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Abstract. In this paper we introduce AASExts, an algorithm for computing ad-
missible argumentation stage extensions—a.k.a. semi—stable extensions. Admis-
sible argumentation stage extensions play a decisive role in unifying two lines
of research in formal argumentation: admissible-based extensions as suggested
by Dung in his seminar paper; and the traditional approach based on dialecti-
cal evaluation of the defeat status of arguments. In this paper, we improve tech-
niques developed for other semantics, notably preferred semantics, as well as
leverage—for the first time—recent advances in All-SAT community. We prove
our proposed algorithm is sound and complete, and we show empirically that
our implementation significantly outperforms even sophisticated ASP-based and
SAT-based reduction approaches on existing benchmarks.
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1 Introduction

Research based on Dung’s model of argumentation [13]—that considers only abstract
arguments and attack relations between them—identified several semantics, viz. criteria
for selecting extensions, i.e. sub-sets of arguments acceptable in some sense. Pivotal
in Dung’s theory is the notion of admissible set, i.e. conflict-free and defending itself
against attacks. Building on top of such a notion, Dung [13] introduced the concept of
grounded, stable, and preferred semantics. An interested reader is referred to Baroni ef
al. [2] for an introduction.

However, as noted by Rescher [25] among others, dialectical argumentation has
two main characteristics. On the one side, arguments in favour of a conclusion can be
challenged by other (counter)arguments. On the other side, the acceptability status of an
argument—or of its conclusion—depends on the stage of the argumentation process, i.e.
the process of supporting or opposing arguments. Following this intuition, the accept-
ability status of an argument can be either undefeated or defeated [29]. Any argument
attacked by an undefeated argument should be defeated, and any defeated argument
must be attacked by at least one undefeated argument: this idea will then be re-named
as labelling [5, 7].

* Copyright (©2020 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).



An argumentation stage [29], then, is a set of arguments whose acceptability status
is either undefeated or defeated w.r.t. to the conditions above. Arguments whose ac-
ceptability status is neither undefeated nor defeated do not belong to such a stage. This
naturally leads to a notion of argumentation stage extension as a maximum—w.r.t. set
inclusion—argumentation stage. However, as shown in [30], this notion of argumenta-
tion stage does not guarantee the admissibility property proposed by Dung [13].

To unify these two lines of research, Verheij [30] proposed the notion of admissi-
ble argumentation stage extension as an argumentation stage with an admissible set of
undefeated arguments: this notion will be then re-named as semi-—stable extension [6,
7]. Semi-stable semantics has unique interesting properties, in particular it coincides
with stable semantics in the case a stable extension exists; and each admissible stage
extension is also a preferred extension.

Wallner et al. [31] proposed SSTMCS, an algorithm for computing admissible stage
extensions exploiting algorithms for computing minimal correction sets (MCS) [20, 21],
i.e. subset-minimal sets of clauses of a formula. argmat-sat [24] reimplemented a very
similar idea and scored first during the 2017 edition of the International Competition
on Computational Models of Argumentation. An alternative system, Aspartix [16], ex-
ploits answer set programming [23] for computing argumentation semantics extensions,
including admissible stage extensions.*

In this paper, we improve recent advancements in exploiting SAT solvers as NP-
oracles [14,9,11], and we propose AASExts, an algorithm for computing admissible
argumentation stage extensions that reduces the problem of identifying argumentation
stages to a SAT problem.> Our extensive experimental analysis supports the claim that
our proposal despite its simplicity, performs better than some of the existing approaches
looking at ASP-based and SAT-based reductions for computing admissible argumenta-
tion stage extensions. AASExts has been included in the version of the ArgSemSAT
solver that took part in the 2017 edition of the ICCMA competition. The competition
included a track focused on semi-stable extensions: ArgSemSAT achieved the second
place of the track.® For a comparison with the other systems that participated in the
2017 edition, we refer the readers to [18]. We refrained from comparisons with the
2019 edition as we are aware—from personal communication—that the organisers are
currently working on an extensive analysis also considering ArgSemS AT—that did not
participate in the 2019 edition—as a baseline.

In order to adhere to the current terminological standards [2, 26], hereafter we will
consider the alternative definitions provided in works from Caminada (et al. ) [6,5, 7],
summarised in Section 2. In Section 3 we discuss the theoretical foundations of our
proposal, AASExts, and in Section 4 the outcomes of our experimentation analysis.
Finally, in Section 5 we draw the conclusions and discuss future avenues of research.

