
A Concurrent Language for Argumentation?

Stefano Bistarelli1[0000−0001−7411−9678] and Carlo Taticchi2[0000−0003−1260−4672]

1 University of Perugia, Italy - stefano.bistarelli@unipg.it
2 Gran Sasso Science Institute, Italy - carlo.taticchi@gssi.it

Abstract. While agent-based modelling languages naturally implement
concurrency, the currently available languages for argumentation do not
allow to explicitly model this type of interaction. In this paper we in-
troduce a concurrent language for handling process arguing and com-
municating using a shared argumentation framework (reminding shared
constraint store as in concurrent constraint). We introduce also basic
expansions, contraction and revision procedures as main bricks for en-
forcement, debate, negotiation and persuasion.

1 Introduction

Many applications in the field of artificial intelligence aim to reproduce the hu-
man behaviour and reasoning in order to allow machines to think and act accord-
ingly. One of the main challenges in this sense is to provide tools for expressing
a certain kind of knowledge in a formal way so that the machines can use it
for reasoning and infer new information. Argumentation Theory provides formal
models for representing and evaluating arguments that interact with each other.
Consider, for example, two people arguing about whether lowering taxes is good
or not. The first person says that a) lowering taxes would increase productivity;
the second person replies with b) a study showed that productivity decreases
when taxes are lowered; then, the first person adds c) the study is not reliable
since it uses data from unverified sources. The dialogue between the two people
is conducted through three main arguments (a,b and c) whose internal structure
can be represented through different formalisms [15, 19], and for which we can
identify the relations b attacks a and c attacks b. In this paper, we use the rep-
resentation for Argumentation Frameworks introduced by Dung [10], in which
arguments are abstract, that is their internal structure, as well as their origin, is
left unspecified. Abstract Argumentation Frameworks (AFs), have been widely
studied from the point of view of the acceptability of arguments and, recently,
several authors have investigated the dynamics of AFs, taking into account both
theoretical [17, 5] and computational aspects (for example, a special track on dy-
namics [4] appeared in the Third International Competition on Computational
Models of Argumentation).

Logical frameworks for argumentation, like the ones presented in [9, 11], have
been introduced to fulfil the operational tasks related to the study of dynamics

? Copyright c©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

in AFs, such as the description of AFs, the specification of modifications, and
the search for sets of “good” arguments. Although some of these languages could
be exploited to implement applications based on argumentation, for instance to
model debates among political opponents, none of them consider the possibility
of having concurrent interactions or agents arguing with each other. This lack
represents a significant gap between the reasoning capacities of AFs and their
possible use in real-life tools. As an example, consider the situation in which
two debating agents share a knowledge base, represented by an AF, and both
of them want to update it with new information, in such a way that the new
beliefs are consistent with the previous ones. The agents can act independently
and simultaneously. Similarly to what happens in concurrent programming, if no
synchronization mechanism is taken into account, the result of update or revision
can be unpredictable and can also lead to the introduction of inconsistencies.

Motivated by the above considerations, we introduce a concurrent language
for argumentation (CA) that aims to be used also for modelling different types
of interaction between agents (as negotiations, persuasion, deliberation and di-
alogues). In particular, our language allows for modelling concurrent processes,
inspired by notions such as the Ask-and-Tell constraint system [18], and using
AFs as centralised store. The language is thus endowed with primitives for the
specification of interaction between agents through the fundamental operations
of inserting (or removing) and checking arguments and attacks. Besides speci-
fying a logic for argument interaction, our language can model debating agents
(e.g., chatbots) that take part in a conversation and provide arguments. Al-
chourrón, Gärdenfors, and Makinson (AGM) theory [1] gives operations (like
expansion, contraction, revision) for updating and revising beliefs on a knowl-
edge base. We propose a set of AGM-style operations that allow for modifying
an AF (which constitutes the shared memory our agents access to communicate)
and changing the status of its arguments so as to allow the implementation of
more complex operations, like negotiation and the other forms of dialogues.

The rest of this paper is structured as follows: in Section 2 we recall some
notions from Argumentation Theory; in Section 3 we define a labelling seman-
tics for AFs upon which the agents build their beliefs; in Section 4 we present
the syntax and the operational semantics of our concurrent language, together
with some high level operations that realize the interaction between agents; in
Section 5 we discuss existing formalisms from the literature that bring together
argumentation and multiagent systems, highlighting the contact points and the
differences with our work; Section 6 concludes the paper with final remarks and
perspectives on future work.

