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Abstract. A lot of knowledge is traditionally captured within tables
using free text entries. Due to the inherent issues of free text like typos
and inconsistent naming, integrating that knowledge with other data is
seriously hindered. Using semantic techniques to annotate the individ-
ual parts of a table can alleviate this task and support access to this
vast reservoir of knowledge. However, converting legacy tables into a se-
mantically annotated representation is a non-trivial challenge due to the
scarcity of context and the ambiguity and noisiness of the available con-
tent. In this paper, we report on our system “JenTab” developed in the
context of the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab2020). “JenTab” tries to create as much as
possible of semantic annotations for table parts. Then, iteratively reduce
these candidates by levering different levels of information to reach the
most specific solution.

1 Introduction

Tabular data such as CSV files are a common way to publish data and represent a
precious resource. However, it is hard to access and use directly due to the associated
metadata’s frequent lack and incompleteness. Furthermore, the data itself is often
noisy and ambiguous. Thus, integrating available tabular data oftentimes becomes
a labor-intensive task of cleaning the data and manually mapping across the different
representations of identical concepts.

One promising solution often referred to as semantic table annotation, is to ex-
ploit the semantics of a widely recognized Knowledge Base (KB). Here, the task is
to link individual table components like cells, columns, and their respective relations
to resources from KB such as classes (categories), entities (elements), and properties
(relations). Achieving such a semantic understanding benefits data integration, data
cleaning, data mining, machine learning, and other knowledge discovery tasks.

? Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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Fig. 1: SemTab tasks summary

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab2020)3 channels the efforts towards this goal. In its second year, it features
a series of four rounds. Each round consisting of thousands of raw tables [2] to be
annotated with concepts from Wikidata [5]. In each round, participating systems are
encouraged to annotate the provided tables and submit their results via AICrowd4

for evaluation. Annotations themselves are split into three tasks, namely Cell Entity
Annotation (CEA), Column Type Annotation (CTA), and Column Property Annota-
tion (CPA).

Given a data table and Wikidata as the target KB, CEA (cf. Figure 1a) links a cell
to an entity in KB. CTA (cf. Figure 1b) is the task of assigning a semantic type (i.e.,
a Wikidata class) to a column. Finally, CPA assigns a semantic relation (predicate)
between a column pair in the KB (cf. Figure 1c).

In this paper, we present JenTab, our approach to semantic table annotation. It
uses a collection of building blocks that either generate sets of candidates for a given
task (create), removes highly improbable candidates (filter), or chooses the most likely
one as the respective solution (select). These blocks are arranged in multiple sequences
to account for differences in their performance as well as chances of success.

The remainder of this paper is structured as follows. Section 2 describes our pipeline.
Section 3 discusses our results for all four rounds where available. Finally, Section 4
concludes the paper and gives an overview of our future work.

2 Approach

We base our approach on collecting mostly independent building blocks for each task
that follows Create, Filter and Select (CFS) pattern. The individual building blocks
differ in what information they use and how accurate their results are. They further
differ in their performance characteristics: On the one hand, this refers to the time
needed to execute them. On the other hand, creation and filtration blocks vary in the
number of candidates they output.

We maintain sets of candidates on different levels: For each cell, we maintain both
the candidates for the respective CEA task as well as those induced by this cell for

3 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
4 https://aicrowd.com/

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://aicrowd.com/
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Fig. 2: Pool of building blocks and their assignment to CFS-stage and task.
Create is indicated in red with a plus icon, Filter is represented in green and a
triangle sign and Select is shown in yellow with a circle symbol.

the corresponding CTA task. For each pair of cells in the same row, there is a set of
candidates for the respective property connecting both cells contributing to the CPA
task. The same is mirrored on the column level. Here, we keep the onset of candidates
for the CTA task and CPA candidates for the combinations of columns.