‘http://www.dbai.tuwien.ac.at/research/project/argumentation/
systempage/

5 Implementation available at https://github.com/federicocerutti/
ArgSemSAT.

®http://argumentationcompetition.org/2017/index.html



2 Dung’s Argumentation Framework

An argumentation framework [13] consists of a set of arguments’ and a binary attack
relation between them.

Definition 1. An argumentation framework (AF') is a pair I' = (A, R) where A is a
set of arguments and R = A x A.

We say that b attacks a iff (b,a) € R, also denoted as b — a. The set of attackers of
an argument a will be denoted as a— = {b : b — a}, the set of arguments attacked by
a will be denoted asa™ = {b : a — b}.

We also extend these notations to sets of arguments, i.e. given E,S < A, E — a iff
dbeFEstb—aa— FEiffilbe Esta—b F— Siffibe E;ac Ss.t.b— a;
E-={b|JdacEb—aland ET ={b|Jac E,a — b}.

The range of a set of arguments S < Ais S U ST,

Each argumentation framework has an associated directed graph where the vertices
are the arguments, and the edges are the attacks.

The basic properties of conflict—freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Givenan AF I' = (A, R):

- aset S < Ais a conflict—free set of ' if fa,b € S s.t. a — b;

— an argument a € A is acceptable with respect to a set S € A of I' if Vb € A s.t.
b—a dceSstc—b;

— the function Fr : 2* — 24 such that Fr(S) = {a | a is acceptable w.r.t. S} is
called the characteristic function of I';

— a set S € Ais an admissible set of I' if S is a conflict—free set of I' and every
element of S is acceptable with respect to S, i.e. S < Fp(95).

An argumentation semantics o prescribes for any AF I a set of extensions, denoted
as &, (1), namely a set of sets of arguments satisfying the conditions dictated by o. Here
we need to recall the definitions of stable (denoted as ST), preferred (denoted as PR),
and admissible argumentation stage or semi—stable (denoted as SST) semantics.

Definition 3. Givenan AF I' = (A, R):

— aset S © A s astable extension of I', i.e. S € Est(I), iff S is a conflict-free set
ofTand S L ST = A;

— aset S < Ais apreferred extension of I, i.e. S € Epr(I), iff S is a maximal (w.r.t.
set inclusion) admissible set of I';

— aset S © Ais asemi-stable extension of I, i.e. S € Esst(I), iff S is an admissible
set where S U ST (i.e. its range) is maximal (w.r.t. set inclusion).

It is immediate to see that if a stable extension exists, the semi—stable extensions
coincide with the stable extensions.

7 In this paper we consider only finite sets of arguments: see Baroni et al. [3] for a discussion on
infinite sets of arguments.



Proposition 1. Givenan AF I' = {A,R), if Est(I") # &, then Est(I") = Esst ().
Proof. Immediate from Definitions 2 and 3.

The notion of complete extension has been introduced as an auxiliary definition
[13]. Given an AF I' = (A, R), aset S < A is a complete extension of I' iff S is a
conflict-free set of I" and S = Fr(.5).

Each extension .S implicitly defines a three-valued labelling of arguments, or di-
alectical evaluation: an argument a is labelled in (undefeated [29]) iff a € S; is labelled
out (defeated [29]) iff 3 b € S s.t. b — a; is labelled undec if neither of the above
conditions holds. In the light of this correspondence, argumentation semantics can be
equivalently defined in terms of labellings rather than of extensions [2].

Definition 4. Given a set of arguments S, a labelling of S is a total function Lab :
S — {in, out,undec}. The set of all labellings of S is denoted as £g. Given an AF
I' = (A,R), alabelling of I is a labelling of A. The set of all labellings of I is
denoted as £(I").

Given a labelling Lab, it is possible to write in(Lab) for {A|Lab(A) = in},
out (Lab) for {A|Lab(A) = out} and undec(Lab) for {A|Lab(A) = undec}.
Complete labellings can be defined as follows.

Definition 5. Let I' = (A, R) be an argumentation framework. A labelling Lab €
£(I") is a complete labelling of I" iff it satisfies the following conditions for any a € A:

- Lab(a) = in < Vb € a— Lab(b) = out;
- Lab(a) = out < Ibea : Lab(b) = in;
- Lab(a) = undec < Vb € a” Lab(b) # in A Ic €a™ : Lab(c) = undec.