2 Abstract Argumentation Frameworks

Argumentation is an interdisciplinary field that aims to understand and model
the human natural fashion of reasoning. In Artificial Intelligence, argumentation
theory allows one to deal with uncertainty in non-monotonic (defeasible) reason-
ing, and it is used to give a qualitative, logical evaluation to sets of interacting

arguments, called extensions. In his seminal paper [10], Dung defines the build-
ing blocks of abstract argumentation: an Abstract Argumentation Framework is
a pair 〈Arg,R〉 where Arg ⊆ U is a set of arguments belonging to a “universe” U
and R is a binary relation on Arg representing attacks3. AFs can be represented
through directed graphs, that we depict using the standard conventions. For two
arguments a, b ∈ Arg, (a, b) ∈ R represents an attack directed from a against b.
Moreover, we say that an argument b is defended by a set B ⊆ Arg if and only
if, for every argument a ∈ Arg, if R(a, b) then there is some c ∈ B such that
R(c, a).

The goal is to establish which are the acceptable arguments according to
a certain semantics, namely a selection criterion. Non-accepted arguments are
rejected. Different kinds of semantics have been introduced [10, 2] that reflect
qualities which are likely to be desirable for “good” subsets of arguments. In
the rest of this paper, we will denote the extension-based semantics (also re-
ferred to as Dung semantics), namely admissible, complete, stable, preferred,
and grounded, with their respective abbreviation adm, com, stb, prf and gde,
and generically with σ. Besides enumerating the extensions for a certain seman-
tics σ, one of the most common tasks performed on AFs is to decide whether
an argument a is accepted in some extension of Sσ(F) or in all extensions of
Sσ(F). In the former case, we say that a is credulously accepted with respect to
σ; in the latter, a is instead sceptically accepted with respect to σ. The grounded
semantics, in particular, coincides with the set of arguments sceptically accepted
by the complete ones.

Many of the above-mentioned semantics (such as the admissible and the com-
plete ones) exploit the notion of defence in order to decide whether an argument
is part of an extension or not. The phenomenon for which an argument is ac-
cepted in some extension because it is defended by another argument belonging
to that extension is known as reinstatement [6]. In that paper, Caminada also
gives a definition for a reinstatement labelling, a total function that assigns a
label to the arguments of an AF: an argument is labelled in if all its attackers
are labelled out, and it is labelled out if at least an in node attacks it; in all
other cases, the argument is labelled undec. A labelling-based semantics [2] asso-
ciates with an AF a subset of all the possible labellings. Moreover, there exists a
connection between reinstatement labellings and the Dung-style semantics: the
set of in arguments in any reinstatement labelling constitutes a complete exten-
sion; then, if no argument is undec, the reinstatement labelling provides a stable
extension; if the set of in arguments (or the set of out arguments) is maximal
with respect to all the possible labellings, we obtain a preferred extension; finally
the grounded extension is identified by labellings where either the set of undec
arguments is maximal, or the set of in (respectively out) arguments is maximal.

3 We introduce both U and Arg ⊆ U (not present in the original definition by Dung)
for our convenience, since in the concurrent language that we will define in Section 4
we use an operator to dynamically insert arguments from U to Arg.

3 A Four-state Labelling Semantics

Reinstatement labelling allows to inspect AFs on a finer grain than Dung’s
extensions, since the undec label identifies arguments that are not acceptable,
but still not directly defeated by accepted arguments. However, the information
brought by the undec label can be misleading. Consider for example an AF
in which two arguments a and b are attacking each other (Figure 1, left). A
possible labelling for such a framework would label both arguments as undec.
Indeed, we cannot decide whether, in general, it is worth accepting a (or b).
Consider now a second AF composed of two arguments c and d where only c
attacks d and both arguments are labelled as undec (Figure 1, right). At this
point, one could conclude that it is not possible to univocally establish whether
c is a good argument or not, similarly to what happens in the previous example.
However, in this case the fact of c being undec does not depend on the structure
of the framework, but rather on the choice of just ignoring it.

Fig. 1. Two AFs where all arguments are labelled undec. The one on the left has
two undistinguishable arguments a and b, while argument c of the AF on the right is
arguably better than d, from the point of view of acceptability.

Ambiguity of the undec label is solved in the four-state labelling introduced
by [13], where arguments that are assigned the label + are accepted, those that
are assigned the label − are rejected, those that are assigned both + and − are
neither fully accepted nor fully rejected, and those that are not considered at all
are assigned the empty set ∅. Each different label can be traced to a particular
meaning. ∅ stands for “don’t care” [13] and identifies arguments that are not
considered by the agents. For instance, arguments in U \Arg, that are only part
of the universe, but not of the shared AF, are labelled with ∅ since they are
outside the interest of the agents. Accepted and rejected arguments (labelled as
in and out, respectively), allow agents to discern true beliefs from the false ones.
At last, undec arguments possess both in and out labels, meaning that agents
cannot decide about the acceptability of a belief (“don’t know”, indeed). Even
though the four-state labelling is more informative than the reinstatement la-
belling (that does not comprehend an empty label), there is no direct connection
between labellings and extensions of a certain semantics, as it happens for the
reinstatement labelling. To overcome this problem, in the following we establish
a mapping between a modified four-state labelling and the classical semantics.

