CEUR-WS.org/Vol-2774/paper—06.pdf

Hierarchical Contextualized Representation
Models for Answer Type Prediction

Natthawut Kertkeidkachorn*!, Rungsiman Nararatwong*2?, Phuc Nguyen?,
Ikuya Yamada®, Hideaki Takeda?, and Ryutaro Ichise?!

! National Institute of Advanced Industrial Science and Technology,
Tokyo 135-0064, Japan
2 National Institute of Informatics, Tokyo 101-8430, Japan
3 Studio Ousia, Tokyo 100-0004, Japan
n.kertkeidkachorn@aist.go.jp, ikuya@ousia.jp
{rungsiman, phucnt, takeda, ichise}@nii.ac.jp

Abstract. SeMantic AnsweR Type prediction (SMART) challenge pro-
posed a task to determine the types of answers given natural language
questions. Understanding answer types play a crucial role in question
answering. In this paper, we present Hierarchical Contextualized-based
models, namely HiCoRe, for the SAMRT task. HiCoRe builds on top of
state of the art contextualized-based models and the hierarchical strat-
egy to deal with the hierarchical answer types. The SMART results show
that HiCoRe obtains promising performance for answer type prediction
on DBpedia and Wikidata datasets.

1 Introduction

Question Answering is one of the challenging problems in the Natural Language
Processing field. The goal of question answering is to answer a question given in
natural language text. Nevertheless, a natural language question is ambiguous
and can lead to more than one plausible interpretation. Lack of understand-
ing of the expected interpretation of the question results in misunderstanding
the question. Question or answer type classification plays an important role in
avoiding misinterpretation in question understanding. Generally, question type
can be classified into a Wh-words question (Who, What, When, Where, Which,
Whom, Whose, Why), while the answer type is determined by the expected type
of the answer based on the question. Classifying the answer type is much more
challenging than the question type due to the variety in answer type.

The SeMantic AnsweR Type prediction (SMART) challenge [5] benchmarks
and investigates the answer type annotation problem. In the SMART challenge,
given natural language questions, the task is to classify the granular types of

* Rungsiman Nararatwong and Natthawut Kertkeidkachorn contributed equally to
this project.
Copyright (© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 N. Kertkeidkachorn et al.

Table 1. Example questions and expected answer types from DBpedia ontology and
Wikidata from the SMART dataset

. Answer Type
Question DBpedia [Wikida
Give me all actors who were born in Berlin. dbo:Actor | Q33999
Who is the heaviest player of the Chicago Bulls 7 dbo:Athlete| Q3665646
What is the DMOZ ID for Glasgow ? string string
How many organizations work for Environmentalism ? number number
When did Claude Monet move to Giverny 7 date date
Is the apparent magnitude of the Messier 2 less than 5.2 7 boolean | boolean

answers. The answer type contains 3 main category types: Boolean, Literal, and
Resource. Boolean does not contain any subtypes, while Literal and Resource
can be classified into fine-grained types. For Literal, there are 3 fine-grained:
Number, Date, and String. For Resource, fine-grained types have corresponded
to the target ontology. In the SMART dataset, DBpedia [2] and Wikidata [6]
are selected as the the target ontology. In DBpedia, there are 760 coarse-grained
types, while Wikidata contains more than 50,000 coarse-grained types. Table
1. illustrates example questions and expected answer types from DBpedia on-
tology and Wikidata ontology. The answer types can be multiple types. For
example, given the question ”Who is the heaviest player of the Chicago Bulls?”,
the expected answer types are listed as the following list: [dbo:BasketballPlayer,
dbo:Athlete, dbo:Person and dbo:Agent.]*

In this paper, we propose the Hierarchical Contextualized Representation
Models, namely HiCoRe, for the answer type prediction. Our approach utilizes
advanced contextualized word representation models together with the hierar-
chical strategy to deal with the hierarchical type of the ontology in the SMART
task.

The rest of the paper is organized as follows. We describe our approach in
Section 2. In Section 3, the experimental setup and the experimental results are
reported. Related works are discussed in Section 4. In Section 5, we conclude
our work.

2 Approach

The hierarchical structure of ontology requires a classification method that rec-
ognizes multi-layer labeling, including relations among the labels. Therefore, we
created a stack of groups of classifiers for all levels (depth) of the ontology.
Suppose an ontology O consists of classes ¢; ; € C, where i indicates the level
where classes c; ; belong, and j denotes each class on the ith level. A classifier
mik, € M,1 <k, < z, is responsible for predicting a subset of classes c;.