Building blocks usually pertain to only one task as well as one CFS-stage: Create
blocks generate candidates of possible solutions for the respective task. Filter blocks
reduce given sets of candidates. Here, we take a rather conservative approach and only
remove candidates that will not be a solution with a very high probability. Finally,
Select blocks pick a solution of a given set of candidates. Figure 2 summarizes the
developed building blocks, which will be described in detail below. Unless noted other-
wise, the building blocks only apply to columns of datatype OBJECT as classified in the
preprocessing. Further, to query the KB we rely on the official SPARQL endpoint of
Wikidata5, which imposes specific rate and execution time restrictions on our queries.

Preprocessing: Before the actual pipeline, each table is run through a preprocess-
ing step. This step has two main goals: First, we apply a series of steps to fix spelling
mistakes and other typos in the source data. We start with using ftfy6 to fix any en-
coding issues encountered. Next, we use a regular expression to split up terms that

5 https://query.wikidata.org/
6 https://github.com/LuminosoInsight/python-ftfy

https://query.wikidata.org/
https://github.com/LuminosoInsight/python-ftfy
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are missing spaces like in “1stGlobal Opinion Leader’s Summit”. Similarly, we remove
certain special characters like parentheses. The result of these steps are stored as a
cell’s “clean value”. Finally, we also apply an off-the-shelf spell checker, autocorrect7,
to fix typos resulting in an “autocorrected value” per cell.

Second, we determine the datatype of each column. While the system distinguishes
more datatypes, we aggregate to the ones having a direct equivalent in Wikidata, i.e.
OBJECT, DATE, STRING, and NUMBER. OBJECT-columns represent entities, whereas DATE-
and NUMBER-columns correspond to literals. We change the column datatype to STRING

if it was classified as OBJECT but not found among the given targets.

2.1 Create

In the following, we describe different building blocks that generate candidates for
individual tasks.

CEA Label Lookup: The Label Lookup is the foundation of the pipeline. It does
not depend on any prior information other than the cell’s content and their datatype.
We apply a series of strategies to retrieve candidates based on the cells’ initial, clean,
and autocorrected value. As each strategy succeeds in different cases, they are applied
in sequence until candidates are retrieved by one. All but the Generic Strategy use the
Wikidata Lookup Service8 to resolve from a given label to Wikidata entities.

– Generic Strategy compares the initial cell values with all Wikidata labels and
aliases using the Jaro-Winkler distance [6]. We iteratively9 lower the selection
threshold from 1 (exact matches) to 0.9 until a set of candidates is returned.

– Full Cell Strategy uses the initial cell values to query the lookup service.
– All Tokens Strategy splits a cleaned cell value into tokens removing all stopwords.

The lookup service is then queried with all possible orderings of these tokens.
– Selective Strategy removes any addition in parenthesis and uses the remainder to

query the lookup service.
– Token Strategy splits the cleaned cell value into tokens and queries for each token

in isolation.
– Autocorrection Strategy uses the autocorrected value from the preprocessing to

query the lookup service.

CEA by row and column: This approach applies in cases where we could deter-
mine candidates for at least some cells of datatype OBJECT within a row but failed for
the subject cell. Furthermore, for the subject column, existing candidates are required.
If all conditions are met, we retrieve entities from the KB that are instances of a sub-
ject column candidate and have a connection to at least one of the other candidates
in the same row. Subsequently, these entities are filtered such that the remaining ones
have a connection to each object cell in the same row. Finally, we compute the string
distances10 between the remaining labels and the initial cell value and discard all that
exceed a certain threshold. Finally, we add the remaining entities as candidates to the
subject cell in question.

7 https://pypi.org/project/autocorrect/
8 https://www.wikidata.org/w/api.php
9 To speed up the process, we use a many-to-many implementation for calculation [3].

10 Here, we use the Levenshtein distance [4] as implemented by edlib (https://pypi.
org/project/edlib/).

https://pypi.org/project/autocorrect/
https://pypi.org/project/edlib/
https://pypi.org/project/edlib/
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CEA by row and CEA by column: These two approaches work in a similar
fashion as CEA by row and column, but drop one of its preconditions respectively. In
CEA by row, a candidate does not have to be an instance of the current column’s CTA-
candidates. On the other hand, we apply CEA by column, when there are no other cells
of datatype OBJECT in the same row, or those cells have no candidates either.