Definition 1 (Four-state labelling semantics). Let U be a universe of ar-
guments, F = 〈Arg,R〉 an AF with Arg ⊆ U and R ⊆ Arg×Arg the arguments
and attacks. L is a four-state labelling on F if and only if

– ∀a ∈ U \Arg.L(a) = ∅;
– ∀a ∈ Arg, if out ∈ L(a), then ∃b ∈ Arg such that (b, a) ∈ R and in ∈ L(b);
– ∀a ∈ Arg, if in ∈ L(a), then ∀b ∈ Arg such that (b, a) ∈ R, out ∈ L(b);
– ∀a ∈ Arg, if in ∈ L(a), then ∀c such that (a, c) ∈ R, out ∈ L(c).

Moreover,
– L is a conflict-free labelling if and only if:
• L(a) = {in} =⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) 6= {in} and
• L(a) = {out} =⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = {in}

– L is an admissible labelling if and only if:
• L(a) = {in} =⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) = {out} and
• L(a) = {out} =⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = {in}

– L is a complete labelling if and only if:
• L(a) = {in} ⇐⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) = {out} and
• L(a) = {out} ⇐⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = {in}

– L is a stable labelling if and only if:
• L is a complete labelling and
• @a ∈ Arg | L(a) = {in, out}

– L is a preferred labelling if and only if:
• L is an admissible labelling and
• {a | L(a) = {in}} is maximal among all the admissible labellings

– L is a grounded labelling if and only if:
• L is a complete labelling and
• {a | L(a) = {in}} is minimal among all the complete labellings

We can show there is a correspondence between labellings satisfying the re-
strictions given in the definition above and the extensions of a certain semantics.
We use the notation L ∈ Sσ(F) to identify a labelling L corresponding to an
extension of the semantics σ with respect to the AF F .

Theorem 1. A four-state labelling L of an AF F = 〈Arg,R〉 is a conflict-
free (respectively admissible, complete, stable, preferred, grounded) labelling as
in Definition 1 if and only if the set I of arguments labelled in by L is a conflict-
free (respectively admissible, complete, stable, preferred, grounded) extension of
F .

Fig. 2. Admissible labelling of an AF showed through colours. Argument c, highlighted
in green, is the only in; red arguments b and d are out; the one in yellow, namely e, is
undec; and the grey argument a are left with an empty label ∅.

4 The Concurrent Argumentation Language (CA)

Agents/processes in a distributed/concurrent system can perform operations
that affect the behaviour of other components. The indeterminacy in the execu-
tion order of the processes may lead to inconsistent results for the computation
or even cause errors that prevent particular tasks from being completed. We
refer to this kind of situation as a race condition. If not properly handled, race
conditions can cause loss of information, resource starvation and deadlock. In
order to understand the behaviour of agents and devise solutions that guarantee
correct executions, many formalisms have been proposed for modelling concur-
rent systems. Concurrent Constraint Programming (CC) [18], in particular, relies
on a constraint store of shared variables in which agents can read and write in
accordance with some properties posed on the variables.

We replace the CC ask operation with three decisional operations: a syntac-
tic check that verifies if a given set of arguments and attacks is contained in the
knowledge base, and two semantic test operations that we use to retrieve infor-
mation about the acceptability of arguments in an AF. The CC tell operation
(that we call insert) augments the store with additional arguments and attack
relations. We can also remove parts of the knowledge base through a specifically
designed removal operation. Finally, a guarded parallel composition ‖G allows
for executing all the operations that satisfy some given conditions, and a pri-
oritised operator +P is used to implement if-then-else constructs. The syntax
of our concurrent language for argumentation is presented in Table 1, while in
Table 2 we give the definitions for the transition rules.

A ::= success | insert(Arg,R)→ A | rmv(Arg,R)→ A | E | A‖A | ∃xA
E ::= testc(a, l, σ)→ A | tests(a, l, σ)→ A | check(Arg,R)→ A | E + E | E +P E | E‖GE

Table 1. CA syntax.