4 dbo: is http://dbpedia.org/ontology/

Title Suppressed Due to Excessive Length

S —
Ontology
LEVEL 1
- LEVEL2 LEVEL R
]
-
Training data ® Filter @ : Filter ® .
il —e —o —o
ilter | | g—e
Answer Type Answer Type Answer Type
Classifier €1,1 Classifier €31 Classifier Cn,1
v v v
(XX] LXK XX]
v v v
H—o % —o % W —1 %
A 5 A 5 Answer
nswer Type Answer Type \nswer Type
- Classifier 171 Classifier 2722 Classifier ™Zn selector
—
-

Testing data Answers

Fig. 1. Overall design of our architecture.

There may be single or multiple classifiers at each level, depending on configu-
ration. The classifiers can also be of the same or different types; they operate
independently and are individually customizable.

The overall architecture, as shown in Figure 1, is a modular pipeline where the
ontology and training data flow through the process to train all of the classifiers.
The intuition is for every level to have some very accurate classifiers that are
responsible for a few classes with a large amount of training data, as well as
some less accurate classifiers with more classes to classify or fewer data to train.
Since we will always know the distribution of the training data with regard to
classes prior to training, we created a filtering function that assigns classes to
the classifiers based on pre-defined thresholds. For example, our thresholds for
the first level of the DBpedia dataset are 400, 100, and 50. With this setting, our
classifier my,; would classify classes dbo:Place, dbo:Agent, dbo:Work since each
appears in the training data at least 400 times.

The filtering function uses the ontology to select relevant questions, i.e., those
with at least one answer (class) that the target classifier can classify. Since part
of the data may not satisfy any of the filtering function’s conditions, we may
unintentionally ignore a portion of the training data. Thus, there should to be
a default classifier that processes the rest of the data if possible, either at every
level or independently. While the training data may overlap among the classifiers
on the same level — resulting in increased training time — this method ensures
that we feed all relevant data to every classifier, thus maximizing the accuracy.

The testing data flow through the pipeline to all classifiers differently than
the training data. During testing, since we can only learn the likely answers from
predictions, we may need the classifiers to perform their tasks sequentially from
the first level to the last for selective testing. This method can speed up the
testing process if we expected the classifiers at lower levels to be less accurate
due to less training data or more classes to classify, and, therefore, should rely
on the outcomes from a higher level to make predictions. Alternatively, every

4 N. Kertkeidkachorn et al.

classifier may make predictions on all questions; in which case, at the end of
the entire process, the answer selector chooses final answers based on predefined
policy.

At each level, in cases where some questions have multiple same-level answers
that require a combination of classifiers to predict, the same-level classifications
should not be sequential unless constrained by computing resources or any other
limitations. On the other hand, sequentially performing classifications may yield
better results if there are no answers that belong to the same level — for the
entire dataset or parts of it — and the classifiers at higher ranks (0,1,...) are
better at predicting than the lower ranks (...,z — 1,2). All in all, it is up to
human judgment and experimentation to decide what classifiers to use and how
they should interact with each other.

2.1 Answer Type Classifier

Multi-class Classification We fine-tuned Bidirectional Encoder Representa-
tions from Transformers (BERT) [4] for our classification tasks. BERT performs
outstandingly well as a base model for transfer learning across various NLP
tasks. For sequence classification such as ours, we paid our attention solely to
each sequence’s aggregate representation, which corresponds to the first token
([CLS]) of the sequence. In other words, we used BERT to create a vector rep-
resentation of each question, then turned it into an input for our down-stream
classification task.

Following the instruction described in BERT’s original paper, we used BERT’s
final hidden vector C € R¥ as a sequence representation. The multi-class clas-
sifier consists of a single classification layer with weights W € RE>*H where K is
the number of labels. We computed the classification loss as log(softmax(CWT)).
The loss function restricts the use of a multi-class classifier in our pipeline to
classifications that only expect a single answer, meaning that it will not be suit-
able for any parts of the pipeline where there can be multiple answers. On the
other hand, any groups of consequent same-level classifiers, where each classifier
expects a single answer, may take advantage of the sequential classification we
mentioned earlier to improve the overall accuracy.