CEA by subject: This approach is the inverse to CEA by row. Assuming that the
subject cell of a row has a set of candidates, but any other cell of datatype OBJECT does
not, it will fetch all entities from the KB that are directly connected to a subject cell
candidate. We filter the resulting entities again by their string-distance to the initial
cell value before adding them as candidates.

CTA: To find candidates for each column of datatype OBJECT, we first retrieve the
types for each cell individually based on its current list of CEA-candidates. Here, a type
denotes a combination of instanceOf (P31) and subclassOf (P279) relations. Following
experiences in earlier rounds, we also include the sequence P31/P279. Such that, it
provided correct candidates that would otherwise have been missed. The column’s
type candidates are then given by the set of types appearing for at least one cell in this
column.

CPA: Candidates for column pairs’ relations are generated by first retrieving can-
didates for the connections between cells of each row. We assume that there is a single
subject column; thus, all other cells have to be connected in some way to the cell of
that column.

First, we retrieve all properties for a subject cell’s candidates, including both literal
and object properties. Second, we try to match individual properties to the values of
other cells in the same row. If we have found a match, we add the respective property
as a candidate for the corresponding cell pair. Object properties are rather easy to
match. Here, we rely on previously generated CEA candidates of the respective target
and merely compare those with the object properties retrieved.

On the other hand, literal properties require more care. For them, we only consider
matches to a cell whose datatype has been determined as either DATE, STRING, or
NUMBER in the preprocessing. If we can not establish an exact match for a cell’s value,
we resort to fuzzy matching strategies depending on the corresponding datatype. For
DATE-properties (RDF-type: dateTime), we try parsing the cell value using different date
format patterns. If the parsing succeeds and both dates share the same day, month, and
year, we consider this a match. We omit time and timezones for this comparison. In
case of STRING-properties (RDF-type: string and langString), we extract words from
the given value and the retrieved Wikidata label. Then, we count how many words are
overlapped between the two string values. We consider a match if the overlap is above
a certain threshold. For NUMBER-properties (RDF-type: decimal) we tolerate a 10%
deviation to still be considered a match according to Equation 1. Such that, cell value
is the table cell value and property value is the retrieved property label.

Match =

{
true, if |1− cell value

property value
| < 0.1

false, otherwise
(1)

Once candidates for each pair of cells are determined, we aggregate them to retrieve
candidates on the column-level. This initial generation corresponds to the union of all
candidates found on the row-level for cells within the respective columns.
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2.2 Filter

Once we generate candidates for a particular task’s solution, we apply filter-functions to
sort out highly improbably candidates. For create-functions depending on previously
generated candidates, this can substantially reduce the queries required and overall
running time.

CTA-support: This filter works separately on each column of datatype OBJECT.
First, it calculates the support of all current CTA candidates concerning the cells of a
column. A cell supports a given CTA candidates if any of its current candidates has
the corresponding type11. This filter neglects all cells that are either empty or have
no CEA-candidates at the moment. Next, we remove all CTA-candidates from the
respective column that do not have support by at least 50% of the cells in this column.
Finally, we remove all CEA-candidates from the corresponding cells, which have no
types in the remaining CTA-candidates.

CEA by unmatched properties: After generating the properties for all cells on a
row-level, some CEA-candidates will have no connection to any other cells in the same
row. This filter removes these candidates, leaving only those that have a connection to
at least one cell in their respective row. It applies to all cells of datatype OBJECT.

CEA by property support: This filter applies only to subject cells. We compute
the support of a candidate as the number of cells in the same column it can be connected
to12. We determine the maximum support for each of a cell’s candidates and remove
all those with lower support.

CEA by string distance: Some create-functions generate a relatively large num-
ber of CEA-candidates. This filter reduces that number by removing candidates whose
label is too distant from the initial cell value. We rely on a normalized version of the
Levenshtein distance [4], which uses the length of the involved strings as a normalizing
factor. To keep any valid candidate, we resort to a rather conservative threshold, thus
retain all candidates with a value of at least 0.5 for any of its labels.