Suppose to have an agent A whose knowledge base is represented by an AF
F = 〈Arg,R〉. An insert(Arg′, R′) action performed by the agent results in the
addition of a set of arguments Arg′ ⊆ U (where U is the universe) and a set of
relations R′ to the AF F . When performing an insertion, (possibly) new argu-
ments are taken from U \Arg. We want to make clear that the tuple (Arg′, R′)
is not an AF, indeed it is possible to have Arg′ = ∅ and R′ 6= ∅, which allows to
perform an insertion of only attack relations to the considered AF. It is as well
possible to insert only arguments to F , or both arguments and attacks. Intu-
itively, rmv(Arg,R) allows to specify arguments and/or attacks to remove from
the knowledge base. Removing an argument from an AF requires to also remove
the attack relations involving that argument and trying to remove an argument
(or an attack) which does not exist in F will have no consequences. The operation

〈insert(Arg′, R′)→ A, 〈Arg,R〉〉 → 〈A, 〈Arg ∪Arg′, R ∪R′〉〉 Insertion

〈rmv(Arg′, R′)→ A, 〈Arg,R〉〉 → 〈A, 〈Arg \Arg′, R \ {R′ ∪R′′}〉〉
where R′′ = {(a, b) ∈ R | a ∈ Arg′ ∨ b ∈ Arg′} Removal

Arg′ ⊆ Arg ∧R′ ⊆ R
〈check(Arg′, R′)→ A, 〈Arg,R〉〉 → 〈A, 〈Arg,R〉〉

Check

∃L ∈ Sσ(F) | l ∈ L(a)

〈testc(a, l, σ)→ A,F 〉 → 〈A,F 〉
∀L ∈ Sσ(F).l ∈ L(a)

〈tests(a, l, σ)→ A,F 〉 → 〈A,F 〉
Credulous and

Sceptical Test

〈A1, F 〉 → 〈A′
1, F

′〉
〈A1‖A2, F 〉 → 〈A′

1‖A2, F
′〉

〈A2‖A1, F 〉 → 〈A2‖A′
1, F

′〉

〈A1, F 〉 → 〈success, F ′〉
〈A1‖A2, F 〉 → 〈A2, F

′〉
〈A2‖A1, F 〉 → 〈A2, F ′〉

Parallelism

〈E1, F 〉 → 〈A1, F 〉, 〈E2, F 〉 6→
〈E1‖GE2, F 〉 → 〈A1, F 〉
〈E2‖GE1, F 〉 → 〈A1, F 〉

〈E1, F 〉 → 〈A1, F 〉, 〈E2, F 〉 → 〈A2, F 〉
〈E1‖GE2, F 〉 → 〈A1‖A2, F 〉

Guarded

Parallelism

〈E1, F 〉 → 〈A1, F 〉
〈E1 + E2, F 〉 → 〈A1, F 〉
〈E2 + E1, F 〉 → 〈A1, F 〉

Nondeterminism

〈E1, F 〉 → 〈A1, F 〉
〈E1 +P E2, F 〉 → 〈E1, F 〉

〈E1, F 〉 6→, 〈E2, F 〉 → 〈A2, F 〉
〈E1 +P E2, F 〉 → 〈E2, F 〉

If Then Else

〈A[y/x], F 〉 → 〈A′, F ′〉
〈∃xA,F 〉 → 〈A′, F ′〉

with y fresh Hidden Variables

Table 2. CA operational semantics.

check(Arg′, R′) is used to verify whether the specified arguments and attack re-
lations are contained in the set of arguments and attacks of the knowledge base,
without introducing any further change. If the check is positive, the operation
succeeds, otherwise it suspends. We have two distinct test operations, both re-
quiring the specification of an argument a ∈ A, a label l ∈ {in, out, undec, ∅} and
a semantics σ ∈ {adm, com, stb, prf, gde}. The credulous testc(a, l, σ) succeeds
if there exists at least an extension of Sσ(F) whose corresponding labelling L is
such that L(a) = l; otherwise (in the case L(a) 6= l in all labellings) it suspends.
The sceptical tests(a, l, σ) succeeds4 if a is labelled l in all possible labellings
L ∈ Sσ(F); otherwise (in the case L(a) 6= L in some labellings) it suspends. The
guarded parallelism ‖G is designed to execute all the operations for which the

4 The set of extensions Sσ(F) is finite, thus both testc(a, l, σ) and tests(a, l, σ) are
decidable.

guard in the inner expression is satisfied. More in detail, E1‖GE2 is successful
when either E1, E2 or both are successful and all the operations that can be ex-
ecuted are executed. This behaviour is different both from classical parallelism
(for which all the agents have to terminate in order for the procedure to succeed)
and from nondeterminism (that only selects one branch). The operator +P is
left-associative and realises an if-then-else construct: if we have E1 +P E2 and
E1 is successful, than E1 will be always chosen over E2, even if also E2 is suc-
cessful, so in order for E2 to be selected, it has to be the only one that succeeds.
Differently from nondeterminism, +P prioritises the execution of a branch when
both E1 and E2 can be executed. Moreover, an if-then-else construct cannot be
obtained starting from nondeterminism since of our language is not expressive
enough to capture success or failure conditions of each branch.