Multi-label Classification Our multi-label classifier is also a fine-tuned BERT
model similar to the multi-class classifier. The only difference is its loss function,
which we use o(CW7T) instead of SoftMax to allow the classifier to output mul-
tiple answers. Unlike multi-class classification, multi-label classification should
not be part of selective testing, i.e., sequential classification.

2.2 Answer Selector

For the DBpedia dataset, we used DBpedia Lookup service ° to find DBpedia
URIs of relevant keywords. We used Natural Language Toolkit (NLTK) plat-

® https://wiki.dbpedia.org/lookup

Title Suppressed Due to Excessive Length 5

form® for Python to extract nouns and adjectives as the keywords and retrieved
the URIs for post-processing. DBpedia Lookup provides the URIs of not only
keywords in a query but other similar ones as well. Using the outputs without
any filtering will likely mix irrelevant answers into the correct ones. Therefore,
we built a filtering function that adds a set of answers for every returned key-
word from the service only if at least one of the answers match what the models
in the pipeline have predicted.

Another post-processing task for both datasets is answer selection. We de-
fined three selection strategies, which are top-down bottom-up and independent.
The top-down strategy prioritizes answers at higher levels. It includes lower-level
answers only if their parents are present. The bottom-up strategy does the op-
posite; it traces the branch where the answer belongs to the top level and adds
all elements on that branch as the answers. The independent strategy does not
change the answers.

3 Experiments and Results

In this section, the experimental setup and results are presented. The details of
the expreiments are as follows.

3.1 Experimental Setup

In the experimental setup, we present Dataset, Experiment Setting and Evalu-
ation Metrics.

Datasets. The SMART task consists of two datasets: DBpedia and Wiki-
data. In DBpedia dataset, the target ontology is DBpedia ontology, while in
Wikidata the target ontology is Wikidata. The statistical details of the SMART
dataset are listed in Table 2. Since both datasets do not provided the validation
set, we randomly selected 10% of the training set in both datasets to construct
the validation set.

Settings. We experiment on many contextualized-based models, includ-
ing distilbert-base-uncased, bert-base-uncased, bert-large-uncased, roberta-base,
and roberta-large to train the answer type classifier. We implement the contextualized-
based models by using the hugging face repository 7. Then, we manually set
hyper-parameters then test on the validation set to find a reasonable set of
hyper-parameters. As a result, we set the hyperparameters as follows: batch: 16,
learning rate: be — 5, epochs: 10-45, dropout rate: 0.1.

Before training, we studied the distributions of training data with regard to
classes (labels) at each level and found a similar pattern across all levels in both
datasets. As shown in Figure 2, there are generally a few classes with a large
amount of training data, while the rest only have a few to train. Therefore, for
every level, we created a set of classifiers based on how much information we

5 https://www.nltk.org
" https:/ /huggingface.co/models

6 N. Kertkeidkachorn et al.

Table 2. The Statistics of the SMART dataset on DBpedia and Wikidata

l Train set ‘
DBpedia | Wikidata
Boolean 2,799 2,139
Literal 5,188 4,429
- Nunber 1,634 0
- Date 1,486 0
- String 2,086 0
Resouce 9,584 11,683
Total 17,571 18,251
| Test set
DBpedia | Wikidata
Total 4,369 4,571
DBpedia level 1 Wikidata level 4

500
4000

400
3000

Count
Count

2000
200

1000 100

0 10 20 30 40 50 0 50 100 150 200 250 300
Class Class

Fig. 2. Distribution of the training data at level 1 (DBpedia) and level 4 (Wikidata).

have to train them. For DBpedia, we created up to three classifiers per level
with thresholds of 400, 100, and 50, meaning that any classes with at least 400
training samples will be included in the first classifier and so on. The thresholds
for Wikidata are 1000, 300, 100, and 50.

Evaluation Metrics. In the fine-tuning process on the validation set, we
use standard Accuracy, Fl-macro, F1-weighted by the sklearn library ® for the
category classification, while only F1-macro and F1-weighted are used to evaluate
the resource types on each level of the hierarchy in the ontology. We use these
metrics to find the hyperparameters that are the best suit for each level. Due
to the structure of the ontology in the datasets, there are five levels in DBpedia
and 11 levels in Wikidata.