The stable, preferred, and semi—stable labelling can then be defined on the basis of
complete labellings.

Definition 6. Let I' = (A, R) be an argumentation framework. A labelling Lab €
L&(I) is

— a stable labelling I' if it is a complete labelling of I' and there is no argument
labelled undec;

— a preferred labelling of I' if it is a complete labelling of I' maximising the set of
arguments labelled in;

— a semi-stable labelling of I" if it is a complete labelling of I" minimising the set of
arguments labelled undec;

In order to show the connection between extensions and labellings, let us recall
the definition of the function Ext2Lab,[2] returning the labelling corresponding to a
conflict—free set of arguments S.

Definition 7. Given an AF I' = (A, R) and a conflict—free set S = A, the corre-
sponding labelling Ext2Lab(.S) is defined as Ext2Lab(S) = Lab, where

- Labla) =in<eac S



- Lab(a) =out < 3be Sstb—a
- Lab(a) =undec s a¢ SAPbe Sstb—a

Caminada [5] shows that there is a bijective correspondence between the complete,
stable, preferred, and semi—stable extensions and the complete, stable, preferred, and
semi—stable labellings, respectively.

Proposition 2. Given an an AF I' = (A, R), Lab is a complete (stable, preferred,
semi—stable) labelling of I' if and only if there is a complete (stable, preferred, semi—
stable) extension S of I such that Lab = Ext2Lab(5).

Proof. See Baroni et al. [2].

A propositional formula over a set of boolean variables is satisfiable iff there exists
a truth assignment of the variables such that the formula evaluates to True. Checking
whether such an assignment exists is the satisfiability (SAT) problem. Following Cerutti
et al. [9] where the case of preferred semantics is considered, givenan AF I = (A, R)
we derive a boolean formula, called complete labelling formula and denoted as I,
such that each satisfying assignment of the formula corresponds to a complete labelling.
For each argument a € A we define three boolean variables, I,, O,, and U,, with the
intended meaning that I, is true when argument a is labelled in, false otherwise, and
analogously O, and U, correspond to labels out and undec. Formally, given I' =
(A, R) we define the corresponding set of variables as V(I') = Uaeca{la, Oa, Ua}.
Now we express the constraints of Definition 5 in terms of the variables V(I).

We reuse the same encoding that Cerutti et al. [11] has shown to have best perfor-
mance in the case of enumerating preferred extensions, namely:

mr= N\ ((Ia v Oa v Ua) A (—Ia v —0a) A
ac A
(—Ia v —=Ua) A (O v ﬁUa))

A Iy A =0, A —U,
{ala==g}

A\ /\ /\ _‘Ia \ Ob
acA {b | b—a}

A /\ =0, v \/ Iy
acA (b | b—a}

A /\ /\ =U, v =1y
acA {b | b—a}

A /\ =U, v \/ Uy
acA {b | b—a}

ITr encodes in CNF the conditions Lab(a) = in = Vb € a~ Lab(b) = out;
Lab(a) = out = FJb e a™ : Lab(b) = in; Lab(a) = undec = Vb € a~— Lab(b) # in
A Jcea” : Lab(c) = undec; together with the requirement of it being a total function.



3 Overview of AASExts

In this section we introduce AASExts, our proposal for computing semi—stable exten-
sions. To this aim, let us first consider the following intermediate theoretical results.

Firstly, to strictly expand the range of a complete extension—in order to minimise
the set of undecided arguments given a complete labelling Lab—it is necessary to trans-
form a label from undec into in or out. However, no constraints should be imposed
on the arguments labelled either in or out in Lab. Those arguments are free to change
their labels, provided that they do not become undec.

Lemma 1. Ler I' = (A, R) be an argumentation framework and Lab € £(I") a com-
plete labelling.

VLab' € £(I") such that undec(Lab) D undec(Lab’) Ja € A such that Lab(a) =
undec and Lab' (a) = {in, out}, and #b € A such that Lab(b) # undec and Lab' (b) =
undec.

Proof. Immediate from Definition 5.