The remaining operators are classical concurrency compositions: an agent
in a parallel composition obtained through ‖ succeeds if all the agents succeed;
any agent composed through + is chosen if its guards succeeds; the existential
quantifier ∃xA behaves like agent A where variables in x are local to A5. The
parallel composition operator enables the specification of complex concurrent
argumentation processes. For example, a debate involving many agents that
asynchronously provide arguments can be modelled as a parallel composition of
insert operations performed on the knowledge base.

Example 1. Consider the AF in Figure 3 (left), where the complete semantics is
the set {{a}, {a, e}, {a, d}} and the preferred coincides with {{a, d}, {a, e}}. An
agent A in parallel with agent B wants to perform the following operation: if
argument d is labelled out in all complete extensions, then remove the argument
c from the knowledge base. At the same time, an agent B wants to insert an
argument f attacking d only if e is labelled in in some preferred extension. If A
is the first agent to be executed, the sceptical test on argument d will suspend,
since d belongs to the complete extension {a, d}. The credulous test performed
by agent B, instead, is successful and so it can proceed to insert an argument
f that defeats d. Now d is sceptically rejected by the complete semantics and
agent A can finally remove the argument c. After the execution of the program
below, we obtain the AF of Figure 3 (right).

A : tests(d, out, com)→ rmv({c}, {(a, c)})→ success

B : testc(e, in, prf)→ insert({f}, {(f, d)})→ success

As we will see in the next session, we aim to use the operators of our lan-
guage to model the behaviour of agents involved in particular argumentative
processes (such as persuasion and negotiation). Note that the language is very
permissive: there are no constraints on which arguments or attacks an agent can
insert/remove.

5 We plan to use existential quantifiers to extend our work by allowing our agents to
have local stores.

Fig. 3. The AF on the right is obtained starting from the one on the left trough the
insertion of an argument f attacking d and the removal of c together with the attack
(a, c).

4.1 Belief Revision and the AGM Framework

The AGM framework [1] provides an approach to the problem of revising knowl-
edge basis by using theories (deductively closed sets of formulae) to represent
the beliefs of the agents. A formula α in a given theory can have different sta-
tuses for an agent, according to its knowledge base K. If the agent can deduce
α from its beliefs, then we say that α is accepted (K ` α). Such a deduction
corresponds with the entailment of α by the knowledge base. If the agent can
deduce the negation of α, then we say that α is rejected (K ` ¬α). Otherwise,
the agent cannot deduce anything and α is undetermined.

Fig. 4. Transitions between AGM beliefs
states.

The correspondence between ac-
cepted/rejected beliefs and in/out ar-
guments in a labelling (as depicted
in Figure 4) is straightforward. Since
the undetermined status represents
the absence of a piece of information
(nothing can be deduced in favour of
either accepting or rejecting a belief)
it can be mapped into the empty la-
bel ∅. Finally, the undec label is as-
signed to arguments that are both in
and out, boiling down to the notion
of inconsistency in AGM. The empty
label, in particular, plays a fundamen-
tal role in identifying new arguments
that agents can bring to the debate
to defend (or strengthen) their posi-
tion. The status of a belief can be changed through some operations (namely
expansion ⊕, contraction � and revision ~) on the knowledge base.

An expansion basically brings new pieces of information to the base, allowing
for undetermined belief to become either accepted or refused. A contraction, on
the contrary, reduces the information an agent can rely on in making its deduc-
tion, and an accepted (or refused) belief can become undetermined. A revision
introduces conflicting information, making acceptable belief refused and vice-

versa. The AGM framework also defines three sets of rationality postulates (one
for each operation) that any good operator should satisfy, and provide building
blocks for realizing complex interaction processes between agents. Negotiation,
that aims to solve conflicts arising from the interaction between two or more
parties with different individual goals, could be implemented through expansion
operations, modelling the behaviour of an agent presenting claims towards its
counterparts, and contraction, representing the act of retracting a condition to
successfully conclude the negotiation. Inconsistent beliefs in a debate can be
made accepted through a contraction, while expansion can make beliefs which
state is undetermined acceptable. Agents involved in persuasive dialogue games
have to elaborate strategies for supporting their beliefs and defeating the adver-
saries. Again, revision operations on the knowledge base can change the status
of the beliefs of a persuaded agent.

As for knowledge basis in belief revision, AFs can undergo changes that mod-
ify the structure of the framework itself, either integrating new information (and
so increasing the arguments and the attacks in the AF) or discarding previously
available knowledge. Agents using AFs as the mean for exchanging and inferring
information have to rely on operations able to modify such AFs. Besides con-
sidering the mere structural changes, also modifications on the semantics level
need to be addressed by the operations performed by the agents. In the follow-
ing, we define three operators for AFs, namely argument expansion, contraction
and revision, that comply with classical operators of AGM and that can be built
as procedures in our language.

