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Abstract. This paper considers an answer type and category prediction challenge 
for a set of natural language questions, and proposes a question answering clas-
sification system based on word and DBpedia knowledge graph embeddings. The 
questions are parsed for keywords, nouns and noun phrases before word and 
knowledge graph embeddings are applied to the parts of the question. The vectors 
produced are used to train multiple multi-layer perceptron models, one for each 
answer type in a multiclass one-vs-all classification system for both answer cat-
egory prediction and answer type prediction. Different combinations of vectors 
and the effect of creating additional positive and negative training samples are 
evaluated in order to find the best classification system. The classification system 
that predict the answer category with highest accuracy are the classifiers trained 
on knowledge graph embedded noun phrases vectors from the original training 
data, with an accuracy of 0.793. The vector combination that produces the highest 
NDCG values for answer category accuracy is the word embeddings from the 
parsed question keyword and nouns parsed from the original training data, with 
NDCG@5 and NDCG@10 values of 0.471 and 0.440 respectively for the top 
five and ten predicted answer types. 

Keywords: Semantic Web, knowledge graph embedding, answer type predic-
tion, question answering. 

1 Introduction 

1.1 The SMART challenge 

The challenge [1] provided a training set of natural language questions alongside a sin-
gle given answer category (Boolean, literal or resource) and 1-6 given answer types. 
The provided datasets contain 21,964 (train - 17,571, test - 4,393) questions. The chal-
lenge was to achieve the highest accuracy for answer category prediction and highest 
NDCG values for answer type prediction. The methodology described in this paper 
attempts to achieve this using knowledge graph and word embeddings alongside ques-
tion parsing and multi-layer perceptron models. 

The target ontologies and pre-computed knowledge graph embeddings used in this 
project are built on the free and open knowledge graph DBpedia. DBpedia is a 
knowledge graph consisting of grouped information from various Wikimedia projects. 
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It can be queried with SQL-based query languages such as SPARQL. The English lan-
guage version classifies 4.2 million items with a variety of semantic types such as peo-
ples and places [2]. The pre-trained word embeddings from fastText were also used in 
the question answering system [3].  

 
1.2 Question answering 

Question answering is a computer science field concerned with answering questions 
posed to a system in natural language. The goal of a question answering system is to 
retrieve answers to natural language questions, rather than full documents or relevant 
passages as in most information retrieval systems. Open domain QA systems are com-
mercially available in products such as Apple’s Siri and Amazon’s Alexa [4] while 
closed domain QA systems are used in specialized fields, such as medical diagnosis. 

Question answering systems rely on very large datasets of collated information, such 
as Wikidata – a knowledge base which is parsed from Wikipedia. These knowledge 
bases can be structured in different ways: relational databases, or in Wikidata’s case, as 
a knowledge graph, to ensure maximum efficiency and to allow for more meaningful 
links within the objects in the knowledge base. 

Many modern QA algorithms learn to embed both question and answer into a low-
dimensional space and select the answer by finding the similarity of their features [5]. 

A question answering process ultimately needs to fulfil three steps: to parse the nat-
ural language question to allow for meaningful understanding of what the user is asking, 
to retrieve the relevant facts from the knowledge base, and to deliver the facts in an 
appropriate answer [6]. 
  
1.3 Knowledge graphs 

Knowledge graphs are a type of knowledge base: information is represented in a data 
structure. A knowledge graph is an abstract representation of information in the form 
of a directed labeled multi-graph, where nodes represent entities of interest and edges 
represent relations between these entities. Facts join these rules in the graph in the form 
of subject-predicate-object triples (or head, relation, tail) e.g., London, capital, United 
Kingdom [4] where the fact represented by this link in the knowledge graph is that 
London is the capital of the United Kingdom.   

The meaning, or semantics, of the data in the knowledge graph is encoded alongside 
the data, in the form of the ontology. An ontology is a set of logical rules that allow 
inference about the data in the knowledge graph that govern the object types and rela-
tionships between entities. This inference can allow implicit information to be derived 
from the explicit information in the graph. If knowledge graphs are provided with new 
information or a change in ontology, they are able to apply the rules to the new infor-
mation, and this can in turn increase accuracy in terms of e.g., question answering clas-
sification.  