Secondly, given the freedom of argument labelled in or out to swap their labels
mentioned above, there might be multiple semi—stable labellings having the same set
of undec arguments: they differ on the basis of the labels of the remaining arguments
labelled either in or out.

Lemma 2. Let I' = (A, R) be an argumentation framework and Lab € £(I") a semi—
stable labelling.

Then {Lab'|Lal is semi-stable and undec(Lab’) =  undec(Lab)}
{Lab'|Lab is complete and undec(Lab’) = undec(Lab)}.

Proof. First, semi—stable labellings are complete by Definition 6. On the other hand,
given a complete labelling Lab’ such thatundec(Lab’) = undec(Lab), undec(Lab’)
is minimal since Lab is semi—stable, thus Lab’ is semi—stable.

AASEXxts resorts to several external functions: STExts, SS, I_A, U_A, and ALLSS.
STExts is an algorithm for computing stable extensions. For the sake of completeness,
Algorithm 1 shows a straightforward implementation of STExts: all the complete la-
bellings with no undec arguments are enumerated at line 2 and their in arguments form
stable extensions, cf. Definitions 6 and 7, and Proposition 2.

SSis a SAT solver—in this paper we used MiniSAT [15]—able to prove unsatisfia-
bility too: it accepts as input a CNF formula and returns a variable assignment satisfying
the formula if it exists, ¢ otherwise. |_A (resp. U_A) accepts as input a variable assign-
ment concerning V(1) and returns the corresponding set of arguments labelled as in
(resp. undec).

ALLSS is a solver for the All-SAT problem: in this paper we used the proposal
illustrated in [34]. The All-SAT problem [22] deals with determining all the satisfying
assignments that exist for a given propositional logic formula. A typical All-SAT solver
is based on iteratively computing satisfying assignments using a traditional Boolean
satisfiability (SAT) solver and adding blocking clauses which are the complement of
the total/partial assignments.



Algorithm 1 STExts
Input: ' = (A, R)
Output: Es7(I7) < 24

1: SST(F) = @

2: for each st € ALLSS (H[‘ AN ﬂUa> do
acA

3 Est(IN) :=Est(I) U {I_A(st)}

4: end for

5: return Es7(1)

AASExts is presented in Algorithm 2. At first it checks whether stable extensions
exist (1. 1-4): in that case Es1(I") = Esst(I") (Proposition 1).

Otherwise, it enforces a disjunctive clause to find at least one argument labelled in
(1. 5) and then (1. 9-16) it starts the process to find a complete labelling with minimal
set of undec arguments (Lemma 1), i.e. a semi—stable labelling.

Then it enumerates (1. 19-23) all the semi—stable labellings that share the same set
of undec arguments (Lemma 2) before searching for a new semi—stable labelling with
a different set of undec arguments (Definition 6).

Theorem 1. Let I' = (A, R) be an argumentation framework: AASExts(I") = Esst(I).

Proof ((Sketched due to space constraints)). The proof is analogous to [11, Theorem 2],
and it builds on top of Proposition 1, Lemmas 1 and 2, and Definition 6. From Propo-
sition 1, if stable extensions exist, they also are semi—stable. Otherwise, a CEGAR-like
[14] approach to minimise the set of undec arguments is performed.

To illustrate the algorithm, let us consider the following example evolving the one
introduced by Verheij [30].

Example 1. Let It = (A1, R1) where A; = {a,b,c,d,e,f} and
Ry = {<a7 b>v <b’ a>7 <a’ C>, <C, d>a <da e>a <e7 C>, <f, f>}

-

— N\

Fig. 1. I as presented in Example 1

With reference to Example 1—depicted in Figure 1—Iet us suppose at 1. 10 of
Algorithm 2 the compl assignment identified is such that the corresponding labelling
Labeompr = {in(Labeompt), out(Labeompr), undec(Labeompr)) = {{b},{a},



{c,d,e,f}). Then 1. 13 of Algorithm 1 enforces that arguments in in(Labcompr) U
out (Labeompr) = {a,b} can be labelled either in or out; and 1. 14 requires that at
least one argument belonging to undec(Labeompi) = {c,d, e, f} should be labelled
either in or out.

During the second execution of the loop (1. 9-16), at 1. 10 the only compl’ assign-
ment that satisfies the additional constraints is such that Labcompr = {{a,d}, {b,c, e},
{f}). Similarly as above, Algorithm 2 tries to label f either in or out, but at the third
execution of the loop (1. 9-16) there is no further assignment able to satisfy such an
additional constraint, therefore the loop is exited with sstcand = compl’ a variable
assignment equivalent to a semi-stable labelling.