The argumentation frameworks 〈Arg,R〉 we use as the knowledge base for
our concurrent agents are endowed with a universe of arguments U that are used
to bring new information. Since arguments in U \Arg do not constitute an actual
part of the knowledge base, they are always labelled ∅, until they are added into
the framework and acquire an in and/or an out label. Notice also that changes
to the knowledge base we are interested in modelling are restricted to a single
argument at a time, miming the typical argument interaction in dynamic AF.

Definition 2 (Argument extension expansion, contraction, revision).
Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U , R ⊆ Arg × Arg, σ a
semantics, L ∈ Sσ(F) a given labelling, and a ∈ U an argument.

– An argument extension expansion ⊕σa,L : AF → AF computes a new AF
F ′ = ⊕σa,L(F) with semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that
L′(a) ⊇ L(a) (if L′(a) ⊃ L(a) the expansion is strict).

– An argument extension contraction �σa,L : AF → AF computes a new AF
F ′ = �σa,L(F) with semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that
L(a) ⊇ L′(a) (if L(a) ⊃ L′(a) the expansion is strict).

– An argument extension revision ~σa,L : AF → AF computes a new AF
F ′ = ~σa,L(F) with semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that if
L(a) = in/out, then L′(a) = out/in and ∀b ∈ Arg with b 6= a, L′(b) =
L(b) ∨ L′(b) 6= undec (that is no inconsistencies are introduced).

Moreover, we denote with ⊕σ,la,L(F), �σ,la,L(F) and ~σ,la,L(F) an argument extension
expansion, contraction and revision, respectively, that computes an AF F ′ with
semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that L′(a) = l.

Definition 2 can be extended in such a way to consider not only one labelling,
but all the possible ones. We omit the discussion on this regard due to space
constraints. It is important to note that the formalism we present is not mono-
tone: the insert operation may lead to a contraction, reducing the number of
arguments with the labels in and/or out. Similarly, the removal of an argument
may lead to an expansion.

AGM operators have already been studied from the point of view of their
implementation in work as [3, 8]. However, in the previous literature, realisability
of extensions and not of single arguments is considered. The implementation
of an argument expansion/contraction/revision operator changes according to
the semantics we take into account. In the following, we consider the grounded
semantics and show how the operators of Definitions 2 can be implemented.
Notice that there exist many ways to obtain expansion, contraction and revision.
We chose one that leverage between minimality with respect to the changes
required in the framework and simplicity of implementation.

Proposition 1. Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U ,
R ⊆ Arg × Arg, a ∈ U an argument, and L the unique grounded labelling. A
possible argument extension expansion ⊕gde,la,L (F) could act as:
– if L(a) = ∅ and l = in, insert a to Arg
– if L(a) = ∅ and l = out,
• if ∃b ∈ Arg | L(b) = in, insert 〈{a}, {(b, a)}〉 to F
• otherwise, insert 〈{a, b}, {(b, a)}〉 to F

– if L(a) = in and l = undec,
• if ∃b ∈ Arg | L(b) = undec, insert (b, a) to R
• otherwise, insert (a, a) to R

– if L(a) = out and l = undec,
• ∀b ∈ Arg | L(b) = {in} ∧ (b, a) ∈ R, insert (a, b) to R

Proposition 2. Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U ,
R ⊆ Arg × Arg, a ∈ U an argument, and L the unique grounded labelling. A
possible argument extension contraction �gde,la,L (F) could act as:
– if L(a) = undec and l = in, ∀b ∈ Arg | L(b) = undec, remove (b, a) from R
– if L(a) = undec and l = out,
• if ∃b ∈ Arg | L(b) = in, insert (b, a) to R
• otherwise, insert 〈{b}, {(b, a)}〉 to F

– if L(a) = in and l = ∅, remove a (and all attacks involving a) from F
– if L(a) = out and l = ∅, remove a (and all attacks involving a) from F

Proposition 3. Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U ,
R ⊆ Arg × Arg, a ∈ U an argument, and L the unique grounded labelling. A
possible argument extension revision ~gde,la,L (F) could act as:
– if L(a) = in,

• if ∃b ∈ Arg | L(b) = in, insert (b, a) to R and then ∀c ∈ Arg | (a, c) ∈ R,
insert (b, c) to R
• otherwise, insert 〈{b}, {(b, a)}〉 to F and then ∀c ∈ Arg | (a, c) ∈ R,

insert (b, c) to R
– if L(a) = out, ∀b ∈ Arg | L(b) ∈ {in, undec}, remove (b, a) from R and then
∀c ∈ Arg | (a, c) ∈ R ∧ L(c) ∈ {in, undec}, remove (a, c) from R

Note that the argument extension revision we propose for grounded semantics
in Proposition 3 is more restrictive than necessary, since ensure that all the
arguments different from a (that is the argument to be revised) maintain the
exact same labels, while Definition 2 only forbids to change the label to undec.
The three introduced operators can be implemented in our language.