Knowledge graph embeddings differ from each other based on three criteria: the 
choice of the representations of entities and relationships, the scoring function and the 
loss function. Representations of entities and relationships are most commonly ex-
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pressed using vector representations of real numbers, but common alternatives are ma-
trices and complex vectors. The subject-predicate-object triple can be represented as a 
Boolean tensor where Q can equal either True or False. The subject and object entities 
and the predicate are mapped to their latent representations and then to probability P ∈ 
[0, 1]. The scoring function estimates the likelihood of the subject-predicate-object 
triple by aggregating the information coming from it. The loss function defines the el-
ement of the system that needs to be minimised during knowledge graph embedding 
model training in order to provide the best result on test data [7].  

2 Related work 

Answer type prediction systems take form in many ways and pull on many parts of the 
question. Bogatyy [8] applies a transition-based neural network to parse syntactic struc-
ture of a question and using this infers the answer type. To do this, Bogatyy’s model 
annotates parts of the query using a type inventory (specifically Freebase, the precursor 
to Wikidata) to represent the types they may be associated with. For example, ‘who’ is 
annotated with ‘people’. This is done both at a coarser level - as with ‘who’ - and at a 
finer level, as with a phrase such as ‘horror movie’. The syntactic structure of the query 
is then annotated using globally normalized transition-based neural network parser. 
This model outperforms a logistic regression baseline that only uses the type inventory 
and doesn’t take into account syntactic structure of the queries.  

Answer type prediction can be used to improve semantic parsing, as in Yavuz et. al 
[9]. Their model uses a bidirectional LSTM model to infer answer types in conjunction 
with semantic parsing, which maps a natural language question into its semantic repre-
sentation – logical form that relates to meaning stored structurally in knowledge bases. 
It does this by recursively computing vector representations for the entities present in 
the question. Syntactic features are also used here in the form of dependency trees, 
before constructing a bidirectional LSTM neural network over this final representation 
of the question and predicting the answer type. Again, a combination of different meth-
ods, models and parsers improve the accuracy of the question answering system. 

Knowledge bases may suffer from lack of completion and potentially outdated or 
missing information. To counteract this, Sun. et. al [10] use knowledge bases alongside 
information mined directly from the Web to successfully improve question answering 
F1 score. Another source of inaccuracy from lack of information may be due to infre-
quency of answers and answer types within test data. Murdock et. al [11] adapted to the 
challenge associated with finding specialist answers to questions that featured on the 
quiz show Jeopardy. They predicted fine-grain answer types using DeepQA to analyse 
the question and produce candidate answers independent of answer type before using 
type coercion to choose the candidate answer most likely to be correct.  

3 The answer type prediction system 

The steps within the development of this system involve the parsing of the natural lan-
guage questions, the reuse of vectors using knowledge graph embeddings and/or word 
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embeddings and the parsed parts of the questions, the training of MLP classifiers using 
these vectors and the evaluation of the classifiers. The system is implemented in Py-
thon, using pre-existing libraries and knowledge bases: fastText [12], DBpedia [2] and 
SPARQL endpoint [13]. 

The system uses word and knowledge graph embeddings on the parsed questions - 
the word embeddings of the key 'wh' part of the question (what/when/why etc.), word 
embeddings of the parsed nouns, knowledge graph embeddings of word embeddings of 
the parsed noun phrases and word embeddings of the types of the knowledge graph 
entities. A knowledge graph access interface [16] is used to query DBpedia via 
SPARQL, the standard query language for Linked Open Data and semantic graph da-
tabases. Multi-layer perceptron classifiers, one per type/category, are trained on the 
concatenated vector, and the similarly vectorised test data is given a probability esti-
mate for each type by the related classifier. The top ten types in terms of probability are 
the type results. The categories are found in a similar way, with only the top type in 
terms of probability provided for evaluation.  