It is worth noticing that Est([1) = & because f is self-defeating and it is isolated
from the rest of the framework, therefore in this case Ess7(I) # Est(I71). However, if
we restrict '] to the set of arguments {a, b, ¢, d, e}, i.e. we ignore f and its self-defeating
attack, then the stable and semi—stable extensions would coincide.

Finally, it also worth noticing that Esst(I1) # Epr(I1). Indeed, there is another
maximal admissible set of arguments, namely {b}, i.e. a second preferred extension.
However, its range—{b, a}—is not maximal.

4 Evaluation of AASExts

In this section, we present the result of a large experimental analysis comparing the per-
formance of AASExts with respect to state-of-the-art approaches, on sets of differently-
shaped AF's.

We implemented AASExts in C++. As per SS, we relied on MiniSAT [15], a small,
complete, and efficient SAT-solver in the style of conflict-driven learning. Moreover, we
considered the ALLSS developed by Yu et al. [34]. As mentioned above, a typical All-
SAT solver is based on iteratively computing satisfying assignments using a traditional
SAT solver and adding blocking clauses which are the complement of the total/partial
assignments. Yu et al. [34] argue that such an algorithm is doing more work than needed
and introduce more efficient algorithms: they also use MiniSAT as underlying SAT
solver for their implementation.

4.1 Experimental Setup

We randomly generated 2,500 AF's based on five different graph models: Barabasi-
Albert [1], Erdos-Rényi [17], Watts-Strogatz [32], graphs featuring a large number of
stable extensions (hereinafter StableM), and a modified version of StableM (hereinafter
SemiStableM) adding an artificial self-defeating attack detached from the rest of the
graph—similarly to Example 1, cf. Figure 1—thus ensuring that no stable extension
exists.

Erdos-Rényi graphs [17] are generated by randomly selecting attacks between ar-
guments according to a uniform distribution. While Erdos-Rényi was the predominant
model used for randomly generated experiments, [4] investigated also other graph struc-
tures such as scale-free and small-world networks. As discussed by Barabasi and Albert
[1], a common property of many large networks is that the node connectivities follow a



Algorithm 2 AASExts

Input: I" = (A, R)

Output: Ess7(I) < 2A

Esst(I') := STExts({A,R))

ifgSST(F) # (& then
return ESST(F)

end if

ocnf = Ip A\ I,
ac A

repeat
ienf = ocnf
sstcand =
repeat
compl := SS(icnf)
if compl # € then
sstcand = compl
icnf = dcnf A N\ (In v Oy)
a¢U,A(compl)
14: ienf = denf AN —U,
acU_A(compl)

—_— =
S D 2 - AN U o i

—_ =
W N

15: end if
16:  until (compl # ¢)
17:  if sstcand # (& then

18: EssT(I') = Esst(I") U {I_A(sstcand)}
19: sU = N\ U,
aEUA(sstcand)

20: sIO = N\ (I, v O,)
a¢U,A(sstcand)

21: for each sst € ALLSS(ocnf A sU A sIO) do
22: SSST(F) = 5SST(F) U {LA(SSt)}

23: end for

24: ocnf = ocnf A/ —U,

ae U,A(sstcand)
25:  endif

26: until (sstcand # &)
27: if gSST(F) = (& then
28: Esst(I') = {T}
29: end if

30: return Esst(I")

scale-free power-law distribution. This is generally the case when: (i) networks expand



continuously by the addition of new nodes, and (ii) new nodes attach preferentially
to sites that are already well connected. Moreover, Watts and Strogatz [32] show that
many biological, technological and social networks are neither completely regular nor
completely random, but something in the between. They thus explored simple models
of networks that can be tuned through this middle ground: regular networks rewired to
introduce increasing amounts of disorder. These systems can be highly clustered, like
regular lattices, yet have small characteristic path lengths, like random graphs, and they
are named small-world networks by analogy with the small-world phenomenon.