2.3 Select

The challenge calls for a specific solution for each task. Hence, at some point, we have
to select a single entry from the remaining candidates. As some of the methods below
cannot distinguish between the candidates in a certain situation, we apply them in
sequence until we find a solution. If only one candidate is left after the previous filter
steps, we pick it for an obvious reason.

CEA by string similarity: For the remaining candidates, we calculate the string
distance to the original cell value using the Levenshtein distance [4]. If there are multiple
candidates with the same distance, we break those ties using the “popularity” of the
respective candidates. We define popularity as the number of triples the respective
candidate appears in them. The intuition is that if there was no other way to distinguish
among the candidates in previous filter-steps, using the popularity results in the highest
probability of selecting the correct candidate.

11 Kindly refer to the definition of “type” in this context as given in the generation of
CTA-candidates before.

12 For non-subject cells, this value can only be of 0 or 1, depending on whether they
could be matched to the respective subject cell. This case is already covered in a
different filter and thus excluded here.
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Fig. 3: Example for CTA selection by LCS, the selected type is highlighted in green.

CEA by column: Sometimes filter-functions accidentally remove the correct so-
lution from consideration. As those cases are quite rare, thus affects a small number of
cells in a column. Further, the value of non-subject cells is often not unique throughout
their column. In case no candidate is left for a cell, this function looks for occurrences
of the same value in other cells of the same column. If we find a match, we apply their
solution to the current cell.

CTA by Least Common Subsumer (LCS): The candidates for the CTA task
do not stand in isolation but are part of a class hierarchy. Given an example of Court
Cases in R3, cell types are shown in Figure 3a. We first expand this hierarchy for
all remaining CTA-candidates, as shown in Figure 3b. Next, we compute the support
for all candidates similar to the respective filtering-function. We remove all candidates
with support less than the maximum. We choose the one with the longest path from
the root node of the hierarchy as a solution from the remaining candidates.

CTA by Direct Parents: This function selects the CTA by a majority vote. It will
fetch the type for all remaining CEA-candidates of a column and then select the one
appearing most often. In contrast to the previous definition of type, it only considers
the direct connections of an entity, i.e. instanceOf (P31) and subclassOf (P279) but
not their combination (P31/P279).

CTA by Popularity: In case the other methods failed to produce a result due to
ties, this function will break those ties by using the candidates’ popularity. Again, this
is given by the number of corresponding triples the candidate appears in the entirety
of the KB. As there is no semantic justification for this selection method, it is only
used as a matter of last resort.

CPA by Majority Vote: We compute the support for a given CPA-candidate.
Here, this refers to the number of remaining cell-candidate-pairs that use the respective
property. We subsequently select the candidate with the highest support as a solution.
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2.4 Sequence of Execution

Figure 4 shows the current state of our pipeline. However, this is only a snapshot
and subject to repeated additions and adaptations. The current order of blocks is the
result of experimentation using the available input tables as a source. After each run,
we scanned the results for tables lacking some mappings and investigated causes and
possible solutions. We aggregate the individual building blocks into groups for the sake
of brevity in the following description.

Group 1 forms the core of our pipeline and is responsible for most of the mappings.
Based on the CEA Label Lookup, it generates candidates for all three tasks and removes
only the most unlikely candidates from further consideration.

Group 2 represents a first attempt to find missing CEA-mappings based on the
context of a row and a column. Be kindly reminded that all create-blocks only work on
cells that currently have no candidates attached. So both blocks here only apply to cells
that got no mappings from Group 1 . CEA by Row and Column is put before CEA
by Row, as it relies on a narrower context and thus will provide more accurate results.
However, it might fail, e.g., when the current CTA-candidates do not include the proper
solution. In such cases, CEA by Row will loosen the requirements to compensate. If
either of these attempts provided new candidates, we re-execute the creation of CTA
and CPA candidates afterwards in Group 3 .

Group 4 is our first attempt at selecting solutions. After another filtering step on
CEA-candidates using the row context, we continue to select high-confidence solutions.
As hinted before, this might fail to produce proper mappings for a fraction of CEA-
targets. Groups 5 and 7 try to fill in the gaps for at least some of them. If new
candidates are found, groups 6 and 8 will filter and select from them.