Proposition 4. The argument extension expansion, contraction and revision in
Propositions 2, 2 and 3, respectively, can be implemented in our language.

As an example, an expansion operator is shown in Table 3.

⊕gde,ina,L (F)
(L(a)=∅)

: insert({a}, {})→ success

⊕gde,outa,L (F)
(L(a)=∅)

:
∑
b∈Arg

(testc(b, in, gde)→ insert({a}, {(b, a)}))→ success

+P insert({a, u}, {(u, a)})→ success

⊕gde,undeca,L (F)
(L(a)=in)

:
∑
b∈Arg

(testc(b, undec, gde)→ insert({}, {(b, a)}))→ success

+P insert({}, {(a, a)})→ success

⊕gde,undeca,L (F)
(L(a)=out)

:
∥∥
G

b∈Arg
(testc(b, in, gde) ∧ check({}, {(b, a)})

→ insert({}, {(a, b)}))→ success

Table 3. Argument extension expansion operator (Proposition 1) in CA syntax where
testc(a, S, σ)→ A is syntactic sugar for

∑
l∈S

(testc(a, l, σ)).

In devising operations of Definitions 2, that allow agents for changing the la-
bels of arguments in a shared knowledge base with respect to a given semantics,
we reinterpret AGM operators for expansion, contraction and revision. Nonethe-
less, we maintain similarities with the AGM theory, to the point that we can
highlight some similarities with the original postulates of [1] that characterise
rational operators performing expansion, contraction and revision of beliefs in a
knowledge base. Consider for instance an argument a of an AF F and a seman-
tics σ. An argument semantics expansion ⊕σa produces as output an AF F ′ for

which no labelling L′ ∈ Sσ(F ′) is such that a has less labels in L′ than in any
labelling L of F (i.e., the number of labels assigned to a either remains the same
or increases after the expansion).

5 Related Work

A formalism for expressing dynamics in AFs is defined in [17] as a Dynamic
Argumentation Framework (DAF). The aim of that paper is to provide a method
for instantiating Dung-style AFs by considering a universal set of arguments U .
The introduced approach allows for generalising AFs, adding the possibility of
modelling changes, but, contrary to our study, it does not consider how such
modifications affect the semantics and does not allow to model the behaviour of
concurrent agents.

The impact of modifications on an AF in terms of sets of extensions is stud-
ied in [7]. Different kinds of revision are introduced, in which a new argument
interacts with an already existing one. All these revisions are obtained through
the addition of a single argument, together with a single attack relation either
towards or from the original AF, and can be implemented as procedures of our
language. The review operator we define in the syntax of our language (as the
other two operator for expansion and contraction), instead, does not consider
whole extensions, but just an argument at a time, allowing communicating agents
to modify their beliefs in a finer grain.

Focusing on syntactic expansion of an AF (the mere addition of arguments
and attacks), [3] show under which conditions a set of arguments can be enforced
(to become accepted) for a specific semantics. The notion of expansion we use
in the presented work is very different from that in [3]. First of all, we take into
account semantics when defining the expansion, making it more similar to an
enforcement itself: we can increment the labels of an argument so to match a
desired acceptance status. Then, our expansion results to be more general, being
able to change the status of a certain argument not only to accepted, but also
rejected, undecided or undetermined. This is useful, for instance, when we want
to diminish the beliefs of an opponent agent.

6 Conclusion and Future Work

We introduced a concurrent language for argumentation, that can be used by
(intelligent) agents to implement different forms of communications. The agents
involved in the process share an abstract argumentation framework that serves as
a knowledge base and where arguments represent the agreed beliefs. In order to
take into account the justification status of such beliefs (which can be accepted,
rejected, undetermined and inconsistent) we considered a four-state labelling
semantics. Besides operations at a syntactic level, thus, we also defined semantic
operations that verify the acceptability of the arguments in the store. Finally, to
allow agents for realising more complex forms of communication (like negotiation
and persuasion), we presented three AGM-style operators, namely of expansion,

contraction and revision, that change the status of a belief to a desired one; we
also showed how to implement them in our language.