Additional heuristics are also applied to the system to increase performance. Some 
of which are provided by the SMART challenge [1]: 

-   If the category is "resource", answer types are ontology classes from the 
 DBpedia ontology. 

-   If the category is "literal", answer types are either "number", "date", "string" 
or "Boolean" answer type. 

-   If the category is "Boolean" the answer type is always "Boolean". 
 

3.1 Question parsing 

The question is first parsed for nouns using the Natural Language Toolkit (NLTK) [14] 
word_tokenize() and pos_tag() functions, which splits the question up into words and 
tags them with parts-of-speech taggers. The NN (common nouns), NNP (proper nouns), 
NNS (common noun plural forms) and NNPS (proper noun plural forms) tags are all 
collectively treated as nouns and added to a noun list for each question. Noun phrases 
(names etc.) are then parsed using the noun phrases function in TextBlob, a Python 
library for processing textual data. 

Finally, the ‘wh’ part of the question is extracted ('why', 'where', 'when', 'how', 
'which' etc.) using a search function. This is done to extract the option most likely to be 
important to the question as judged by the list above, e.g., ‘where’ is prioritised above 
‘when’, ‘when’ above ‘how’. This encompasses all the questions so the majority of 
them return a question keyword, while acknowledging how some of the questions were 
worded. For example, in the question “Where is the Empire State Building?” the 
‘where’ is most important, whereas in “Is the Empire State Building in New York?” the 
‘is the’ is the most important, although both questions contain ‘is the’. This list was 
generated by iteratively looking through the questions in the question data to check the 
existing list covered them, and if it didn’t a new keyword from that question was added 
to the list. The ordering of the list was subjective. 
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3.2 Building positive and negative samples   

Additional positive and negative training samples are created in order to optimize per-
formance of the classifiers. Negative training samples are created in two ways. The 
first: by shuffling the answer categories and types independent of the questions to get a 
random answer category/type associated with the questions. This is a coarse way of 
generating negative samples, and in likelihood leads to a less precise and accurate clas-
sifier than swapping out answer categories and types close to the original, according to 
the class hierarchy. 

The second method of creating negative samples involves using sibling types of 
types associated with the parsed question, accessed through the ontology. For the ex-
ample type ‘gymnast’, the ancestor type ‘athlete’ is accessed and then a disjoint type, 
descendant from the ancestor such as ‘basketball player’ is returned as a sibling type. 
This is an example of more fine-grained negative samples, which are useful for fine-
tuning the classifiers. 

Both methods of creating negative samples are used in the system, future work 
could use these individually to compare which has a greater effect on the results of the 
classification accuracy.  

Additional positive training data is created by getting alternative but similar entities 
to those associated with the parsed question, using the SPARQL endpoint. For example: 

- The original entity: http://dbpedia.org/resource/Serena_Williams 
- The associated type: http://dbpedia.org/ontology/TennisPlayer 
- The similar entity: http://dbpedia.org/resource/Roger_Federer 

This is implemented using the endpoint class in the KG access framework [16], which 
uses an API to access related entities and classes in the knowledge graph. Here, the 
getEntitiesForDBPediaClass() function is used. 

The vectors used to train the classifier consist of several concatenated vectors based 
on the above parsed parts of the question and word and knowledge graph embedding 
applications. The structure of the final concatenated vector is as follows: 

- First position: the word embedding of the ‘wh’ question part. 
- Second position: the word embedding of the set of nouns. 
- Third position: the knowledge graph embedding of the noun phrases. 
- Fourth position: the word embedding of the types (e.g. 

'http://dbpedia.org/ontology/OfficeHolder') of the found KG entities. 
 

3.3 Training and using classifiers 

A separate binary classifier is built for each semantic type and category in the data, the 
type in this case being the most fine-grained type associated with the question. The 
system then uses a one-vs-all strategy, in which binary classification for each task is 
used collectively as multi-class classification. Given a classification problem with N 
possible classes, N binary classifiers are trained - one for each possible outcome. These 
classifiers are trained on the previously described positive and negative specific and 
general samples built using pre-computed word and knowledge graph embeddings on 
the parsed questions, in the form of a stack of word vectors. 