Finally, Group 9 represents our means of last resort. Again, they only apply to
targets that for which we could not generate a solution before. Here, we assume that
not only parts of the context are wrong, but doubt every part of the context. The used
blocks will reconsider all candidates discarded in the previous steps and attempt to
find the best solution among them.

3 Experiences and Results

The different strategies building blocks and strategies described before reflect our con-
tinuous efforts in improving the system. The chosen modular approach allows us to
easily exchange individual components or provide backup solutions if the existing failed
to account for specific situations. A prime example is the evolution of strategies for
retrieving CEA-candidates based only on a cell’s content. For example, when we faced
spelling mistakes in datasets. We started by using only off-the-shelf spellcheckers. How-
ever, their results were not reliable and failed in particular for proper names. We used
Levenshtein-distances using a set of all Wikidata labels, which turned out to be time-
consuming. The Jaro-Winkler-distance and, in particular, the used implementation
allows us to compare individual labels against a multitude of values quickly. However,
it overemphasizes differences at the beginning of the string, which caused it to fail for
some labels. The presented solution is the current status of our efforts keeping in mind
both the effectiveness as well as the resource consumption of the respective strategies.

A reoccurring source of issues was the dynamic nature of Wikidata. Users enter new
data, delete existing claims, or adjust the information contained. On several occasions,
we investigated missing mappings of our approach only to find that the respective
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Fig. 4: JenTab: Arrangement of building blocks into a pipeline.

Table 1: Primary and Secondary scores for JenTab at SemTab2020-challenge

CEA CTA CPA

Rounds F1-Score Precision AF1-Score APrecision F1-Score Precision

Round 1 0.828 0.906 0.574 0.626 - -
Round 2 0.953 0.969 0.904 0.906 0.955 0.965
Round 3 0.935 0.952 0.859 0.863 0.917 0.928
Round 4 0.973 0.975 0.930 0.930 0.994 0.994

2T 0.374 0.541 0.624 0.669 NA NA

entity in Wikidata had changed. The challenge and ground truth were created at one
point in time, so using the live system will leave some mappings unrecoverable.

Table 1 reports our results as reported by AIcrowd. As our corresponding imple-
mentation was not ready in time, we could not submit a CPA solution in the first
round. We discovered at a later stage that the CTA solution has a bug in R1, we
missed the P31 from the query, we have retrieved only the generic parent. That’s why
we have a lower score in this task. One more difference about R1, it does not include
feedback from other tasks (filter concept). For example, the CEA solution relies only on
the string similarity between the cell value and the retrieved label and not considering
the semantic context by column types or properties. Moreover, we considered Auto-
correct since R3, for tackling the spelling mistakes in the dataset. We have computed
the generic lookup database given the unique cell values in the dataset against the
Wikidata labels via an optimized Jaro-Winkler Similarity implementation. We expect
higher scores if we run the current version of our pipeline on datasets of the rounds
again. The last row represents our scores at the Tough Tables [1] known as (2T), 180
special tables are added to Round 4. Scores are only available for the first two tasks.
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4 Conclusions & Future Work

In this paper, we have introduced our contribution to the SemTab2020-challenge,
“JenTab”. We have tackled three posed tasks, CEA, CTA, and CPA. We base our
solution purely on the publicly available endpoints of Wikidata, namely the Lookup
API and the SPARQL endpoint. Our system relies on the CFS pattern: It generates a
pool of candidates for each task, applies various filters given the feedback from other
tasks, and finally picks the most suitable candidate.

We see multiple different areas for further improvement. First, we would like to im-
prove the accuracy of the datatype prediction. Here, we still see some misclassifications,
especially regarding the DATE-datatype. Furthermore, certain components currently re-
quire substantial resources, either due to the number of computations necessary or to
a lacking performance of the SPARQL endpoint. While we can address the latter by
rewriting queries or re-designing the approach, the former offers plenty of opportunities
to accelerate the system.
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