples to train the classifier, we generated negative examples by replacing the
specific type in the positive instances by another type that shares the same par-
ent type in the hierarchy but not a correct specific type (see Fig. 2). The positive
instances were labeled as “1” (output variable) and the negative instances were
labeled as “0”. The resulting dataset was split into 2 subsets: training set (80%)
and validation set (20%). The random forest model was trained on the training
set and achieved an accuracy of 0.89 on the validation data. Finally the random
forest model is used to provide the top-K predictions (question, generic type and
specific type) for a given question and a generic type (obtained from the previous
text classifier). We report that our final submission using the proposed workflow
achieves 0.62 and 0.61 using NDCG@5 and NDCG@10 metrics respectively for
the DBpedia set. The correct handling of negative example selection has an im-
pact on this stage and proper hierarchical structures that take advantage of the
underlying connections which we leave for future research direction. When there
are multiple classes to predict, these results can be improved upon via examplar
selection [1] and reasoning type methods for knowledge basis [9] for example.

4 Conclusion

Since most state-of-the-art classifiers have limited capabilities in granular classifi-
cation tasks, we propose a framework that focuses on hierarchical type prediction
thus enabling current methods to take advantage of this method for engineering
features that can subsequently improve upon the already existing methodolo-
gies such as Random Forests. Our methodology consists of a 3-step process. In
step one, by using off-the-shelf multi-class text algorithms, the task of category
prediction and type prediction, was separated from general versus specific pre-
dictions, thereby ignoring type hierarchy. The models’ accuracy levels are 0.95
and 0.73 for category and generic type classification respectively. Next, a third



6 A. Ammar et al.

classifier is trained to predict specific types using the previous general catego-
rization results. By combining the feature vectors from the question text, general
prediction, and specific type, and applying averaging to their embeddings into a
fixed size binary classification method, we determine a positive versus negative
specific type for a given generic one. We report performance of the frame-work
on granular categorization data for ‘resource’ categories using ontologies classes
including the DBpedia using NDCG@5 and NDCG@10 metrics. For test, we achieve
0.62 and 0.61, respectively in top-K prediction task and aim this for future re-
search direction.

References

1. Awasthi, A., Ghosh, S., Goyal, R., Sarawagi, S.: Learning from rules
generalizing labeled exemplars. cs/arXiv abs/2004.06025 (2020),
https://arxiv.org/abs/2004.06025

2. Bogatyy, I.: Predicting answer types for question-answering (2016),
https://cs224d.stanford.edu/reports/Bogatyy.pdf

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (Nov 1997)

4. Howard, J., Gugger, S.: Fastai: A layered api for deep learning. Information 11(2),
108 (Feb 2020). https://doi.org/10.3390/info11020108

5. Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo,
A.C.N., Usbeck, R.: SeMantic AnsweR Type prediction task (SMART) at
ISWC 2020 Semantic Web Challenge. CoRR/arXiv abs/2012.00555 (2020),
https://arxiv.org/abs/2012.00555

6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

7. Murdock, J.W., Kalyanpur, A., Welty, C., Fan, J., Ferrucci, D.A., Gondek,
D.C., Zhang, L., Kanayama, H.: Typing candidate answers using type co-
ercion. IBM Journal of Research and Development 56(3.4), 7:1–7:13 (2012).
https://doi.org/10.1147/JRD.2012.2187036

8. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics (11 2019),
http://arxiv.org/abs/1908.10084

9. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Burges, C.J.C., Bottou, L., Welling, M.,
Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Process-
ing Systems. vol. 26, pp. 926–934. Curran Associates, Inc. (2013)

10. Sun, H., Ma, H., Yih, W.t., Tsai, C.T., Liu, J., Chang, M.W.: Open domain ques-
tion answering via semantic enrichment. In: Proceedings of the 24th International
Conference on World Wide Web. p. 1045–1055. WWW ’15, International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE
(2015). https://doi.org/10.1145/2736277.2741651

11. Yavuz, S., Gur, I., Su, Y., Srivatsa, M., Yan, X.: Improving semantic parsing via
answer type inference. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. pp. 149–159. Association for Computational
Linguistics, Austin, Texas (Nov 2016). https://doi.org/10.18653/v1/D16-1015



Hierarchical Classification of Answer Types 7

Fig. 2. The workflow for the proposed methodology



8 A. Ammar et al.

Fig. 3. For a particular type hierarchy, a question can be labeled with multiple types
of type paths that represent branches in a type tree. For the given toy example, the
question is labelled with (A, B, C) types that are part of a type path in the given
hierarchy. A hierarchical type prediction problem can be formulated as a binary classi-
fication that maximizes the probability of finding correct generic type and specific type
for a given question. For this toy example, the parent and child pairs (A, B), (B, C)
that are seen in the training data are taken as positive instances, and the parent and
its other siblings (A,F), (B,D) are taken as negative instances. The binary classifier
takes a concatenation of the question embedding and the average type embedding as
input to discriminate postives from negative instances.