8 https://scikit-learn.org/stable/modules/generated /sklearn.metrics.classification_report

Title Suppressed Due to Excessive Length 7

Table 3. Results of the SMART Task on the validation set (10 % of the training data)

Level DBpedia Wikidata
Accuracy|F1l-macro|F1-weighted|Accuracy |F1-macro|F1-weighted

Category| 0.9876 | 0.9681 0.9875 0.9858 | 0.9606 0.9858
Level-1 - 0.9287 0.9787 - 0.8937 0.9511
Level-2 - 0.9467 0.9839 - 0.8845 0.9626
Level-3 - 0.9223 0.9751 - 0.9011 0.9640
Level-4 - 0.9416 0.9729 - 0.8526 0.9457
Level-5 - 1.0000 1.0000 - 0.9020 0.9530
Level-6 - - - - 0.8588 0.9644
Level-7 - - - - 0.9163 0.9614
Level-8 - - - - 0.8939 0.9402
Level-9 - - - - 0.9364 0.9662
Level-10 - - - - 0.9380 0.9564

Table 4. Results of the SMART Task on the test set

DBpedia Wikidata
Accuracy Accuracy
(Category) nDCG@5 | nDCG@10 (Category) MRR
0.964 0.749 0.721 0.96 0.59

For the final evaluation on the test set, we follow the metrics provided by the
SMART challenge . In the SMART challenge, the evaluation metrics are varied
due to the dataset. In DBpedia, the category accuracy and normalized discounted
cumulative gain (nDCG) are used. The nDCG is set at 5 (nDCG@5) and 10
(nDCG@10). The evaluation metrics in Wikidata are the category accuracy and
mean reciprocal rank (MRR).

3.2 Results

Table 3 listed the results of HiCoRe on the validation set of each level with
the best setting we found, while Table 4 reported the results on the test set
of the SMART task. The results in both tables show that we could achieve
high accuracy (more than 96%) for the category prediction. Furthermore, on the
validation set HiCoRe gives promising F1l-macro and F1l-weighted scores (more
than 80%) in both DBpedia and Wikidata.

4 Related Works

Answer type classification could be viewed as the entity type classification, where
the answer to the query question is given as the entity. There are many research

9 https://smart-task.github.io

8 N. Kertkeidkachorn et al.

works [1,7, 8] related to an entity type in the NLP community. Nevertheless, the
SMART dataset does not provide the answers to the query questions. Therefore,
predicting the answer type is much more challenging than the conventional entity
type classification due to the absence of the answer entity. There is a study inves-
tigating answer type prediction with the same setting as the SMART dataset. In
the study [3], the type matcher is applied on the question to get attention words
for building the classifier based on the syntactic structure features. Nonetheless,
this work does not consider the hierarchical structure of answer types.

5 Conclusion

In this paper, we introduce a novel method using hierarchical contextualized rep-
resentation models, named HiCoRe, for answer type prediction. HiCoRe adopts
state of the art contextualized word representations together with the hierarchi-
cal strategy to deal with the answer type prediction. In HiCoRe, we investigate
varieties of BERT classifiers, which could be configured on each hierarchical
level. By fine-tuning BERT-based models in HiCoRe, we could reach promising
results on the SMART dataset. Future improvement may include data augmenta-
tion and question-answer generation for training, especially for classes with fewer
examples. The source code is available at https://github.com/rungsiman/smart.

References

1. Abhishek, A., Anand, A., Awekar, A.: Fine-grained entity type classification by
jointly learning representations and label embeddings. pp. 797-807. Association for
Computational Linguistics, Valencia, Spain (Apr 2017)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A
nucleus for a web of open data. In: The semantic web, pp. 722-735. Springer (2007)

3. Bogatyy, I: Predicting answer types for question-answering.
https://cs224d.stanford.edu/reports/Bogatyy.pdf, accessed: 2020-09-25

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019 Con-
ference of NAACL-HLT. pp. 4171-4186 (2019)

5. Mihindukulasooriya, N., Dubey, M., Gliozzo, A., Lehmann, J., Ngomo,
A.C.N., Usbeck, R.: SeMantic AnsweR Type prediction task (SMART) at
ISWC 2020 Semantic Web Challenge. CoRR/arXiv abs/2012.00555 (2020),
https://arxiv.org/abs/2012.00555

6. Vrandeci¢, D., Krotzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78-85 (2014)

7. Xu, P., Barbosa, D.: Neural fine-grained entity type classification with hierarchy-
aware loss. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). pp. 16-25. Association for Computational Linguistics, New
Orleans, Louisiana (Jun 2018)

8. Yogatama, D., Gillick, D., Lazic, N.: Embedding methods for fine grained entity
type classification. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). pp. 291-296 (2015)