6 

The model used in this project to train the classifiers is a multi-layer perceptron, a 
feed-forward, supervised neural network composed of several layers of neurons. An 
MLP model has a minimum of three layers: input, output and at least one hidden layer 
of neurons which extract appropriate features and weight components of the input layer. 
An MLP can be made more complex by increasing the number of hidden layers, should 
that be required. 

Once all classifiers are trained, test data can be passed through the classifiers and 
generate probabilities of the test data belonging to that category/type. The higher prob-
ability categories/types are considered those most likely to be associated with that test 
data point. 
Heuristics In addition to the classifiers, two sets of heuristics are applied to the system: 
the first applying rules based on the question keyword part of the question, and the 
second based on the rules described by the SMART challenge described above [1]. This 
helped improve the performance of the classifiers. 

 
3.4 Evaluation 

The evaluation of the system uses the evaluation script provided by the challenge.  
Answer category predication is considered as a multi-class classification problem and 
accuracy score as the key performance metric, as there are only three answer categories 
and little ambiguity between them. Accuracy is calculated via a direct comparison be-
tween the predicted type as returned by the system and the actual type. 

The pre-written evaluation code uses hierarchical target type identification for as-
sessing accuracy, in which the system provides a list of ten most likely target types and 
these are evaluated by judging the semantic distance between them and the actual types 
in the test data, applying decay as the ranking increases. The specific metric used is the 
metric lenient NDCG@k with a linear decay [15]. This allows several ranked potential 
types to be evaluated as a whole, giving a tailored overview of the accuracy of the 
classifier. 

4 Experiments 

4.1 System parameters 

System parameters to consider included length of the vector, amount of training data 
per classifier, ratio of positive and negative samples per classifier. The lengths of the 
vectors were 300 floats long for word embeddings and 200 floats long for the 
knowledge graph embeddings, the concatenated vectors being however long the vectors 
were individually combined. The amount of training data depended on how much was 
available for each type/category but was always more than or equal to 22 vectors, due 
to the creation of additional training data. Ideally this would have been greater, but the 
time taken to create more positive vectors constrained this. The ratio of positive and 
negative samples per classifier was always a 1:1 ratio. 

The hyperparameters of any MLP classifier are the number of hidden layers, the 
momentum and the learning rate. The number of hidden layers was set to the default of 
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the scikit-learn MLP classifier, which was a single hidden layer with 100 neurons. The 
momentum and learning rates were also the defaults. The maximum number of itera-
tions (in case of convergence taking longer) was set to 300 for each classifier. 

 
4.2 Original vs. additional training data 

Comparing the results from just using the original training data versus using the original 
training data with additional positive samples, and new negative samples allowed eval-
uation of the quality of the manufactured training data and discussion on whether the 
original training data was sufficient. The original training data was fairly limited in 
terms of spanning the distribution of types it did - with 17,528 rows and 310 types 
sometimes a type only had one or two samples with which to train a classifier. The 
creation of new positive training data allowed this to be expanded somewhat, although 
due to time limitations not as much additional training data was created as originally 
desired. 158,264 new positive samples were created and 28,557 new negative samples. 
While the overall data pot was still unbalanced, this increase in training data allowed 
each classifier to be trained on a balanced sample of positive and negative vectors that 
was larger than could be used with just the original training data. The more relevant 
negative samples also allowed the classifiers to be more fine-tuned. 

 
4.3 Vector structure comparisons 

Tests were carried out in which different parts of the vectors were used to train the 
classifiers. This allowed for a better understanding of the quality of different parts of 
the vectors, for example the word embedding of the noun phrases was relatively unsuc-
cessful compared to the knowledge graph embedding of the noun phrases or word em-
bedding of the nouns, so this vector was not used in the final classifier training experi-
ments and was deleted from the final concatenated vector. The results of these tests are 
in the tables below. 