The AF's have been generated by using AFBenchGen?2 [10], submitted as a pos-
sible generator for the ICCMA 17. It is worthy to emphasise that Watts-Strogatz and
Barabasi-Albert produce undirected graphs: in this work, differently from Bistarelli et
al. [4], each edge of the undirected graph is then associated with a direction following
a probability distribution, that can be provided as input to AFBenchGen2. Such prob-
ability, provided as a parameter, varies between 0 and 1: if the parameter is 0, then the
produced graph is acyclic; if it is 1, each attack is mutual.

The fourth set has been generated using the code provided in Probo [12] by the
organisers of ICCMA-15 [27].% Finally, the SemiStableM set has been generated by
adding to each AF' of the StableM set and additional self-attacking argument.

In our experimental analysis we considered SSTMCS [31] and Aspartix [16]. All
the considered benchmarks, and raw results, are available to download®.

Experiments have been run on a cluster with computing nodes equipped with 2.5
Ghz Intel Core 2 Quad Processors, 4 GB of RAM and Linux operating system. A cut-
off of 600 seconds was imposed to compute the extensions for each AF similarly to
what chosen in ICCMA 17. For each solver we recorded the overall result: success (if it
solved the considered problem), crashed, timed-out or ran out of memory. Unsuccess-
ful runs—crashed, timed-out or out of memory—were assigned a runtime equal to the
cutoff.

Performance are measured in terms of IPC score and Penalised Average Runtime.
The IPC score, borrowed from the planning community and exploited in recent editions
of the International Planning Competition [28],!° is defined as follows. For a solvers S
and an AF'a, score(S, a) is defined as:

0 if a is not successfully analysed
score(S,a) =

1+log10(T7

L oG, otherwise

X
where T, (S) is the CPU time needed by a solver S to successfully analyse the AF a
and T* is the CPU-time needed by the best considered solver, otherwise. The total IPC
score is the sum the scores achieved on each considered AF. Runtimes below 1.0 sec
get by default the maximal score of 1.

The Penalised Average Runtime (PAR score) is a real number calculated by count-
ing (i) runs that fail to solve the considered problem as ten times the cutoff time (PAR10)

8 http://argumentationcompetition.org/2015/results.html
® https://helios.hud.ac.uk/scommv/storage/SemiStable2017
10 http://www.icaps-conference.org/index.php/Main/Competitions



and (ii) runs that succeed as the actual runtime. PAR scores are commonly used in au-
tomated algorithm configuration, algorithm selection, and portfolio construction, [19]
because using them allows runtime to be considered while still placing a strong empha-
sis on high instance set coverage.

In the following we rely on the Wilcoxon Signed-Rank Test (WSRT) in order to
identify significant subsets of data [33]. The Wilcoxon Signed-Rank test is used for
comparing performance in terms of PAR10 of two solvers. From this perspective, “no
correlation” between the observed results indicates that it is equally like that, given an
AF from the considered set of benchmarks, one solver provides a solution faster than
the second solver, than the vice-versa. For the purposes of this analysis, the Wilcoxon
sign-rank test is appropriate because it does not require any knowledge about the sample
distribution, and makes no assumption about the distribution. In our analysis we consid-
ered that the null-hypothesis, i.e. the performance of compared solvers is statistically
similar, is accepted when p-value > 0.05. Otherwise, the null-hypothesis is rejected,
and therefore the compared solvers performance is statistically different.

4.2 Experimental Results

Table 1 shows the performance, in terms of PAR10, coverage and IPC score, of the
considered approaches on the different testing sets.

Firstly, for each testing set, the performance of the solver that achieved the best
PAR10 score are always statistically better than those of the other considered solvers.

Secondly, leaving aside the benchmarks of Barabasi—discussed in the following—
AASExts shows outstanding performance. This is specially the case of Erdos-Rényi
and Watts-Strogatz benchmarks, where the current state-of-the-art approaches often—
if not always—fail to provide an answer in the given time. This seems consistent with
some problems highlighted by Cerutti ef al. [8] w.r.t. Aspartix in the case of preferred
extensions.