For the future, we plan to extend this work in many directions. First of
all, given the known issues of abstract argumentation [16], we want to consider
structured AFs and provide an implementation for our expansion, contraction
and revision operators, for which a different store (structured and not abstract,
indeed) need to be considered. The concurrent primitives are already general
enough and do not require substantial changes. To obtain a spendable imple-
mentation, we will consider operations that can be done in polynomial time [12],
for instance by using the grounded semantics, for which finding and checking
extension is a easy task from the point of view of computational complexity. We
also plan to provide a real implementation of our language that can be used for
both research purposes and practical applications.

As a final consideration, whereas in real-life cases it is always clear which
part involved in a debate is stating a particular argument, AFs do not hold any
notion of “ownership” for arguments or attacks, that is, any bond with the one
making the assertion is lost. To overcome this problem, we want to implement
the possibility of attaching labels on (groups of) arguments and attacks of AFs,
in order to preserve the information related to whom added a certain argument
or attack, extending and taking into account the work in [14]. Consequently, we
can also obtain a notion of locality (or scope) of the belief in the knowledge base:
arguments owned by a given agents can be placed into a local store and used in
the implementation of specific operators through hidden variables.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. The Journal of Symbolic Logic
50(02), 510–530 (Jun 1985)

2. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowledge Eng. Review 26(4), 365–410 (2011)

3. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and
monotonicity results. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.)
Computational Models of Argument: Proceedings of COMMA 2010, Desenzano
del Garda, Italy, September 8-10, 2010. Frontiers in Artificial Intelligence and Ap-
plications, vol. 216, pp. 75–86. IOS Press (2010)

4. Bistarelli, S., Kotthoff, L., Santini, F., Taticchi, C.: Containerisation and Dynamic
Frameworks in ICCMA’19. In: Proceedings of the Second International Workshop
on Systems and Algorithms for Formal Argumentation (SAFA 2018) Co-Located
with the 7th International Conference on Computational Models of Argument
(COMMA 2018), Warsaw, Poland, September 11, 2018. CEUR Workshop Pro-
ceedings, vol. 2171, pp. 4–9. CEUR-WS.org (2018)

5. Boella, G., Kaci, S., van der Torre, L.W.N.: Dynamics in Argumentation with Sin-
gle Extensions: Attack Refinement and the Grounded Extension (Extended Ver-
sion). In: Argumentation in Multi-Agent Systems, 6th International Workshop,
ArgMAS 2009. Revised Selected and Invited Papers. Lecture Notes in Computer
Science, vol. 6057, pp. 150–159. Springer (2009)

6. Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Logics in
Artificial Intelligence, 10th European Conference, JELIA 2006, Liverpool, UK,
September 13-15, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4160,
pp. 111–123. Springer (2006)

7. Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.C.: Revision of an Argumen-
tation System. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Eleventh International Conference, KR 2008, Sydney, Australia,
September 16-19, 2008. pp. 124–134. AAAI Press (2008)

8. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: Extension enforcement
in abstract argumentation as an optimization problem. In: Yang, Q., Wooldridge,
M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp.
2876–2882. AAAI Press (2015)

9. Doutre, S., Herzig, A., Perrussel, L.: A Dynamic Logic Framework for Abstract
Argumentation. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014 (2014)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321–357 (Sep 1995)

11. Dupin de Saint-Cyr, F., Bisquert, P., Cayrol, C., Lagasquie-Schiex, M.C.: Argu-
mentation update in YALLA (Yet Another Logic Language for Argumentation).
International Journal of Approximate Reasoning 75, 57–92 (Aug 2016)

12. Dvorák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. FLAP 4(8) (2017)

13. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. J.
Log. Comput. 9(2), 215–261 (1999)

14. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in Multi-Agent Systems: Con-
text and Recent Developments. In: Argumentation in Multi-Agent Systems, Third
International Workshop, ArgMAS 2006, Hakodate, Japan, May 8, 2006, Revised
Selected and Invited Papers. pp. 1–16 (2006)

15. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument & Computation 1(2), 93–124 (2010)

16. Prakken, H., Winter, M.D.: Abstraction in argumentation: Necessary but danger-
ous. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Computational Models
of Argument - Proceedings of COMMA 2018, Warsaw, Poland, 12-14 September
2018. Frontiers in Artificial Intelligence and Applications, vol. 305, pp. 85–96. IOS
Press (2018)

17. Rotstein, N.D., Moguillansky, M.O., Garcia, A.J., Simari, G.R.: An abstract ar-
gumentation framework for handling dynamics. In: Proceedings of the Argument,
Dialogue and Decision Workshop in NMR 2008, Sydney, Australia. pp. 131–139
(2008)

18. Saraswat, V.A., Rinard, M.: Concurrent constraint programming. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL ’90. pp. 232–245. ACM Press, San Francisco, California, United
States (1990)

19. Toni, F.: A tutorial on assumption-based argumentation. Argument & Computa-
tion 5(1), 89–117 (2014)