5 Results 

Table 1. Original training data results. 

Vector component Category 
accuracy 

Type NDCG@5 Type NDCG@10 

Word embedded ‘wh’ 0.617 0.334 0.313 

Word embedded nouns 0.529 0.427 0.402 

KG embedded noun phrases 0.793 0.300 0.278 

Word embedded types of KGE entities  0.581 0.405 0.379 

WE ‘wh’ + WE nouns 0.487 0.471 0.440 

WE ‘wh’ + KGE noun phrases  0.617 0.337 0.314 
WE nouns + KGE noun phrases  0.546 0.412 0.388 
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WE ‘wh’ + WE nouns + KGE noun phrases 0.488 0.471 0.440 

WE ‘wh’ + KGE noun phrases + WE types of KGE entities  0.574 0.385 0.359 

All vectors combined  0.512 0.441 0.414 

 
Table 2. Additional training data results. 
 

Vector component Category 
accuracy 

Type NDCG@5 Type NDCG@10 

Word embedded ‘wh’ 0.616 0.350 0.330 

Word embedded nouns 0.617 0.343 0.318 

KG embedded noun phrases 0.616 0.336 0.334 

Word embedded types of KGE entities  0.598 0.400 0.380 

WE ‘wh’ + WE nouns 0.570 0.382 0.359 

WE ‘wh’ + KGE noun phrases  0.617 0.342 0.318 
WE nouns + KGE noun phrases  0.606 0.359 0.340 
WE ‘wh’ + WE nouns + KGE noun phrases 0.593 0.365 0.342 

WE ‘wh’ + KGE noun phrases + WE types of KGE entities  0.580 0.374 0.351 

All vectors combined  0.562 0.396 0.372 

6 Discussion and conclusions 

6.1 Discussion of results 

The better the category accuracy results are, the worse the type NDCG values, with a 
negative correlation of -0.89. This is unexpected, as one would expect a correct answer 
category prediction to facilitate a more accurate answer type prediction. It also makes 
it difficult to know which vector combination performs best overall. Also unexpected 
is that the additional created training data seems to produce no benefit in terms of clas-
sifier accuracy gain. The answer category prediction accuracy from the classifiers 
trained on the additional training data is a little higher than those trained on only the 
original training data, but the answer type prediction results are better with the original 
training data. 

Individually, the classifiers trained on knowledge graph embedded noun phrases 
vectors from the original training data produced the highest accuracy for answer cate-
gory prediction, while the classifiers trained on the word embeddings from the parsed 
question keyword and nouns parsed from the original training data produced the highest 
NDCG values for answer type prediction. Across all combinations, the NDCG@5 val-
ues are always higher than the NDCG@10 values - this makes sense considering the 
more types predicted by the system, the less relevant they become as their ranking gets 
lower. 

The final test set results submitted to the task returned an answer category prediction 
accuracy of 0.79 and answer type NCDG values of 0.31 and 0.30 respectively. These 
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results were gathered from their own test set so are not the same as those in the tables 
included here. The category prediction accuracies for the other participants in the chal-
lenge ranged from 0.74 to 0.98, while the NDCG values ranged from 0.54 to 0.79. For 
category accuracy, this places this system within a good range of results, while the type 
prediction under-performed compared to other submissions. 
 
6.2 Further conclusions and future work 

Given longer to work on the project, I would experiment with optimising hyperparam-
eters of the models and experimenting with different models to see if performance im-
proved. 

Due to the generalised question data, the wide ontology and the large knowledge 
base it uses, I believe this system could be similarly applied to other natural language 
questions and achieve similar results. The results are reproducible across different test 
data sets.  

There are several unanswered questions pertaining to the system results I would like 
to investigate further, for example the ineffectiveness of additional training data in 
terms of performance, and why an increase in answer category prediction accuracy is 
correlated with a decrease in NDCG values for the answer type prediction. A good 
starting point could be to compare the strategies that were used to generate more sam-
ples in terms of their effects on the accuracy of the classification system.  
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