The case of Barabasi-Albert benchmarks shows the main weakness of AASExts,
namely the maximisation process where labels are left free to float between in and
out. Figure 2 depicts a (small) example of an AF' that would belong to the Barabasi-
Albert benchmark—the actual benchmarks are composed of hundreds of arguments,
Figure 2 is for illustration purpose only. Given the large occurrence of cycles in such
a structure, AASExts will spend a substantial amount of time within the inner loop (cf.
Algorithm 2 1. 9-16) seeking for a maximal range, especially if the first assignment
from SS (cf. Algorithm 2 1. 10) contains a large set of undec arguments. A way to
mitigate this situation is to hack the MiniSAT code in order to prioritise a specific set
of variables, i.e. injecting in MiniSAT the knowledge that it should search towards a
maximal range. It is of little surprise that SSTMCS results to be the best solver in
this case since it exploits efficient techniques for computing minimal correction sets
(MCS) [20,21] that are subset-minimal sets of clauses of a formula, thus solving the
dual problem of maximising the range, namely to minimise the set of undec arguments.

Lastly, the similarities of the results between SemiStableM and StableM suggest
that the introduction of the self-defeating argument for enforcing the absence of sta-
ble extensions—cf. Example 1 and Figure 1—has no significant impact on solvers’
performance. AASExts performs slightly better—according to the IPC metric—on the



Table 1. IPC score, PAR10 and coverage—percentage of A F's successfully analysed of the con-
sidered solvers—for solving the semi—stable enumeration problem on the complete testing set.
Best results in bold.

Barabasi-Albert
IPC PARI10 Coverage

Aspartix 1.1 5954.1 0.8
SSTMCS 416.9 1012.6 84.3
AASExts 157.8 37184 479

Erdos-Rényi

IPC PARI10 Cov.
Aspartix 0.0 6000.0 0.0
SSTMCS 0.0 6000.0 0.0
AASExts 263.0 2918.8 52.6

SemiStableM

IPC PARI10 Cov.
Aspartix 126.1 3273.0 48.8
SSTMCS 253.8 2568.1 58.2
AASExts 312.8 2141.0 65.2

StableM

IPC PARIO Cov.
Aspartix 116.3 3428.8 46.0
SSTMCS 242.6 2616.7 57.4
AASExts 314.9 2147.8 65.0

Watts-Strogatz
IPC PARI0 Cov.

Aspartix  17.9 5429.0 11.0
SSTMCS 8.3 5789.9 4.6
AASExts 395.0 1376.9 79.0

StableM domain no doubt because a large of benchmark instances (61%) have a stable
extension, and thus it can fully exploit the AIl-SAT solver.

However, it is interesting to note that the coverage is slightly higher in the case of
SemiStableM. If an AF in StableM has a stable extension, AASExts will compute the
semi-stable extensions by using STExts. However, the AF' in SemiStableM, derived
from the previous one by adding a self-defeating argument, will not have a stable exten-
sion and thus AASExts cannot exploits STEXts. In 0.2% of AF's in SemiStableM, the



Fig. 2. A small example of an AF of the class Barabasi-Albert

procedure in AASExts identifies semi-stable extensions before the cut-off time, while
it fails when searching for stable extensions in the corresponding original AF in Sta-
bleM. We will investigate further this behaviour to identify the reasons those relatively
rare cases are potentially problematic for the All-SAT solver exploited by STEXts.

5 Conclusion

In this paper we introduced AASExts, an efficient algorithm for computing admissible
argumentation stage extensions, a.k.a. semi-stable extensions, in abstract argumenta-
tion. We proved its correctness and we demonstrated its performance against existing
approaches in literature, and overall this approach scored second at the ICCMA 2017
for the semi-stable semantics track. Moreover, to our knowledge, this is the first ap-
proach exploiting results from the All-SAT research to solve abstract argumentation
problems.

An experimental analysis conducted on a large number of A F's based on five differ-
ent graph models, has shown that: (i) AASExts is generally able to deliver better per-
formance than existing state-of-the-art approaches; (ii) the main weakness of AASExts
comes from its maximisation process, that can hardly cope with cases in which labels
keep floating between in and out values, as in the Barabasi-Albert set, and (iii) the
introduction of self-defeating arguments for enforcing the absence of stable extensions
has no significant impact on considered solvers’ performance.



As part of future work, we aim at deriving an efficient algorithm for computing
(non-admissible) argumentation stage extensions, as well as for the skeptical/credulous
acceptance of arguments. Moreover, we believe that it is the right time to start com-
puting semantics evaluation considering the inner argument structure, therefore we will
look at structured argumentation and how to identify argumentation stages, as well as
other Dung’s related semantics, possibly without the need of first deriving a Dung’s
argumentation framework as an intermediate system of representation.
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